JPS5875768A - Manufacture of pasted electrode for battery - Google Patents

Manufacture of pasted electrode for battery

Info

Publication number
JPS5875768A
JPS5875768A JP56175480A JP17548081A JPS5875768A JP S5875768 A JPS5875768 A JP S5875768A JP 56175480 A JP56175480 A JP 56175480A JP 17548081 A JP17548081 A JP 17548081A JP S5875768 A JPS5875768 A JP S5875768A
Authority
JP
Japan
Prior art keywords
core member
nickel
electrode
perforated plate
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56175480A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwaki
勉 岩城
Mieko Watanabe
渡辺 美栄子
Hiroshi Kawano
川野 博志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56175480A priority Critical patent/JPS5875768A/en
Publication of JPS5875768A publication Critical patent/JPS5875768A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • H01M4/30Pressing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase both the utilization rate and the life of a pasted electrode for a battery by fixing a pasty positive material principally consisting of nickel hydroxide over a perforated plate used as a core member, and pressing them until the core member is extended. CONSTITUTION:The symbol 1 represents a core member made of a perforated plate. The symbol 2 represents mixture powder which principally consists of nickel hydroxide 2' used as an active material, contains nickel and a graphite, and contains an additive which enhances the utilization rate and the charge efficiency of nickel, such as cobalt or cobalt oxide, according to necessity. The symbol 3 represents a fiber. When the unextended core member 1 is extended by being moved in the direction indicated by the arrow, the hole 1' of the core member 1 deforms into the hole 1''. Here, such an extremely high pressure that extends the perforated plate 1 should be applied to the core member, since a high characteristic and an increased life similar to those of a sintered electrode cann't be realized only by pressing the core member through rollers. Owing to such press as above, the discharge characteristic and the life of a pasted electrode are improved, and the capacity of the electrode can be increased.

Description

【発明の詳細な説明】 本発明は、アルカリ電極に用いるペースト式電極、特に
ニッケル電極の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing paste-type electrodes, particularly nickel electrodes, for use in alkaline electrodes.

各種の電源として用いられている電池において、電解液
としてアルカリ水溶液を用いる系では、正極としてニッ
ケル極、酸化銀極、二酸化マンガン極、空気極などがあ
り、負極にはカドミウム極、鉄棒、水素極などがある。
In batteries used as various power sources, in systems that use alkaline aqueous solutions as electrolytes, positive electrodes include nickel electrodes, silver oxide electrodes, manganese dioxide electrodes, air electrodes, etc., and negative electrodes include cadmium electrodes, iron rods, hydrogen electrodes, etc. and so on.

正極のうちニッケル極は、とくにアルカリ水溶液中で安
定であり、充放電の可逆性にも優れていて長寿命が期待
できること、さらには利用率の点でも優れているなどの
理由で最もよく使われている。とくにニッケルーカドミ
ウム電池は、二次電池として鉛電池についで実用化され
ていて、今後も大きな需要の伸びが予測されている。ま
た、ニッケルー亜鉛電池やニッケルー鉄電池がとくに電
気自動車用として開発が進められ、また、ニッケルー水
素電池が主に宇宙用など特殊な用途に対して実用段階に
入っている。
Among positive electrodes, nickel electrodes are the most commonly used because they are particularly stable in alkaline aqueous solutions, have excellent charge/discharge reversibility, can be expected to have a long life, and are also excellent in terms of utilization. ing. In particular, nickel-cadmium batteries have been put into practical use as secondary batteries next to lead batteries, and demand is expected to continue to grow significantly in the future. Further, nickel-zinc batteries and nickel-iron batteries are being developed particularly for use in electric vehicles, and nickel-hydrogen batteries have entered the practical stage for special uses, mainly for space use.

このようにニッケル極は広く用いられていて、その電極
構造としては、かってはポケット式、最近は焼結式が主
流を占めている。ポケット式はよく知られているように
、孔を多く設けた鋼製の容器に水酸化ニッケルを黒鉛な
どの導電材とともに機械的に充てんして得られている。
As described above, nickel electrodes are widely used, and the electrode structure used to be a pocket type, but recently the sintered type has become mainstream. As is well known, the pocket type is obtained by mechanically filling a steel container with many holes with nickel hydroxide and a conductive material such as graphite.

したがって電極は外観上は堅牢に出来ているが、活物質
は導電材や容器(ポケット)とは接触して存在している
のみであるから、大電流放電での分極が大きく、利用率
も低くなる。また、急充電などの苛酷な条件では寿命が
短くなる。
Therefore, although the electrode has a robust appearance, the active material exists only in contact with the conductive material and the container (pocket), so polarization during large current discharge is large and the utilization rate is low. Become. In addition, under harsh conditions such as rapid charging, the lifespan will be shortened.

これに対して焼結式では、微孔を有する焼結体中に活物
質が強固に付着、内蔵された形で充てんされているので
、上記ポケット式にみられるような問題は少なく、大電
流放電特性、急充電特性、寿命いずれの点でも大きな改
良がはかられている。
On the other hand, in the sintered type, the active material is firmly attached and embedded in the sintered body with micropores, so there are fewer problems like the pocket type described above, and it is difficult to handle large currents. Significant improvements have been made in terms of discharge characteristics, rapid charging characteristics, and lifespan.

したがって特性のみからみれば焼結式はかなり理想の段
階に達しているといえよう。ところが、焼結体の製造、
活物質の充てんいずれにおいても工程は複雑であって、
ポケット式に比べればかなり高価になる問題がある。焼
結式に代えて孔径、多孔度とも大きい発泡メタルを活物
質支持体として用い、これに活物質を直接光てんする方
法が開発され、少なくとも活物質の充てん工程の簡易化
がはかれている。
Therefore, it can be said that the sintered type has reached the ideal stage from the viewpoint of characteristics alone. However, the production of sintered bodies,
The process for filling active materials is complicated.
The problem is that it is considerably more expensive than the pocket type. Instead of the sintering method, a method has been developed in which a foamed metal with a large pore size and porosity is used as an active material support and the active material is directly injected into the support, which at least simplifies the process of filling the active material. .

さらに簡単な方法がいわゆるペースト式であって、芯材
としてネット、孔あき板、エキスバンド−メタルなどの
二次元的な多孔体を用い、これに活物質と結着剤を混合
してペースト状にしたものを塗着し、これをスリットあ
るいはローラ間を通すことにより平滑化して、乾燥後、
必要に応じて加圧するものである。この方法は、芯材が
極めて安価であり、また活物質の充てんも容易であるの
で製法としては理想的であり、多くの提案がされている
。ペースト式電極の歴史は古く、製法はやや異なるがペ
ースト式鉛極板は極めて広く用いられている。また、カ
ドミウム極についても実用化されている。
An even simpler method is the so-called paste method, which uses a two-dimensional porous material such as a net, perforated plate, or expanded metal as the core material, and mixes the active material and binder to form a paste. Apply a layer of paint, smooth it by passing it through slits or between rollers, and after drying,
Pressure is applied as necessary. This method is ideal as a manufacturing method because the core material is extremely inexpensive and filling with the active material is easy, and many proposals have been made. Paste-type electrodes have a long history, and although the manufacturing method is slightly different, paste-type lead electrode plates are extremely widely used. Cadmium electrodes have also been put into practical use.

これらに対してニッケル極についても多くの提案がある
にもかかわらず実用化ができない理由としては、次のよ
うな点が挙げられる。
The following are the reasons why nickel electrodes have not been put into practical use despite many proposals.

(1)ニッケルつまり活物質としての充電時でのオ・キ
シ水酸化ニッケル、放電時の水酸化ニッケルいずれもす
ぐれた導電体ではない。したがって導電材を別に加える
必要があり、加えても利用率が向上し難い。また、加え
すぎると絶対容量が小さくなってしまう。
(1) Nickel, that is, neither nickel oxyhydroxide used as an active material during charging nor nickel hydroxide used during discharge are excellent conductors. Therefore, it is necessary to separately add a conductive material, and even if it is added, it is difficult to improve the utilization rate. Moreover, if too much is added, the absolute capacity will become small.

い)充放電の繰り返しによシ活物質の体積変化は当然あ
るが、ニッケル極では膨潤が激しく生じる。
b) Naturally, the volume of the active material changes due to repeated charging and discharging, but nickel electrodes undergo severe swelling.

主に上記の要因がペースト式ニッケル極の広範囲な実用
化を阻害しているのである。
The above-mentioned factors mainly prevent the widespread practical application of paste-type nickel electrodes.

つまり、まず強度をあげて(2)のような膨潤、またこ
れに伴う活物質の脱落を防ぐ方法として、従来は種々の
結着剤が考えられてきた。結着剤としては、ポリエチレ
ン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、
フン素樹脂・などや、ポリビニルアルコール、カルボキ
シメチルセルロース、エチルセルロースなどがある。耐
電解液性、耐酸化性の点では勿論前者がすぐれているが
、強度を向上させるだめに大量に加えれば、電圧特性は
劣り、利用率も低下してしまう。これを抑制するために
ニッケル粉末や黒鉛などが加えられたが、多量に加える
と活物質の占める割合が減少するし、少ないと利用率が
小さい点で問題があった。
In other words, various binders have been considered in the past as a method of first increasing the strength and preventing the swelling as described in (2) and the accompanying shedding of the active material. As a binder, polyethylene, polypropylene, polyvinyl chloride, polystyrene,
Examples include fluorine resins, polyvinyl alcohol, carboxymethyl cellulose, and ethyl cellulose. Of course, the former is superior in terms of electrolyte resistance and oxidation resistance, but if a large amount is added to improve the strength, the voltage characteristics will be inferior and the utilization rate will also decrease. To suppress this, nickel powder, graphite, etc. were added, but if too much was added, the proportion occupied by the active material would decrease, and if too little was added, the utilization rate would be low.

一方、結着剤としては、ポリエチレン、ポリエチレン、
ポリスチレンなどについては、溶液状にして水酸化ニッ
ケルに加える方法と、粉末状で加え、後で加熱溶融する
方法のいずれかが採用されている。また、フッ素樹脂に
ついては、粉末状で加える方法とディスパージョンにし
て加える方法とがある。また、ディスノ、く一ジョンの
場合にはこれを水酸化ニッケルに加えて混合するとフン
素樹脂が繊′維状になり、全体がゴムのような弾性をも
って強度が犬きくなることを利用する方法もある。
On the other hand, as a binder, polyethylene, polyethylene,
For polystyrene, etc., either a method of adding it to nickel hydroxide in the form of a solution or a method of adding it in the form of a powder and then heating and melting it is adopted. Regarding fluororesin, there are two methods: adding it in powder form and adding it in the form of a dispersion. In addition, in the case of disno and rubber products, when this is added to nickel hydroxide and mixed, the fluororesin becomes fibrous, and the whole material has rubber-like elasticity and strength. There is also.

以Fの結着剤の添加やその他の耐電解液性の繊維は、ペ
ースト式あるいは加圧式のニッケル極、いわゆる非焼結
式ニッケル極の特性や寿命をある程度向上させることが
できるが、従来の焼結式に比べるとはるかに劣るために
実用上広く用いられるには至っていない。
The addition of binders described below and other electrolyte-resistant fibers can improve the properties and life of paste-type or pressurized nickel electrodes, so-called non-sintered nickel electrodes, to some extent, but conventional It is far inferior to the sintered type, so it has not been widely used in practice.

本発明は、ペースト式における容易に製造ができる長所
をそのまま残して、放電特性や寿命を焼結式に近づける
すぐれた一つの製造法を提供するものである。すなわち
、本発明は、水酸化ニッケルを主としたペースト正極材
料を孔あき板を芯材としてこれに付着し、成形工程およ
び加圧工程をローラー間に通すことにより行い、その際
に芯材が延伸するまで加圧することを特徴とする。
The present invention provides an excellent manufacturing method that brings the discharge characteristics and lifespan closer to those of the sintering method while retaining the advantage of the paste method in that it can be manufactured easily. That is, in the present invention, a paste positive electrode material mainly composed of nickel hydroxide is attached to a perforated plate as a core material, and a forming process and a pressurizing process are performed by passing it between rollers. It is characterized by applying pressure until it is stretched.

第1図は本発明による電極を模式的に示すものである。FIG. 1 schematically shows an electrode according to the invention.

1は孔あき板からなる芯材である。2は活物質を主とす
る粉末、つまり水酸化ニッケル2′でニッケルや黒鉛さ
らに必要に応じてコバルトや酸化コバルトなどニッケル
の利用率や充電効率を、向上させる添加剤を含んでいる
。3は繊維である。
1 is a core material made of a perforated plate. 2 is a powder mainly containing an active material, that is, nickel hydroxide 2', which contains nickel, graphite, and, if necessary, additives such as cobalt and cobalt oxide to improve the utilization rate and charging efficiency of nickel. 3 is fiber.

第2図は延伸前の芯材を示し、これを矢印方向に移動さ
せて延伸すると、芯材の孔1′は1v)ようになる。
FIG. 2 shows the core material before stretching. When the core material is moved in the direction of the arrow and stretched, the holes 1' in the core material become as shown in 1v).

従来、加圧の方法としてローラー間を通すことは最も普
通の手段である。しかし、単にロー2間を通して加圧す
る程度では焼結式電極に近い特性や寿命は得られなかっ
た。そこでこの加圧を極端11 に行って芯材である孔あき板が延伸するほど加圧する。
Conventionally, the most common method of applying pressure is to pass it between rollers. However, by simply applying pressure through the two rows, it was not possible to obtain properties and lifespan close to those of the sintered electrode. Therefore, this pressure is applied to the extreme 11 so that the perforated plate serving as the core material is stretched.

このような加圧によって放電特性や寿命は向上し、さら
に高容量化も可能になった。なお、この延伸の場合は通
常使用される孔あき板、たとえば厚さO,a〜1.5間
程度、多孔度40〜60係のものが好ましく、延伸の割
合は4〜15%が好ましいことがわかった。
This pressurization improved discharge characteristics and lifespan, and also made it possible to increase capacity. In addition, in the case of this stretching, it is preferable to use a commonly used perforated plate, for example, one with a thickness of about 0.5 to 1.5 and a porosity of 40 to 60, and the stretching ratio is preferably 4 to 15%. I understand.

つぎに、本発明を実施例により説明する。Next, the present invention will be explained by examples.

性能比較のだめの電池として、単2サイズの密閉形ニッ
ケルーカドミウム蓄電池を用いた。カドミウム負極は以
下のようにして製造したものを用いた。まず、酸化カド
ミウムを主体とするペーストをニンケルメソキした鉄製
のパンチングメタルの両面に塗着し、所定の厚さに設定
されたスリット中を通過させ、乾燥工程を経て、厚さ。
A AA size sealed nickel-cadmium storage battery was used as a battery for performance comparison. The cadmium negative electrode manufactured as follows was used. First, a paste mainly composed of cadmium oxide is applied to both sides of a perforated iron metal, passed through a slit set to a predetermined thickness, and then subjected to a drying process to achieve the desired thickness.

、7wrIの極板を得た。その後、苛性カリの10重量
係水溶液中で部分充電して酸化〃ドミウムの一部を金属
カドミウムに変化させ、さらに、水洗、乾燥後、加圧し
て厚さ0665助にした。
, 7wrI electrode plates were obtained. Thereafter, it was partially charged in an aqueous solution of 10% by weight of caustic potassium to convert a part of the dmium oxide into metal cadmium, and after washing with water and drying, it was pressurized to a thickness of 0.665 mm.

セパレータにはポリアミドの不織布を用い、電解液には
苛性カリの25重量%水溶液に少量の水酸化リチウムを
溶解したものを1セル当たり6.3cc用いた。
A polyamide nonwoven fabric was used as the separator, and 6.3 cc of a small amount of lithium hydroxide dissolved in a 25% by weight aqueous solution of caustic potash was used as the electrolyte per cell.

ニッケル正極を形成するペーストとしては200メツ/
−のふるいを通過する粒度の水酸化ニッケル1にノと、
カーボニルニッケル100F、黒鉛40pと直径0.1
m、長さ3〜5+m*のアクリロニトリル−塩化ビニル
共重合体繊維2011および金属コバルト60y1カル
ボキシメチルセルロースの3重量多水溶液を前記混合粉
末に対して、1に9加え、練合したものを使用した。芯
材には厚さ0.1關の鉄板に穴径2咽、中心間ピッチ3
rmで開孔したパンチングメタルにニンケルメッキを施
したものを使用した。この芯材の両面に上記ペーストを
塗着し、スリットを通過させ、乾燥後の厚さを・1.0
±0.06mmにした。その後酢酸コバルトの200 
f/R,水溶液中に浸漬し、乾燥後、苛性カリの水溶液
中に浸漬し、酢酸コバルトを水酸化コバルトに変化させ
る方法により水酸化コバルトを添加した。これらの置板
をまず幅120聰、長さ680m+nに裁断した。つい
でローラー間を通して加圧し、長さ方向へ4チまで延イ
呻した。電極の厚さは0.7IIII11であった。こ
の電極をさらに単二の太さに裁断した。この場合は幅3
8+a+で長さを220胴にした。これを煽記のカドミ
ウム極とポリアミド不織布をセパレータとして組合せて
電池を構成した。この電池をAとする。ついで、長さ方
向へ8%延伸するまで加圧した。電極の厚さは0.66
mであった。同様にこの場合はAよりは長  1くして
230鴫とした。この電池をBとする。さらに12%延
伸するまで加圧した。厚さは。、61層であった。この
場合は長さを240 vanとした。
The paste for forming the nickel positive electrode is 200 mets/
- to nickel hydroxide of a particle size that passes through a sieve,
Carbonyl nickel 100F, graphite 40p and diameter 0.1
A 3-weight polyaqueous solution of acrylonitrile-vinyl chloride copolymer fiber 2011 with a length of 3 to 5+ m* and metal cobalt 60y1 carboxymethylcellulose was added to the above mixed powder by 1 part to 9 parts and kneaded together. The core material is a 0.1-thick iron plate with a hole diameter of 2 and a center-to-center pitch of 3.
A punched metal with rm holes and nickel plating was used. The above paste is applied to both sides of this core material, passed through a slit, and the thickness after drying is 1.0
It was set to ±0.06 mm. Then 200% of cobalt acetate
f/R, immersed in an aqueous solution, dried, immersed in an aqueous solution of caustic potash, and added cobalt hydroxide by a method of converting cobalt acetate into cobalt hydroxide. These placing plates were first cut into a width of 120 meters and a length of 680 m+n. Then, pressure was applied between the rollers and the material was stretched to 4 inches in the length direction. The thickness of the electrode was 0.7III11. This electrode was further cut into two pieces. In this case the width is 3
I made the length 220 torso with 8+a+. A battery was constructed by combining this with a cadmium electrode and a polyamide nonwoven fabric as a separator. This battery is called A. Then, pressure was applied until it was stretched by 8% in the length direction. The thickness of the electrode is 0.66
It was m. Similarly, in this case, the length is 1 longer than A, making it 230. This battery is called B. Further pressure was applied until the film was stretched by 12%. What is the thickness? , 61 layers. In this case, the length was 240 vans.

これを電池Cとする。最後に15チ延伸するまで加圧し
た。厚さは0.57m+であった。これは265即の長
さを用いた。電池りとする。
This is called battery C. Finally, pressure was applied until it was stretched by 15 inches. The thickness was 0.57m+. This used a length of 265 pieces. Recharge the battery.

これら電池A−Dと比較のために、電極の厚さと長さは
それぞれA−Dと同じにして延伸しない程度に加圧した
電池を加えてそれぞれA′〜D′とした。次表に各電池
の充てん容量と各放電時lでの利用率、それ釦充電はo
、1sc、放電は。、3Cの条件で充放電し、初期容量
の60%まで低下した場合を寿命としたサイクル寿命を
示す。
For comparison with these batteries A-D, batteries A' to D' were added in which the thickness and length of the electrodes were the same as those of A-D, respectively, and the batteries were pressurized to the extent that they did not stretch. The following table shows the charging capacity of each battery, the utilization rate at each discharge time, and the button charging time.
, 1sc, discharge is. , 3C, and the cycle life is defined as the life when the capacity decreases to 60% of the initial capacity.

以下余白 この表より明らかなように、電極を延伸するまで加圧す
ることは電極が破損されるのではなく、利用率、寿命と
も向上することがわかる。
As is clear from this table, applying pressure until the electrode is stretched does not damage the electrode, but improves both the utilization rate and the lifespan.

以上のように電池用ペースト式電極の製造法において、
多孔性の導電体としてスクリーンやエキスバンドメタル
よりも強度が大きい孔あき板を用いるとともにこれが延
伸するほどローラーで加圧することにより、電極の利用
率、寿命を向上する外とができる。
As described above, in the manufacturing method of paste-type electrodes for batteries,
By using a perforated plate, which is stronger than a screen or expanded metal, as the porous conductor and applying pressure with a roller to the extent that it is stretched, it is possible to improve the utilization rate and life of the electrode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による電極の断面を示す模式図、第2図
はその孔あき板の延伸前の平面図、第3図は延伸後の平
面図である。 1・・・・孔あき板、1′、1“・・・・・孔、2・・
・・・活物質を主とする粉末、3・・・・・繊維。
FIG. 1 is a schematic diagram showing a cross section of an electrode according to the present invention, FIG. 2 is a plan view of the perforated plate before stretching, and FIG. 3 is a plan view after stretching. 1...Perforated plate, 1', 1"...hole, 2...
... Powder mainly consisting of active material, 3... Fiber.

Claims (1)

【特許請求の範囲】 0)活物質材料を主とするペーストを孔あき板からなる
導電性多孔体に付着させ、スリットを通してペースト塗
着層を平滑化し、ローラー間を通して導電性多孔体が延
伸するまで加圧することを特徴とする電池用ペースト式
電極の製造法。 (2)導電性多孔体の厚さが0.09〜0.12mm、
多孔度が60〜60チである特許請求の範囲第1項記載
の電池用ペースト式電極の製造法。 (3)導電性多孔体の延伸割合が4〜16%である特許
請求の範囲第1項記載の電池用ペースト式電極の製造法
[Claims] 0) A paste mainly consisting of an active material is attached to a conductive porous body made of a perforated plate, the paste coating layer is smoothed through a slit, and the conductive porous body is stretched between rollers. A method for manufacturing paste-type electrodes for batteries, which is characterized by pressurizing up to 100%. (2) The thickness of the conductive porous body is 0.09 to 0.12 mm,
The method for producing a paste-type electrode for a battery according to claim 1, wherein the porosity is 60 to 60 inches. (3) The method for manufacturing a battery paste electrode according to claim 1, wherein the stretching ratio of the conductive porous body is 4 to 16%.
JP56175480A 1981-10-30 1981-10-30 Manufacture of pasted electrode for battery Pending JPS5875768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56175480A JPS5875768A (en) 1981-10-30 1981-10-30 Manufacture of pasted electrode for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56175480A JPS5875768A (en) 1981-10-30 1981-10-30 Manufacture of pasted electrode for battery

Publications (1)

Publication Number Publication Date
JPS5875768A true JPS5875768A (en) 1983-05-07

Family

ID=15996773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56175480A Pending JPS5875768A (en) 1981-10-30 1981-10-30 Manufacture of pasted electrode for battery

Country Status (1)

Country Link
JP (1) JPS5875768A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50150849A (en) * 1974-05-25 1975-12-03
JPS5427936A (en) * 1977-08-03 1979-03-02 Matsushita Electric Ind Co Ltd Method of making electrode plate for alkaline storage battery
JPS5510100A (en) * 1978-07-05 1980-01-24 Rexroth Gmbh G L Rotary piston machine
JPS55136465A (en) * 1979-04-10 1980-10-24 Japan Storage Battery Co Ltd Manufacturing method of negative electrode plate for alkaline storage battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50150849A (en) * 1974-05-25 1975-12-03
JPS5427936A (en) * 1977-08-03 1979-03-02 Matsushita Electric Ind Co Ltd Method of making electrode plate for alkaline storage battery
JPS5510100A (en) * 1978-07-05 1980-01-24 Rexroth Gmbh G L Rotary piston machine
JPS55136465A (en) * 1979-04-10 1980-10-24 Japan Storage Battery Co Ltd Manufacturing method of negative electrode plate for alkaline storage battery

Similar Documents

Publication Publication Date Title
US20230101375A1 (en) Iron electrode employing a polyvinyl alcohol binder
JP5062724B2 (en) Method for producing nickel electrode for alkaline battery and nickel electrode for alkaline battery
CN111403739A (en) Nickel-cobalt-manganese acid lithium battery cell positive electrode active material, aluminum shell battery cell and manufacturing method thereof
JPS5937667A (en) Metal oxide-hydrogen battery
EP1215741B1 (en) Method for manufacturing a positive electrode plate
JPH03743B2 (en)
JP4644336B2 (en) Method for producing positive electrode for alkaline storage battery
JPS5875768A (en) Manufacture of pasted electrode for battery
JPS5851669B2 (en) Manufacturing method of battery electrode substrate
JPH03165469A (en) Manufacture of alkaline storage battery having nickel electrode
JP2981538B2 (en) Electrodes for alkaline batteries
JPS5875767A (en) Manufacture of nickel electrode for battery
JPH06215796A (en) Cylindrical nickel-hydrogen storage battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPS58175262A (en) Manufacture of nickel electrode for battery
JPS5897265A (en) Manufacture of nickel electrode for battery
JPS58206055A (en) Manufacture of nickel electrode for battery
JPS5937658A (en) Manufacturing method of paste type electrode for battery
JPS5937659A (en) Manufacturing method for nickel electrode
JPH0513075A (en) Hydrogen storage alloy electrode and manufacture thereof
JPS5960966A (en) Manufacture of nickel electrode for battery
JPS58137965A (en) Manufacture of nickel electrode for battery
JPS5897266A (en) Manufacture of nickel electrode for battery
JPS5897267A (en) Manufacture of nickel electrode for battery
JPS5951463A (en) Production method of cell with nickel electrode