JPS5897266A - Manufacture of nickel electrode for battery - Google Patents

Manufacture of nickel electrode for battery

Info

Publication number
JPS5897266A
JPS5897266A JP56195912A JP19591281A JPS5897266A JP S5897266 A JPS5897266 A JP S5897266A JP 56195912 A JP56195912 A JP 56195912A JP 19591281 A JP19591281 A JP 19591281A JP S5897266 A JPS5897266 A JP S5897266A
Authority
JP
Japan
Prior art keywords
nickel
paste
electrode
cobalt
leaving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56195912A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwaki
勉 岩城
Isao Matsumoto
功 松本
Mieko Watanabe
渡辺 美栄子
Ryoji Tsuboi
良二 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56195912A priority Critical patent/JPS5897266A/en
Publication of JPS5897266A publication Critical patent/JPS5897266A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide an excellent manufacturing method for a non-sintered nickel electrode for an alkaline battery, which has a discharge characteristics and life performance close to those of a sintered electrode, by leaving a paste prepared from only nickel and cobalt, mixing nickel hydroxide and the like into said paste to make another paste, and using thus prepared paste for the electrode. CONSTITUTION:The pasted type is adopted for a nickel electrode. As to the composition of the paste, it consists of 1kg of granular nickel hydroxide which passes through a shieve of 200 mesh, 100g of carbonyl nickel powder, 10g of a graphite, 20g of acrylonitrile-vinylchloride copolymer fiber which has a diameter of 0.1mm. and a length of 3-5mm., 50g of carbonyl cobalt-metal powder and 1kg of 3wt% aqueous solution of carboxymethylcellulose. Of these materials, 100g of nickel powder and 50g of cobalt powder are added with 150cc of water, and the mixture is left to stand at 30 deg.C. According to performance comparison, a battery prepared by leaving the pasty mixture at 30 deg.C in such a manner as above, has a longer life than one which is prepared without leaving any pasty mixture.

Description

【発明の詳細な説明】 本発明は、アルカリ電池に用いる非焼結式ニッケル電極
の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing non-sintered nickel electrodes for use in alkaline batteries.

各種の電源として用いられている電池において、電解液
としてアルカリ水溶液を用いる系では、正極としてニッ
ケル極、酸化銀極、二酸化マンガン極、空気極などがあ
り、負極には、カドミウム極。
In batteries used as various power sources, in systems that use alkaline aqueous solutions as electrolytes, there are nickel electrodes, silver oxide electrodes, manganese dioxide electrodes, air electrodes, etc. as positive electrodes, and cadmium electrodes as negative electrodes.

鉄極、水素極などがある。正極のうち、ニッケル極は、
とくにアルカリ水溶液中で安定であり、充放電の可逆性
にも優れていて長寿命が期待できること、さらには利用
率の点でも優れているなどの理由で最もよく使われてい
る。とくにニッケルーカドミウム電池は、二次電池とし
て鉛電池についで実用化されていて、今後も大きな需要
の伸びが予測されている。また−ニッケルー亜鉛電池や
ニッケルー鉄電池がとくに電気自動車用として開発が進
められ、また、ニッケルー水素電池が主に宇宙用など特
殊な用途に対して実用段階に入っている。
There are iron electrodes, hydrogen electrodes, etc. Among the positive electrodes, the nickel electrode is
It is most commonly used because it is particularly stable in alkaline aqueous solutions, has excellent charge/discharge reversibility, can be expected to have a long life, and is also excellent in terms of utilization rate. In particular, nickel-cadmium batteries have been put into practical use as secondary batteries next to lead batteries, and demand is expected to continue to grow significantly in the future. Furthermore, nickel-zinc batteries and nickel-iron batteries are being developed particularly for use in electric vehicles, and nickel-metal hydride batteries have entered the practical stage mainly for special uses such as space applications.

このようにニッケル極は広く用いられていて、その電極
構造としては、かつてはポケット式、最近は焼結式が主
流を占めている。ポケット式は;く知られているように
、孔を多く設けた鋼製の容器に水酸化ニッケルを黒鉛な
どの導電材とともに機械的に充てんして得られている。
As described above, nickel electrodes are widely used, and their electrode structure used to be the pocket type, but recently the sintered type has been the mainstream. As is well known, the pocket type is obtained by mechanically filling a steel container with many holes with nickel hydroxide together with a conductive material such as graphite.

したがって電極は外観上は堅牢に出来ているが、活物質
は導電材や容器(ポケット)とは接触して存在している
のみであるから、大電流放電での分極が大きく、利用率
も低くなる。また、急充電などの苛酷な条件では寿命が
短くなるなどの問題点があった。
Therefore, although the electrode has a robust appearance, the active material exists only in contact with the conductive material and the container (pocket), so polarization during large current discharge is large and the utilization rate is low. Become. Furthermore, there are problems such as shortened lifespan under harsh conditions such as rapid charging.

これに対して焼結式では、微孔を有する焼結体中に活物
質が強固に付着、内蔵された形で充てんされているので
、上記ポケット式にみられるような問題は少なく、大電
流放電特性、急充電特性。
On the other hand, in the sintered type, the active material is firmly attached and embedded in the sintered body with micropores, so there are fewer problems like the pocket type described above, and it is difficult to handle large currents. Discharge characteristics, rapid charge characteristics.

寿命いずれの点でも大きな改良がはかられている。Significant improvements have been made in all aspects of lifespan.

したがって特性のみからみれば、焼結式はかなり理想の
段階に達しているといえよう。ところが、焼結体の製造
、活物質の充てんいずれにおいても工程は複雑であって
、ポケット式に比べればかなり高価になる問題がある。
Therefore, from the viewpoint of characteristics alone, it can be said that the sintered type has reached a fairly ideal stage. However, the steps involved in manufacturing the sintered body and filling it with the active material are complicated, and the cost is considerably higher than in the pocket type.

焼結式に代えて孔径。Pore size instead of sintering type.

多孔度とも大きいスポンジ状金属多孔体を活物質支持体
として用い、これにペースト状にした活物質、すなわち
水酸化ニッケルを直接光てんする方法が開発され、少な
くとも活物質の充てん工程の簡易化がはかられている。
A method has been developed in which a sponge-like porous metal material with high porosity is used as an active material support, and a paste-like active material, that is, nickel hydroxide, is directly injected into the material, which at least simplifies the process of filling the active material. It's being measured.

さらに簡単な方法がいわゆるペースト式であって、芯材
としてネット、孔あき板、エキスバンドメタルなどの二
次元的な多孔体を用い、これに活物質と結着剤を混合し
てペースト状にしたものを塗着し、これをスリ丹あるい
はローラ間を通す圧するものである。この方法は、芯材
が極めて安価であり、また活物質の充てんも容易である
のでり天 製造としては理想的であり、多くの提案がされている。
An even simpler method is the so-called paste method, in which a two-dimensional porous material such as a net, perforated plate, or expanded metal is used as the core material, and an active material and a binder are mixed with this material to form a paste. This is applied by applying a coating and pressing it through a suritan or between rollers. This method is ideal for manufacturing sintered sheets because the core material is extremely inexpensive and filling with the active material is easy, and many proposals have been made.

ペースト式電極の歴史は古く、製法はやや異なるがペー
スト式鉛極板は極めて広く用いられている。また、カド
ミウム極についても実用化されている。
Paste-type electrodes have a long history, and although the manufacturing method is slightly different, paste-type lead electrode plates are extremely widely used. Cadmium electrodes have also been put into practical use.

これらに対してニッケル極についても多くの提案がある
にもかかわらず実用化ができない理由としては、次のよ
うな点が挙げられる。
The following are the reasons why nickel electrodes have not been put into practical use despite many proposals.

(1)ニッケルつまり活物質としての充電時でのオキシ
水酸化ニッケル、放電時の水酸化ニッケルいずれもすぐ
れた導電体ではない。したがって導電材を別に加える必
要があり、加えても利用率が向上し難い。また、加えす
ぎると絶対容量が小さくなってしまう。
(1) Nickel, that is, neither nickel oxyhydroxide as an active material during charging nor nickel hydroxide during discharging are excellent conductors. Therefore, it is necessary to separately add a conductive material, and even if it is added, it is difficult to improve the utilization rate. Moreover, if too much is added, the absolute capacity will become small.

(2)充放電の繰り返しにより活物質の体積変化は当然
あるが、ニッケル極では膨潤が激しく生じる0 主に上記の要因がペースト式ニッケル極の広範囲な実用
化を阻害しているのである。つまり、まず強度をあげて
(2)のような膨潤、またこれに伴う活物質の脱落を防
ぐ方法として、従来は種々の結着剤が考えられてきた。
(2) Although the volume of the active material naturally changes due to repeated charging and discharging, nickel electrodes undergo severe swelling.The above-mentioned factors mainly prevent the widespread practical use of paste-type nickel electrodes. In other words, various binders have been considered in the past as a method of first increasing the strength and preventing the swelling as described in (2) and the accompanying shedding of the active material.

結着剤としては、ポリエチレン、ポリプロピレン、ポリ
塩化ビニル、ポリスfし7,7ツ素樹脂などや、ポリビ
ニルアルコール、カルボキシメチルセルロース、エチル
セルロースなどがある。耐電解液性、耐酸化性の点では
勿論前者がすぐれているが、強度を向上させるために大
量に加えれば、電圧特性は劣り、利用率も低下してしま
う。これを抑制するためにニッケル粉末や黒鉛などが加
えられたが、多量に加えると活物質の占める割合が減少
するし、少ないと利用率が小さい点で問題があった。
Examples of the binder include polyethylene, polypropylene, polyvinyl chloride, polystyrene resin, polyvinyl alcohol, carboxymethyl cellulose, and ethyl cellulose. Of course, the former is superior in terms of electrolyte resistance and oxidation resistance, but if a large amount is added to improve strength, the voltage characteristics will be inferior and the utilization rate will also decrease. To suppress this, nickel powder, graphite, etc. were added, but if too much was added, the proportion occupied by the active material would decrease, and if too little was added, the utilization rate would be low.

以上の結着剤の添加やその他の耐電解液性の繊維は、ペ
ースト式あるいは加圧式のニッケル極、いわゆる非焼結
式ニッケル極の特性や寿命をある程度向上させることが
できるが、従来の焼結式に比べるとはるかに劣るために
実用上広く用いられるには至っていない。
The addition of binders and other electrolyte-resistant fibers can improve the properties and lifespan of pasted or pressurized nickel electrodes, so-called non-sintered nickel electrodes, to some extent; It has not been widely used in practice because it is far inferior to the keishiki.

本発明は、ポケット電極、スポンジ状金属多孔体を活物
質支持体とする電極、二次元的な芯材を用いるペースト
式電極などの非焼結式電極を改良して、容易に活物質の
充てんができる長所をそのまま残して、放電特性や寿命
を焼結式に近づけるすぐれた一つの製造法を提供するも
のである。
The present invention improves non-sintered electrodes such as pocket electrodes, electrodes that use a sponge-like porous metal material as an active material support, and paste-type electrodes that use a two-dimensional core material, so that they can be easily filled with active materials. The present invention provides an excellent manufacturing method that brings the discharge characteristics and lifespan closer to those of the sintered method while retaining the advantages of the sintered method.

本発明者らは、水酸化ニッケルを主としたペースト正極
材料中にニッケルとコバルトヲ混合し、これをペースト
状態から徐々に乾燥状態にして放置しておくことによっ
て活物質の利用率が向上し、したがって一定の負荷での
充放電で長寿命になることを先に提案したが、本発明は
その改良にかかる。すなわち、ニッケルとコパル・トを
水酸化ニッケルに加えて水でぬらして放置することは水
酸化ニッケルの利用率の向上に一効果があることがわか
ったが、その放置はたとえ攬はん操作を加えても数時間
以上が必要であり、連続的に行わない場合は数日以上が
好ましいことがわかった。このことは工業的には多量の
ペーストを処理する必要があることから、装置、場所2
人手を多く必要とする欠点があった。
The present inventors have discovered that by mixing nickel and cobalt into a paste positive electrode material mainly composed of nickel hydroxide, gradually drying it from a paste state and leaving it to stand, the utilization rate of the active material is improved. Therefore, it was previously proposed that charging and discharging under a constant load would extend the lifespan, and the present invention is directed to an improvement thereto. In other words, it was found that adding nickel and copal to nickel hydroxide and leaving it wet with water is effective in improving the utilization rate of nickel hydroxide. It has been found that several hours or more are required even if the addition is carried out, and that several days or more is preferable when it is not carried out continuously. This means that industrially it is necessary to process a large amount of paste, so the equipment, location, etc.
The drawback was that it required a lot of manpower.

そこで、本発明はこれを改良してニッケルとコバルトの
みをペースト状にして放置し、これを用いて水酸化ニッ
ケルなどとペーストにして電極用に用いるものである。
Therefore, the present invention improves this and leaves only nickel and cobalt in the form of a paste, which is then used to form a paste with nickel hydroxide and the like for use in electrodes.

このことにより量的には全体を放置する場合の1/10
以下の量でよいことになり、量産に好都合となる。
As a result, in terms of quantity, it is 1/10 of the case where the whole thing is left alone.
The following amount is sufficient, which is convenient for mass production.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

性能比較のための電池として、単2サイズの密閉形ニッ
ケルーカドミウム蓄電池を用いた。カドミウム負極は以
下のようにして製造したものを用いた。まず、酸化カド
ミウムを主体とするペーストヲニノケルメノキした鉄製
のパンチングメタルの両面に塗着し、所定の厚さに設定
されたスリット中を通過させ、乾燥工程を経て、厚さ0
.711Mの極板を得た。その後、苛性カリの10重量
%水溶液中で部分充電して酸化カドミウムの一部を金属
カドミウムに変化させ、さらに、水洗、乾燥後、加圧し
て厚さ0・66朋にした。
A AA size sealed nickel-cadmium storage battery was used as a battery for performance comparison. The cadmium negative electrode manufactured as follows was used. First, a paste mainly composed of cadmium oxide is applied to both sides of a perforated iron metal, passed through a slit set to a predetermined thickness, and then dried to a thickness of 0.
.. A 711M electrode plate was obtained. Thereafter, it was partially charged in a 10% by weight aqueous solution of caustic potassium to convert some of the cadmium oxide into metal cadmium, and after washing with water and drying, it was pressurized to a thickness of 0.66 mm.

層液には苛性カリの26重量%水溶液に少量の水酸化リ
チウムを溶解したものを1セル尚たり6.3cc  用
いた。
As the layer solution, 6.3 cc of a small amount of lithium hydroxide dissolved in a 26% by weight aqueous solution of caustic potassium was used for each cell.

ニッケル電極としてはペースト式を採用し、以下のよう
にして製造した。ペースト組成は、2o。
A paste type was adopted as the nickel electrode, and it was manufactured as follows. The paste composition is 2o.

メソシュのふるいを通過する粒度の水酸化ニッケル1k
qとカーボニルニッケル粉末1oof、黒鉛1ogと直
径0.1 vR,長さ3〜6flのアクリロニトリル−
塩化ビニル共重合体繊維20f、カーボニル金属コバル
ト粉末50!j、およびカルボキシメチルセルロースの
3重量%水溶液1kqである。
Nickel hydroxide 1k particle size that passes through a mesh sieve
q and 1 oof carbonyl nickel powder, 1 og of graphite and acrylonitrile of diameter 0.1 vR, length 3-6 fl.
Vinyl chloride copolymer fiber 20f, carbonyl metal cobalt powder 50! j, and 1 kq of a 3% by weight aqueous solution of carboxymethyl cellulose.

これらの材料のうち、ニッケル粉末1oogとコバルト
粉末509に水16oCCヲ加えて、30℃で放置した
。水の蒸発を押えつつ2日間で乾燥させた。なお、2時
間に1回ゆるく攪はんした。色は黒色から黒褐色に変化
した。これを軽く粉砕し、さらに上記の他の材料を加え
てペースト状にした。
Of these materials, 160cc of water was added to 10g of nickel powder and 509g of cobalt powder, and the mixture was left at 30°C. It was dried for two days while suppressing water evaporation. Note that the mixture was gently stirred once every 2 hours. The color changed from black to dark brown. This was lightly ground and the other ingredients mentioned above were added to make a paste.

芯材には厚さ40.1mの鉄板に穴径2fl、中心間ピ
ッチ3朋で開孔したパンチングメタルにニッケルメッキ
’tMしたものを使用した。この芯材の両面に上記ペー
ストを塗着し、スリットを通過させ、乾燥後の厚さを1
.0±0.05 MMにした。その後酢酸コバルトの2
oo9/l水溶液中に浸漬し、乾燥後、苛性カリの水溶
液中に浸漬し、酢酸コバルトを水酸化コバノートに変化
させる方法により水酸化コバルトを添加した。こうして
得た極板をまず幅120朋、長さ680朋に裁断した。
The core material used was a punched metal plate with holes of 2 fl in diameter and 3 mm pitch between centers on a 40.1 m thick iron plate and plated with nickel. The above paste is applied to both sides of this core material, passed through a slit, and the thickness after drying is 1
.. 0±0.05 MM. Then 2 of cobalt acetate
Cobalt hydroxide was added by immersing the sample in an aqueous solution of 0.09/l, drying it, and then immersing it in an aqueous solution of caustic potash to convert cobalt acetate into cobanote hydroxide. The electrode plate obtained in this way was first cut to a width of 120 mm and a length of 680 mm.

ついでローラー間を通して加圧し、ポリ47ノカエチレ
ン樹脂の水性ディスパージョン(固形分16重量%)を
含浸して乾燥した。電極の厚さは0.7朋であった。こ
の電極をさらに単二の大きさに裁断した。この場合は幅
38朋で長さを220朋にした。
The material was then pressed between rollers, impregnated with an aqueous dispersion of poly-47 nocaethylene resin (solid content: 16% by weight), and dried. The thickness of the electrode was 0.7 mm. This electrode was further cut into pieces. In this case, the width was 38 mm and the length was 220 mm.

これを前記のカドミウム極およびセバレータト組合せて
電池全構成した。この電池を人とする。比較例として、
ペースト全体を人と同じように放置して構成した正極を
用いた電池をBとし、まったくこのような放置を行なわ
ないペーストで構成した正極を用いた電池をCとする。
This was combined with the aforementioned cadmium electrode and separator to form a complete battery. Let's say this battery is a person. As a comparative example,
A battery using a positive electrode constructed by leaving the entire paste in the same way as a human being is designated as B, and a battery using a positive electrode constructed from a paste that is not left in this way at all is designated as C.

前述のようにニッケルとコバルトの混合物を放置してお
くと全体が黒褐色になる。その理由ははっきりしないが
、コバルトが酸化物に変化しつつニッケル中に拡散して
いるのではないかと考えられる。この反応は水にぬれた
状態で酸素にふれることで加速されるようであって、溶
液状で放置したり、また、両者の混合物を急速に乾燥し
た場合にはとくに効果はほとんどないことが認められた
As mentioned above, if a mixture of nickel and cobalt is left undisturbed, the entire mixture turns blackish brown. The reason for this is not clear, but it is thought that cobalt is diffusing into nickel while changing into an oxide. This reaction seems to be accelerated by exposure to oxygen while wet with water, and has been found to have little effect if left in solution or if a mixture of the two is rapidly dried. It was done.

前記の電池ム〜Cの充てん容量と各放電時での利用率、
および充電はO,1SC,放電は0・3Cの条件で充放
電し、初期容量の60%まで低下した場合を寿命とした
サイクル寿命を次表に示す。
The charging capacity of the battery M~C and the utilization rate at each discharge,
The following table shows the cycle life when the battery is charged and discharged under the conditions of O, 1SC for charging and 0.3C for discharge, and the life when the capacity decreases to 60% of the initial capacity.

この表より明らかなように、ペースト状態で放置せずに
直ちに使用したものに比べて放置したムの効果が大きい
。また、全体のペース)f放置しなくても、ニッケルと
コバルIf水でぬらして放置する工程をとる本発明の方
法によってもムとほぼ同程度の効果があることがわかり
、放置に伴うけん雑さを大幅に減少させることができる
As is clear from this table, the effect of the paste left is greater than that of the one used immediately without being left in the paste state. In addition, it was found that the method of the present invention, which involves the step of wetting nickel and cobal with water and leaving it for a while, has almost the same effect as the nickel and cobal water without leaving it for a long time. can be significantly reduced.

なお、実施例では放置温度を30℃としたが、これ以上
の温度の場合には乾燥の速度を押えることが必要であり
、時間は数時間でよく、また20℃の場合は放置は1週
間程度が最適である。また、常時攪はんを行う場合には
放置の時間は短縮できて常温でも数時間程度でよい。ま
た、このように金属コバルトヲニノケルに加えて放置す
ることが効果があるのであって、はじめから酸化コバル
トを加えることは、このような効果を期待する上では好
ましいとはいえない。
In addition, in the examples, the leaving temperature was 30°C, but if the temperature is higher than this, it is necessary to slow down the drying speed, and the drying time may be several hours, and if the temperature is 20°C, the leaving temperature is one week. degree is optimal. In addition, when constant stirring is performed, the time for standing can be shortened, and may be about several hours even at room temperature. Furthermore, it is effective to add cobalt metal and leave it to stand as described above, but adding cobalt oxide from the beginning is not preferable in terms of expecting such an effect.

また実施例ではペースト式電極について述べたが、スポ
ンジ状金属多孔体にペースl充填する電極にも同様に適
用することができ、また、ポケット式電極の場合は乾燥
状態のものを用いればよい。
Further, in the embodiment, a paste-type electrode has been described, but the present invention can be similarly applied to an electrode in which a sponge-like metal porous body is filled with paste, and in the case of a pocket-type electrode, a dry one may be used.

存下で空気に触れさせながら少なくとも数時間程度以上
放置したものをペーストに使用することにより、電極の
利用率、寿命ともに向上することができる。
By using a paste that has been left exposed to air for at least several hours, both the utilization rate and the lifespan of the electrode can be improved.

Claims (1)

【特許請求の範囲】[Claims] 水酸化ニッケルとニッケル粉末およびコバルト粉末を含
む活物質混合物をペースト状にする工程を有するニッケ
ル電極の製造法であって、ニッケル粉末とコバルト粉末
に水を加え放置により乾燥状態にする工程を有する電池
用ニッケル電極の製造法。
A method for manufacturing a nickel electrode that includes a process of turning an active material mixture containing nickel hydroxide, nickel powder, and cobalt powder into a paste, and a battery that includes a process of adding water to the nickel powder and cobalt powder and leaving them to dry. nickel electrode manufacturing method.
JP56195912A 1981-12-04 1981-12-04 Manufacture of nickel electrode for battery Pending JPS5897266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56195912A JPS5897266A (en) 1981-12-04 1981-12-04 Manufacture of nickel electrode for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56195912A JPS5897266A (en) 1981-12-04 1981-12-04 Manufacture of nickel electrode for battery

Publications (1)

Publication Number Publication Date
JPS5897266A true JPS5897266A (en) 1983-06-09

Family

ID=16349049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56195912A Pending JPS5897266A (en) 1981-12-04 1981-12-04 Manufacture of nickel electrode for battery

Country Status (1)

Country Link
JP (1) JPS5897266A (en)

Similar Documents

Publication Publication Date Title
JPH0278155A (en) Dry manufacturing process of hydrogen storage alloy electrode
US5989746A (en) Pasted nickel electrode
JP2765029B2 (en) Manufacturing method of nickel hydroxide electrode
JPH03743B2 (en)
JPS5897266A (en) Manufacture of nickel electrode for battery
JP2926732B2 (en) Alkaline secondary battery
JP3263603B2 (en) Alkaline storage battery
JPS5875767A (en) Manufacture of nickel electrode for battery
JPS58137965A (en) Manufacture of nickel electrode for battery
JP3249398B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPS5897267A (en) Manufacture of nickel electrode for battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPS58121557A (en) Manufacture of nickel electrode for battery
JP2981538B2 (en) Electrodes for alkaline batteries
JP2530281B2 (en) Alkaline storage battery
JPS5897265A (en) Manufacture of nickel electrode for battery
JPS58175262A (en) Manufacture of nickel electrode for battery
JPH0693360B2 (en) Manufacturing method of battery with nickel pole
JPS5923464A (en) Manufacture of nickel electrode for battery
JPS645421B2 (en)
JP2553902B2 (en) Alkaline secondary battery
JPS58206055A (en) Manufacture of nickel electrode for battery
JPS5875768A (en) Manufacture of pasted electrode for battery
JPS5937659A (en) Manufacturing method for nickel electrode