JPH0693360B2 - Manufacturing method of battery with nickel pole - Google Patents
Manufacturing method of battery with nickel poleInfo
- Publication number
- JPH0693360B2 JPH0693360B2 JP57161731A JP16173182A JPH0693360B2 JP H0693360 B2 JPH0693360 B2 JP H0693360B2 JP 57161731 A JP57161731 A JP 57161731A JP 16173182 A JP16173182 A JP 16173182A JP H0693360 B2 JPH0693360 B2 JP H0693360B2
- Authority
- JP
- Japan
- Prior art keywords
- battery
- nickel
- electrode
- paste
- active material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/32—Nickel oxide or hydroxide electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、非焼結式ニッケル極を備えた電池とくにアル
カリ電池の製造法に関する。Description: TECHNICAL FIELD The present invention relates to a method for producing a battery, particularly an alkaline battery, having a non-sintered nickel electrode.
従来例の構成とその問題点 一般に、アルカリ電池の正極は、ニッケル極の他に、酸
化銀,二酸化マンガン,空気などを活物質とする電極が
あるが、アルカリ水溶液中で安定であり、充放電の可逆
性にもすぐれていて長寿命が期待できることはすぐれた
利用率を示すなどの理由でニッケル極が主流を占めてい
る。とくにニッケル−カドミウム電池は、アルカリ電池
の代表的な系であり、今後も大きな需要の伸びが期待さ
れている。Conventional structure and its problems In general, the positive electrode of an alkaline battery has an electrode that uses silver oxide, manganese dioxide, air, etc. as an active material in addition to the nickel electrode, but it is stable in an alkaline aqueous solution and cannot be charged or discharged. Nickel electrode occupies the main stream because of its excellent reversibility and long life expectancy. In particular, nickel-cadmium batteries are a representative system of alkaline batteries, and it is expected that there will be great demand growth in the future.
また、ニッケル−亜鉛電池やニッケル−鉄電池がとくに
電気的自動車用として開発が進められ、ニッケル−水素
電池が主に宇宙用などの特殊な用途に対して使用されは
じめている。In addition, nickel-zinc batteries and nickel-iron batteries are being developed especially for electric vehicles, and nickel-hydrogen batteries are beginning to be used mainly for special applications such as space applications.
このようにニッケル極は広く用いられていて、その電極
構造としては、かってはポケット式、最近は焼結式が主
流を占めている。ポケット式はよく知られているよう
に、孔を多く設けた鋼製の容器に水酸化ニッケルを黒鉛
などの導電材とともに機械的に充てんして得られてい
る。したがって電極は外観上は堅牢にできているが、活
物質は導電材や容器(ポケット)とは接触して存在して
いるのみであるから、大電流放電での分極が大きく、利
用率も低くなる。また、急充電などの過酷な条件では寿
命が短くなるなどの問題点があった。As described above, the nickel electrode is widely used, and as the electrode structure thereof, the pocket type and the sintered type have recently been the mainstream. As is well known, the pocket type is obtained by mechanically filling nickel hydroxide with a conductive material such as graphite in a steel container having many holes. Therefore, the electrodes are robust in appearance, but the active material is present only in contact with the conductive material and the container (pocket), so that the polarization is large at a large current discharge and the utilization rate is low. Become. Further, there is a problem that the life is shortened under severe conditions such as rapid charging.
これに対して焼結式では、微孔を有する焼結体中に活物
質が強固に付着、内蔵された形で充てんされているの
で、上記ポケット式にみられるような問題は少なく、大
電流放電特性,急充電特性,寿命いずれの点でも大きな
改良がはかられている。On the other hand, in the sintering method, the active material is firmly adhered to and filled in the sintered body having micropores, so there are few problems such as those seen in the pocket method, and high current Significant improvements have been made in terms of discharge characteristics, rapid charging characteristics, and life.
したがって特性のみからみれば、焼結式はかなり理想の
段階に達しているといえよう。ところが、焼結体の構
造,活物質の充てんいずれにおいても工程は複雑であっ
て、ポケット式に比べればかなり高価になる問題があ
る。焼結式に代えて孔径,多孔度とも大きいスポンジ状
金属多孔体を活物質支持体として用い、これにペースト
状にした活物質、すなわち水酸化ニッケルを直接充てん
する方法が開発され、少なくとも活物質の充てん工程の
簡易化がはかられている。Therefore, from the characteristics alone, it can be said that the sintering method has reached the ideal stage. However, the process is complicated in both the structure of the sintered body and the filling of the active material, and there is a problem that it is considerably more expensive than the pocket type. A method has been developed in which a sponge-like metal porous body having a large pore size and a large porosity is used as an active material support instead of the sintering type, and a paste-like active material, that is, nickel hydroxide is directly filled into the active material support. The filling process is simplified.
さらに簡単な方法がいわゆるペースト式であって、芯材
としてネット,孔あき板,エキスバンドメタルなどの二
次元的な多孔体を用い、これに活物質と結着剤を混合し
てペースト状にしたものを塗着し、これをスリットある
いはローラ間を通すことにより平滑化して、乾燥後、必
要に応じて加圧するものである。この方法は、芯材が極
めて安価であり、また活物質の充てんも容易であるので
製法としては理想的であり、多くの提案がされている。
ペースト式電極の歴史は古く、製法はやや異なるがペー
スト式鉛極板は極めて広く用いられている。また、カド
ミウム極についても実用化されている。A simpler method is the so-called paste method, in which a two-dimensional porous body such as a net, a perforated plate, or an ex-band metal is used as the core material, and the active material and the binder are mixed to form a paste. The above-mentioned product is applied, smoothed by passing it through slits or rollers, and after drying, pressure is applied if necessary. This method is ideal as a manufacturing method because the core material is extremely inexpensive and the active material is easily filled, and many proposals have been made.
Although the past type electrode has a long history and the manufacturing method is slightly different, the past type lead electrode plate is extremely widely used. Also, the cadmium electrode has been put to practical use.
これらに対してニッケル極についても多くの提案がある
にもかかわらず実用化ができない理由としては、次のよ
うな点が挙げられる。On the other hand, the reason why the nickel electrode cannot be put to practical use despite the many proposals is as follows.
(1)ニッケルつまり活物質としての充電時でのオキシ
水酸化ニッケル,放電時の水銀化ニッケルいずれもすぐ
れた導電体ではない。したがって導電材を別に加える必
要があり、加えても利用率が向上し難い。また、加えす
ぎると絶対容量が小さくなってしまう。(1) Nickel, that is, neither nickel oxyhydroxide at the time of charging as an active material nor nickel mercuride at the time of discharging is an excellent conductor. Therefore, it is necessary to add a conductive material separately, and even if it is added, it is difficult to improve the utilization rate. Also, if added too much, the absolute capacity will be reduced.
(2)充放電の繰り返しにより活物質の体積変化は当然
あるが、ニッケル極では膨潤が激しく生じる。(2) The volume of the active material changes as a result of repeated charging and discharging, but the nickel electrode swells violently.
主に上記の要因がペースト式ニッケル極の広範囲な実用
化を阻害しているのである。つまり、まず強度をあげて
(2)のような膨潤、またこれに伴う活物質の脱落を防
ぐ方法として、従来は種々の結着剤が考えられてきた。
結着剤としては、ポリエチレン,ポリプロピレン,ポリ
塩化ビニル,ポリスチレン,フッ素樹脂などや、ポリビ
ニルアルコール,カルボキシメチルセルロース,エチル
セルロースなどがある。耐電解液性,耐酸化性の点では
勿論前者がすぐれているが、強度を向上させるために大
量に加えれば、電圧特性は劣り、利用率も低下してしま
う。これを抑制するためにニッケル粉末や黒鉛などが加
えられたが、多量に加えると活物質の占める割合が減少
するし、少ないと利用率が小さい点で問題があった。Mainly, the above factors hinder the widespread practical use of the paste nickel electrode. That is, various binders have been conventionally considered as a method for increasing the strength and preventing the swelling as in (2) and the dropout of the active material due to the swelling.
Examples of the binder include polyethylene, polypropylene, polyvinyl chloride, polystyrene, fluororesin, polyvinyl alcohol, carboxymethyl cellulose, ethyl cellulose and the like. Of course, the former is superior in terms of electrolytic solution resistance and oxidation resistance, but if a large amount is added to improve the strength, the voltage characteristics will be inferior and the utilization factor will also decrease. Nickel powder or graphite was added to suppress this, but if added in a large amount, the proportion of the active material decreases, and if it is too small, there is a problem in that the utilization rate is small.
以上の結着剤の添加やその他の耐電解液性の繊維は、ペ
ースト式あるいは加圧式のニッケル極,いわゆる非焼結
式ニッケル極の特性や寿命をある程度向上させることが
できるが、従来の焼結式に比べるとはるかに劣るために
実用上広く用いられるには至っていない。The above addition of the binder and other electrolytic solution resistant fibers can improve the characteristics and life of the paste type or pressure type nickel electrode, so-called non-sintered nickel electrode to some extent. Since it is far inferior to the type, it has not been widely used in practice.
発明の目的 本発明は、ポケット式電極,スポンジ状金属多孔体を活
物質支持体とする電極、二次元的な芯材を用いるペース
ト式電極などの非焼結式ニッケル極を改良して、容易に
活物質の充てんができる長所をそのまま残して、放電特
性や寿命を焼結式に近づけるすぐれたニッケル極とし、
しかもこれを備えた電池の特性も一層向上させる電池の
製造法を提供するものである。An object of the present invention is to improve a non-sintered nickel electrode such as a pocket type electrode, an electrode using a sponge-like metal porous body as an active material support, a paste type electrode using a two-dimensional core material, and the like. Leaving the advantage of being able to be filled with an active material as it is, making it an excellent nickel electrode that brings discharge characteristics and life closer to the sintering type,
Moreover, the present invention provides a method for manufacturing a battery that further improves the characteristics of the battery provided with the battery.
発明の構成 本発明者らは、水酸化ニッケルを主としたペースト正極
材料中にニッケルとコバルトを混合し、これをペースト
状態で好ましくは空気にふれさせながら放置しておくこ
とによって活物質の利用率が向上し、したがって一定の
負荷での充放電で長寿命になることを先に提案したが、
本発明はその改良にかかる。すなわち、このようなペー
ストを用いて、非焼結式ニッケル極を製造し、このニッ
ケル極を正極とする電池とくにアルカリ電池を構成後
に、化成に入る前にふたたび電池の状態で放置しておく
ことを特徴とするものである。Composition of the Invention The inventors used the active material by mixing nickel and cobalt in a paste positive electrode material mainly composed of nickel hydroxide and leaving it in a paste state preferably while being exposed to air. I proposed earlier that the rate will improve, and therefore, long life will be achieved by charging and discharging under a constant load.
The present invention relates to the improvement. That is, a non-sintered nickel electrode is manufactured using such a paste, and after forming a battery, especially an alkaline battery, which uses this nickel electrode as a positive electrode, it should be left in the battery state again before entering the formation. It is characterized by.
このような二度の放置がなぜ非焼結式ニッケル極の利用
率を向上させるかの原因については明らかではないが、
コバルトの影響であることはまちがいがなく、コバルト
がニッケル極の充放電効率を向上させるためにこの二度
の放置が効果的であることが推定できる。It is not clear why such two-time storage improves the utilization rate of the non-sintered nickel electrode, but
There is no doubt that it is the effect of cobalt, and it can be presumed that this two-time storage is effective because cobalt improves the charge and discharge efficiency of the nickel electrode.
実施例の説明 以下実施例として、アルカリ電池のなかでも最も普及度
が高い円筒密閉形のニッケル−カドミウム電池を具体例
として記載する。サイズとしては単2相当を用いた。カ
ドミウム負極は以下のようにして製造したものを用い
た。まず、酸化カドミウムを主体とするペーストをニッ
ケルメッキした鉄製のパンチングメタルの両面に塗着
し、所定の厚さに設定されたスリット中を通過させ、乾
燥工程を経て、厚さ0.7mmの極板を得た。その後、苛性
カリの10重量%水溶液中で部分充電して酸化カドミウム
の一部を金属カドミウムに変化させ、さらに、水洗,乾
燥後加圧して厚さ0.63mmにした。Description of Examples As a specific example, a cylindrical sealed nickel-cadmium battery, which is the most popular among alkaline batteries, will be described below. As the size, a size equivalent to 2 was used. The cadmium negative electrode used was manufactured as follows. First, a cadmium oxide-based paste is applied to both sides of a nickel-plated iron punching metal, passed through a slit set to a predetermined thickness, and after a drying process, a 0.7 mm thick electrode plate is applied. Got Then, it was partially charged in a 10 wt% aqueous solution of caustic potash to change a part of the cadmium oxide into metal cadmium, further washed with water, dried and pressurized to a thickness of 0.63 mm.
セパレータにはポリアミドの不織布を用い、電解液には
苛性カリの25重量%水溶液に少量の水酸化リチウムを溶
解したものを1セル当たり6.5cc用いた。A polyamide non-woven fabric was used for the separator, and 6.5 cc of a 25% by weight aqueous solution of potassium hydroxide dissolved in a small amount of lithium hydroxide was used as the electrolyte.
ニッケル電極としてはペースト式を採用し、以下のよう
にして製造した。ペースト組成は、200メッシュのふる
いを通過する粒度の水酸化ニッケル1Kgとカーボニルニ
ッケル粉末100g,黒鉛50gと直径0.1mm,長さ3〜5mmのア
クリロニトリル−塩化ビニル共重合体繊維20g、カーボ
ニル金属コバルト粉末50gおよびカルボキシメチルセル
ロースの3重量%水溶液1Kgである。The nickel electrode was of the paste type and was manufactured as follows. The paste composition is 1 Kg of nickel hydroxide and 100 g of carbonyl nickel powder with a particle size that passes through a 200-mesh sieve, 50 g of graphite, 0.1 mm in diameter, 20 g of acrylonitrile-vinyl chloride copolymer fiber with a diameter of 3-5 mm, and carbonyl metal cobalt powder. 50 g and 1 kg of a 3% by weight aqueous solution of carboxymethyl cellulose.
この実施例では、このペーストを室温で1週間放置して
風乾した。色はうすい黒色から黒褐色に変化し、これは
コバルトが酸化しつつ他の混合物に拡散したものと思わ
れる。In this example, the paste was left to air dry for 1 week at room temperature. The color changed from light black to dark brown, which is believed to be due to the cobalt being oxidized and diffused into the other mixture.
その後に、乾燥により蒸発した水に相当する水を加えて
十分混合し、これをペーストとして用いた。After that, water corresponding to water evaporated by drying was added and mixed well, and this was used as a paste.
芯材には、厚さ0.11mmの鉄板に孔径2mm中心間ピッチ3mm
で開孔したパンチングメタルにニッケルメッキを施した
ものを使用した。この芯材の両面に上記ペーストを塗着
し、スリットを通過させ、乾燥後の厚さを1.0±0.05mm
にした。こうして得た極板をまず幅120mm,長さ680mmに
裁断した。ついでローラー間を通して加圧し、4フッ化
エチレン樹脂の水性ディスパージョン(固形分15重量
%)を含浸して乾燥した。電極の厚さは0.7mmであっ
た。この電極をさらに単2の大きさに裁断した。この場
合は幅38mmで長さを220mmにした。これを前記のカドミ
ウム極およびセパレータと組合せて電池を構成した。The core material is a 0.11 mm thick iron plate with a hole diameter of 2 mm and a center-to-center pitch of 3 mm.
The punching metal that was perforated with nickel plating was used. Apply the paste on both sides of this core material, let it pass through the slit, and make the thickness after drying 1.0 ± 0.05 mm.
I chose The electrode plate thus obtained was first cut into a width of 120 mm and a length of 680 mm. Then, the mixture was pressed through rollers to impregnate an aqueous dispersion of tetrafluoroethylene resin (solid content: 15% by weight) and dried. The thickness of the electrode was 0.7 mm. This electrode was further cut into a size of 1. In this case, the width was 38 mm and the length was 220 mm. This was combined with the above-mentioned cadmium electrode and separator to form a battery.
これに前記電解液を注入後に封口し、電池として完成さ
せた。本実施例では、この電池を10℃で1,2,3,4,5,6日
それぞれ放置した。それぞれの電池をA1,A2,A3,A4,
A5,A6とする。その後で0.1Cで15時間充電、0.2Cで0.8V
/セル放電を2回くり返して化成とした。After pouring the electrolyte solution into this, it was sealed and completed as a battery. In this example, this battery was left at 10 ° C. for 1,2,3,4,5,6 days. Each battery has A 1 , A 2 , A 3 , A 4 ,
And A 5, A 6. After that, charge at 0.1C for 15 hours, 0.8V at 0.2C
/ The cell discharge was repeated twice to form a cell.
また、比較のために直ちに化成に入った電池を加えBと
した。また、ペーストの放置も電池での放置も行なわな
かった電池をC、ペースト放置は行なわず電池での放置
のみを10℃で6日間行なったものをDとして加えた。Further, for comparison, a battery immediately entering the chemical conversion was added and designated as B. In addition, a battery in which the paste was not left and a battery was not left was added as C, and a paste was not left as it was and only left in the battery was left for 6 days at 10 ° C. as D.
前記の電池A〜Dの充てん容量と各放電時での利用率、
および充電は0.15C、放電は0.5Cの条件で充放電し、初
期容量の65%まで低下した場合を寿命としたサイクル寿
命を次表に示す。The filling capacity of the batteries A to D and the utilization rate at each discharge,
The following table shows the cycle life, which is defined as the life when the charge and discharge were 0.15C and the discharge was 0.5C, and the life was 65% of the initial capacity.
この表より明らかなように、ペーストの放置や電池での
放置のみでも、一応利用率や寿命の向上に効果がある
が、両者を行なった場合には、とくに2Cのような高率放
電では飛躍的な向上が認められる。なお、本実施例では
10℃で行なったがこの10℃での放置では6日間程度行な
うことが好ましい。これよりも低温では、放置日数はむ
しろ長く、高温では短期間にしてもよいことを見出し
た。たとえば30℃では2日間程度でよい。 As is clear from this table, even if the paste or the battery is left alone, it is effective in improving the utilization rate and life, but if both are performed, it will make a leap especially with high-rate discharge such as 2C. Improvement is recognized. In this example,
It was carried out at 10 ° C., but it is preferable to carry out the standing at 10 ° C. for about 6 days. It has been found that at lower temperatures, the number of days left is rather long, and at higher temperatures, it may be shorter. For example, at 30 ° C, it takes about 2 days.
また実施例ではペースト式電極について述べたが、スポ
ンジ状金属多孔体にペーストを充填する電極にも同様に
適用することができ、また、ポケット式電極の場合は乾
燥状態のものを用いればよく、電池組立後は他と同様で
放置すればよい。Further, although the paste type electrode is described in the examples, it can be similarly applied to the electrode in which the sponge-like metal porous body is filled with the paste, and in the case of the pocket type electrode, a dry state one may be used, After assembling the battery, it may be left as in the other cases.
発明の効果 以上のように、コバルトと黒鉛を水との共存下で好まし
くは空気に触れさせながら少なくとも数時間程度以上放
置したものをペーストに使用することと電池状態で放置
させることにより、電極の利用率,寿命ともに向上する
ことができる工業的価値大なるものである。Effects of the Invention As described above, by using cobalt and graphite left in the presence of at least several hours or more in the presence of water in the coexistence of water and preferably in the paste and leaving them in a battery state, It is of great industrial value that can improve both utilization and life.
Claims (1)
くともコバルト粉末を加え、さらに水を加えて混合物と
して放置し、前記混合物を用いてニッケル極とし、電池
を構成後、化成前にふたたび電池の状態で放置すること
を特徴とするニッケル極を備えた電池の製造法。1. A battery comprising nickel hydroxide as a main material, to which at least cobalt powder is added, water is further added, and the mixture is allowed to stand, and the mixture is used as a nickel electrode to form a nickel electrode again before forming the battery. A method for producing a battery having a nickel electrode, which is characterized in that the battery is left as it is.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57161731A JPH0693360B2 (en) | 1982-09-16 | 1982-09-16 | Manufacturing method of battery with nickel pole |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57161731A JPH0693360B2 (en) | 1982-09-16 | 1982-09-16 | Manufacturing method of battery with nickel pole |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5951463A JPS5951463A (en) | 1984-03-24 |
JPH0693360B2 true JPH0693360B2 (en) | 1994-11-16 |
Family
ID=15740806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57161731A Expired - Lifetime JPH0693360B2 (en) | 1982-09-16 | 1982-09-16 | Manufacturing method of battery with nickel pole |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0693360B2 (en) |
-
1982
- 1982-09-16 JP JP57161731A patent/JPH0693360B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS5951463A (en) | 1984-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100222746B1 (en) | Gas-tight alkaline accumulator | |
US5989746A (en) | Pasted nickel electrode | |
JPS5937667A (en) | Metal oxide-hydrogen battery | |
JP2765029B2 (en) | Manufacturing method of nickel hydroxide electrode | |
JP3411365B2 (en) | Negative electrode active material containing Ga as main component and secondary battery using the same | |
JPH0693360B2 (en) | Manufacturing method of battery with nickel pole | |
JP2615538B2 (en) | Nickel positive electrode for alkaline storage batteries | |
JP3309463B2 (en) | Cylindrical nickel-metal hydride storage battery | |
JPS5875767A (en) | Manufacture of nickel electrode for battery | |
JP2926732B2 (en) | Alkaline secondary battery | |
JPS5851669B2 (en) | Manufacturing method of battery electrode substrate | |
JPS5897267A (en) | Manufacture of nickel electrode for battery | |
JPS58137965A (en) | Manufacture of nickel electrode for battery | |
JPS5897266A (en) | Manufacture of nickel electrode for battery | |
JP3249398B2 (en) | Non-sintered nickel electrode for alkaline storage batteries | |
JP3397216B2 (en) | Nickel plate, method of manufacturing the same, and alkaline storage battery using the same | |
JPS58175262A (en) | Manufacture of nickel electrode for battery | |
JPS5897265A (en) | Manufacture of nickel electrode for battery | |
JPS5937659A (en) | Manufacturing method for nickel electrode | |
JPS58206055A (en) | Manufacture of nickel electrode for battery | |
JPS6097560A (en) | Sealed type alkaline storage battery | |
JPS58121557A (en) | Manufacture of nickel electrode for battery | |
JPH03145058A (en) | Paste type nickel positive electrode | |
JPS5923464A (en) | Manufacture of nickel electrode for battery | |
JPS5875768A (en) | Manufacture of pasted electrode for battery |