JPS58121557A - Manufacture of nickel electrode for battery - Google Patents

Manufacture of nickel electrode for battery

Info

Publication number
JPS58121557A
JPS58121557A JP57004591A JP459182A JPS58121557A JP S58121557 A JPS58121557 A JP S58121557A JP 57004591 A JP57004591 A JP 57004591A JP 459182 A JP459182 A JP 459182A JP S58121557 A JPS58121557 A JP S58121557A
Authority
JP
Japan
Prior art keywords
paste
nickel
electrode
cobalt
nickel hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57004591A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwaki
勉 岩城
Isao Matsumoto
功 松本
Mieko Watanabe
渡辺 美栄子
Ryoji Tsuboi
良二 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57004591A priority Critical patent/JPS58121557A/en
Publication of JPS58121557A publication Critical patent/JPS58121557A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To remain advantage facilitating filling of an active mass and provide discharge performance and a life similar to a sintered type by improving a pocket type electrode, an electrode using a sponge-like metal porous body as an active mass supporting body, or paste type electrode. CONSTITUTION:Cobalt and part of nickel hydroxide are made in a form of paste and the mixture is allowed to stand. This paste is added to nickel and remaining nickel hydroxide to make paste for an electrode. The preferable standing time of the paste is several hours at 30 deg.C and one hour at 20 deg.C. When the paste is stirred continuously, the standing time is shortened to several hours at room temperature.

Description

【発明の詳細な説明】 本発明は、アルカリ電池に用いるニッケル電極として水
酸化ニッケルを直接光てんする非焼結式ニッケル電極、
すなわち、ペースト式2発泡状メタル式、ポケット式電
極などの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a non-sintered nickel electrode in which nickel hydroxide is directly exposed to light as a nickel electrode for use in alkaline batteries;
That is, the present invention relates to a method of manufacturing a paste type two-foamed metal type electrode, a pocket type electrode, and the like.

各種の電源として用いられている電池において、電解液
としてアルカリ水溶液を用いる系では、正極としてニッ
ケル極、酸化銀極、二酸化マンガン極、空気極などがあ
り、負極には、カドミウム極、鉄棒、水素極などがある
。正極のうち、ニッケル   − 極は、とくにアルカリ水溶液中で安定であり、充放電の
可逆性にも優れていて長寿命が期待できること、さらに
は利用率の点でも優れているなどの理由で最もよく使わ
れている。とくにニッケルーカドミウム電池は、二次電
池として鉛電池についで実用化されていて、今後も大き
な需要の伸びが予測されている。また、ニッケルー亜鉛
電池やニッケルー鉄電池がとくに電気自動車用として開
発が進められ、また、ニッケルー水素電池が主に宇宙用
など特殊な用途に対して実用段階に入っている。
In batteries used as various power supplies, in systems that use alkaline aqueous solutions as electrolytes, positive electrodes include nickel electrodes, silver oxide electrodes, manganese dioxide electrodes, air electrodes, etc., and negative electrodes include cadmium electrodes, iron rods, hydrogen electrodes, etc. There are poles etc. Among positive electrodes, nickel electrodes are the most popular because they are particularly stable in alkaline aqueous solutions, have excellent charge/discharge reversibility, can be expected to have a long life, and are also excellent in terms of utilization. It is used. In particular, nickel-cadmium batteries have been put into practical use as secondary batteries next to lead batteries, and demand is expected to continue to grow significantly in the future. Further, nickel-zinc batteries and nickel-iron batteries are being developed particularly for use in electric vehicles, and nickel-hydrogen batteries have entered the practical stage for special uses, mainly for space use.

このようにニッケル極は広く用いられていて、その電極
構造としては、かつてはポケット式、最近は焼結式が主
流を占めている。ポケット式はよく知られているように
、孔を多く設けた鋼製の容器に水酸化ニッケルを黒鉛な
どの導電材とともに機械的に充てんして得られている。
As described above, nickel electrodes are widely used, and their electrode structure used to be the pocket type, but recently the sintered type has been the mainstream. As is well known, the pocket type is obtained by mechanically filling a steel container with many holes with nickel hydroxide and a conductive material such as graphite.

したがって電極は外観上は堅牢に出来ているが、活物質
は導電材や容器(ポケット)とは接触して存在している
のみであるから、大電流放電での分極が大きく、利用率
も低くなる。捷だ、急充電などの苛酷な条件では寿命が
短く々るなどの問題点があった。
Therefore, although the electrode has a robust appearance, the active material exists only in contact with the conductive material and the container (pocket), so polarization during large current discharge is large and the utilization rate is low. Become. However, there were problems such as short lifespan under harsh conditions such as rapid charging.

これに対して焼結式では、微孔を有する焼結体中に活物
質が強固に付着、内蔵された形で充てんされているので
、上記ポケット式にみられるような問題は少なく、大電
流放電特性、急充電特性、寿命いずれの点でも大きな改
良がはかられている。
On the other hand, in the sintered type, the active material is firmly attached and embedded in the sintered body with micropores, so there are fewer problems like the pocket type described above, and it is difficult to handle large currents. Significant improvements have been made in terms of discharge characteristics, rapid charging characteristics, and lifespan.

したがって特性のみからみれば焼結式はかなり理想の段
階に達しているといえよう。ところが、焼結体の製造、
活物質の充てんいずれにおいても工程は複雑であって、
ポケット式に比べればかなり高価になる問題がある。焼
結式に代えて孔径、多孔度とも大きいスポンジ状金属多
孔体を活物質支持体として用い、これにペースト状にし
た活物易化がはかられている。
Therefore, it can be said that the sintered type has reached the ideal stage from the viewpoint of characteristics alone. However, the production of sintered bodies,
The process for filling active materials is complicated.
The problem is that it is considerably more expensive than the pocket type. Instead of the sintering method, a sponge-like porous metal body with large pore size and porosity is used as an active material support, and the active material is made into a paste form to facilitate the active material.

さらに簡単な方法がいわゆるペースト式であって、芯材
としてネット、孔あき板、エキスバンドメタルなどの二
次元的な多孔体を用い、これに活物質と結着剤を混合し
てペースト状にしたものを塗着し、これをスリットある
いはローラ間を通すことにより平滑化して、乾燥後、必
要に応じて加圧するものである。この方法は、芯材が極
めて安価であり、丑だ活物質の充てんも容易であるので
製法としては理想的であり、多くの提案がされている。
An even simpler method is the so-called paste method, in which a two-dimensional porous material such as a net, perforated plate, or expanded metal is used as the core material, and an active material and a binder are mixed with this material to form a paste. The coated material is applied, smoothed by passing it through slits or between rollers, and after drying, pressure is applied as necessary. This method is ideal as a manufacturing method because the core material is extremely inexpensive and filling with waste active material is easy, and many proposals have been made.

ペースト式電極の歴史は古く、製法はやや異なるが、ペ
ースト式鉛極板は極めて広く用いられている。捷だ、カ
ドミウム極についても実用化されている。
Paste-type electrodes have a long history, and although the manufacturing method is slightly different, paste-type lead electrode plates are extremely widely used. Well, cadmium poles have also been put into practical use.

これらに対してニッケル極についても多くの提案がある
にもかかわらず実用化ができない理由としては、次のよ
うな点が挙げられる。
The following are the reasons why nickel electrodes have not been put into practical use despite many proposals.

(1)  ニッケルつ寸り活物質としての充電時でのオ
キシ水酸化ニッケル、放電時の水酸化ニッケルいずれも
すぐれた導電体ではない。したがって導電材を別に加え
る必要があり、加えても利用率が向上し難い。捷だ、加
えすぎると絶対容量が小さくなってしまう。
(1) Neither nickel oxyhydroxide as an active material during charging nor nickel hydroxide during discharging is an excellent conductor. Therefore, it is necessary to separately add a conductive material, and even if it is added, it is difficult to improve the utilization rate. Don't worry, if you add too much, the absolute capacity will decrease.

(2)充放電の繰り返しにより活物質の体積変化は当然
あるが、ニッケル極では膨潤が激しく生じる。
(2) Although the volume of the active material naturally changes due to repeated charging and discharging, severe swelling occurs in the nickel electrode.

主に上記の要因がペースト式ニッケル極の広範囲な実用
化を隋書しているのである。つ捷り、まず強度をあげて
(2)のような膨潤、捷たこれに伴う活物質の脱落を防
ぐ方法として、従来は種々の結着剤が考えられてきた。
The above factors are mainly responsible for the widespread practical application of paste type nickel electrodes. Conventionally, various binders have been considered as a method for preventing the active material from falling off due to swelling and twisting as described in (2) by first increasing the strength.

結着剤としては、ポリエチレン、ポリプロピレン、ポリ
塩化ビニル、ポリスチレン、フッ累樹脂などや、ポリビ
ニルアルコール、カルボキシメチルセルロース、エチル
セルロースなどがある。耐電解液性、耐酸化性の点では
勿論前者がすぐれているが、強度を向上させるために大
量に加えれば、電圧特性は劣り、利用率も低下してし1
う。これを抑制するためにニッケル粉末や黒鉛などが加
えられたが、多量に加えると活物質の占める割合が減少
するし、少々いと利用率が小さい点で問題があった。
Examples of the binder include polyethylene, polypropylene, polyvinyl chloride, polystyrene, fluorocarbon resin, polyvinyl alcohol, carboxymethyl cellulose, and ethyl cellulose. Of course, the former is superior in terms of electrolyte resistance and oxidation resistance, but if a large amount is added to improve strength, the voltage characteristics will be inferior and the utilization rate will decrease.
cormorant. In order to suppress this, nickel powder, graphite, etc. were added, but if too much was added, the proportion occupied by the active material would decrease, and if a little was added, the utilization rate would be low.

以上の結着剤の添加やその他の耐電解液性の繊維は、ペ
ースト式あるいは加圧式のニッケル極、いわゆる非堺結
式二ソケル極の特性や寿命をある程度向」ニさせること
ができるが、従来の焼結式に比べるとはるかに劣るため
に実用上広く用いられるには至っていない。
Addition of the above-mentioned binder and other electrolyte-resistant fibers can improve the characteristics and lifespan of paste type or pressurized nickel electrodes, so-called non-Sakai bonded two-Sokel electrodes, to some extent. Since it is far inferior to the conventional sintering method, it has not been widely used in practice.

本発明は、ポケット式電極やスポンジ状金属多孔体を活
物質支持体に用いる電極、上記ペースト式電極を改良し
て、容易に活物質の充てんができる長所をそのまま残し
て、放電特性や寿命を焼結式に近づけるすぐれた一つの
製造法を提供するものである。
The present invention improves the pocket-type electrode, the electrode using a sponge-like porous metal material as an active material support, and the above-mentioned paste-type electrode, and maintains the advantage of being easily filled with active material while improving discharge characteristics and service life. This provides an excellent manufacturing method that approaches the sintering method.

本発明者らは先に、水酸化ニッケルを主としたペースト
正極材料中にニッケルとコバルトを混合し、これをペー
スト状態から徐々に乾燥状態にして放置しておくことに
よって活物質の利用率が向上し、したがって一定の負荷
での充放電で長寿命になることを提案したが、本発明は
その改良にかかる。すなわち、ニッケルとコバルトを水
酸化ニッケルに加えて水でぬらして放置することは水酸
化ニッケルの利用率の向上に効果があることがわかった
が、その放置はたとえ攪はん操作を加えても数時間以上
が必要であり、連続的に行わない場7 。
The present inventors first mixed nickel and cobalt into a paste positive electrode material mainly composed of nickel hydroxide, and by gradually drying this from a paste state and leaving it to stand, the utilization rate of the active material was increased. The present invention relates to an improvement of the present invention. In other words, it was found that adding nickel and cobalt to nickel hydroxide and leaving it wet with water was effective in improving the utilization rate of nickel hydroxide; In cases where several hours or more are required and the procedure is not carried out continuously7.

合は数日以上が好ましいことがわかった。このことは工
業的には多量のペーストを処理する必要があることから
、装置、場所、人手を多く必要とする欠点があった。
It has been found that several days or more is preferable in some cases. This has the drawback of requiring a large amount of equipment, space, and manpower since it is necessary to process a large amount of paste industrially.

そこで本発明はこれを改良してコバルトと水酸化ニッケ
ルの一部のみをペースト状にして放置し、これを用いて
ニッケルおよび残りの水酸化ニッケルなどとペーストに
して電極用に用いるものである。このことにより量的に
は全体を放置する場合の靴以下の量でよいことになる。
Therefore, the present invention improves this by leaving only part of the cobalt and nickel hydroxide in the form of a paste, and then using this to form a paste with nickel and the remaining nickel hydroxide, etc., for use in electrodes. As a result, in terms of quantity, the amount required is less than that of shoes if the entire product is left alone.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

性能比較のための電池として、単2サイズの密閉形ニッ
ケルーカドミウム蓄電池を用いた。カドミウム負極は以
下のようにして製造したものを用いた。まず、酸化カド
ミウムを主体とするペーストをニッケルメッキした鉄製
のパンチングメタルの両面に塗着し、所定の厚さに設定
されたスリット中を通過させ、乾燥工程を経て、厚さ0
.7JIMの極板を得た。その後、苛性カリの10重量
%水溶液中で部分充電して酸化カドミウムの一部を金属
カドミウムに変化させ、さらに、水洗、乾燥後、加圧し
て厚さ0.56 Mにした。
A AA size sealed nickel-cadmium storage battery was used as a battery for performance comparison. The cadmium negative electrode manufactured as follows was used. First, a paste mainly composed of cadmium oxide is applied to both sides of a nickel-plated iron punching metal, passed through a slit set to a predetermined thickness, and through a drying process.
.. A 7JIM electrode plate was obtained. Thereafter, it was partially charged in a 10% by weight aqueous solution of caustic potassium to change some of the cadmium oxide into metal cadmium, and after washing with water and drying, it was pressurized to a thickness of 0.56 M.

セパレータにはポリアミドの不織布を用い、電解液には
苛性カリの25重量%水溶液に少量の水酸化リチウムを
溶解したものを1セル当たり6.3CC用いた。
A polyamide nonwoven fabric was used as the separator, and a small amount of lithium hydroxide dissolved in a 25% by weight aqueous solution of caustic potash was used as the electrolytic solution at 6.3 CC per cell.

ニッケル電極としてはペースト式を実施例とする。まず
ペーストの材料として、20oメンシユのふるいを通過
する粒度の水酸化ニッケル1に9とカーボニルニッケル
粉末100g、黒m1oy、直径0.1wtb、長さ3
〜5腸のアクリロニトリル−塩化ヒニル共重合体2og
、カーボニル金属コバルト粉末50g、およびカルボキ
シメチルセルロースの3重量%水溶液1にりとした。
In this embodiment, a paste type nickel electrode is used. First, as paste materials, nickel hydroxide with a particle size of 1 to 9 that can pass through a 20o menshie sieve, 100g of carbonyl nickel powder, black m1oy, diameter 0.1wtb, length 3
~5 intestinal acrylonitrile-hinyl chloride copolymer 2 og
, 50 g of carbonyl metal cobalt powder, and a 3% by weight aqueous solution of carboxymethyl cellulose.

本発明では、あらかじめこのペーストに用いる水酸化ニ
ッケル粉末5ogとコバルト粉末50gに水10OCC
を加えて、30℃で放置した。水の蒸発を押えつつ2日
間で乾燥させた。々お、2時間に1回ゆるく攪拌した。
In the present invention, in advance, 5 og of nickel hydroxide powder and 50 g of cobalt powder used for this paste are mixed with 10 OCC of water.
was added and left at 30°C. It was dried for two days while suppressing water evaporation. The mixture was gently stirred once every 2 hours.

色はうすい黒色からうすい黒褐色に変化した。これを軽
く粉砕して上記ペーストに用いた。
The color changed from pale black to pale blackish brown. This was lightly crushed and used for the above paste.

芯材には厚さ0.1Mの鉄板に穴径2賜、中心間ピッチ
3Mで開孔したパンチングメタルにニッケルメッキを施
したものを使用した。この芯材の両面に上記ペーストを
塗着し、スリットを通過させ、乾燥後の厚さを1.○±
0.051Mにした。その後酢酸コバルトの200g/
L水溶液中に浸漬し、乾燥後、苛性カリの水溶液中に浸
漬し、酢酸コバルトを水酸化コバルトに変化させる方法
により水酸化コバルトを添加した。
The core material used was a punched metal plate with holes of 2 diameters and a pitch of 3M between centers on a 0.1M thick iron plate, which was then nickel plated. The above paste is applied to both sides of this core material, passed through a slit, and the thickness after drying is 1. ○±
It was set to 0.051M. Then 200g of cobalt acetate/
After drying, cobalt hydroxide was added by immersing it in an aqueous solution of L and then dipping it in an aqueous solution of caustic potassium to change cobalt acetate into cobalt hydroxide.

こうして得た極板をまず幅120賜、長さ680悲に裁
断した。
The electrode plate thus obtained was first cut into pieces of 120mm wide and 680mm long.

ついでローラー間を通して加圧し、ポリ4フツ化エチレ
ンの水性ディスパージョン(樹脂分15重量%)を加え
た後乾燥した。電極の厚さは0.7賜であった。この電
極をさらに単2の大きさに裁断した。この場合は幅38
J5で長さを220Bにした。
Then, pressure was applied between rollers, and an aqueous dispersion of polytetrafluoroethylene (resin content: 15% by weight) was added, followed by drying. The thickness of the electrode was 0.7 mm. This electrode was further cut into 2 AA size pieces. In this case the width is 38
I made the length 220B with J5.

これを前記のカドミウム極とセパレータと組合昼て電池
を構成した。この電池を(A)とする。捷た、10、・
 − ペースト全体を(A)と同じように放置して用いたニッ
ケル電極を有する電池をCB)とし、1つたくこのよう
な放置を行わずに用いたニッケル電極苔有する電池を(
qとする。
This was combined with the cadmium electrode and separator to form a daytime battery. This battery is referred to as (A). 10,・
- A battery with a nickel electrode that was used after leaving the entire paste in the same manner as in (A) was designated as CB), and one battery with a nickel electrode moss that was used without being left in this manner was designated as (CB).
Let it be q.

前述のように水酸化ニッケルとコバルトの混合物を放置
しておくと全体かうすい黒褐色になる。
As mentioned above, if a mixture of nickel hydroxide and cobalt is left undisturbed, the entire surface becomes a faint blackish brown color.

その理由ははっきりしないが、コバルトが酸化物に変化
しつつ水酸化ニッケル中に混合拡散しているのではない
かと考えられる。この反応は水にぬれた状態で酸素にふ
れることで加速されるようであって、完全な溶液状で放
置したり、まだ、両者の混合物を急速に乾燥した場合に
は大きな効果が期待できないことが認められた。
The reason for this is not clear, but it is thought that cobalt is mixed and diffused into nickel hydroxide while changing into an oxide. This reaction seems to be accelerated by exposure to oxygen while wet with water, and no significant effect can be expected if it is left in a complete solution or if a mixture of the two is rapidly dried. was recognized.

これら電池(A)〜(qの充てん容量と各放電時での利
用率、それに充電は0.15 C、放電は0.40の条
件で充放電し、初期容量の60%まで低下した場合を寿
命としたサイクル寿命を次表に示す。
The charging capacity of these batteries (A) ~ (q and the utilization rate at each discharge, and the case where the capacity decreases to 60% of the initial capacity when charged and discharged under the conditions of 0.15 C for charging and 0.40 C for discharge) The cycle life is shown in the table below.

以下余白 この表より明らかなように、直ちに使用したものに比べ
て放置した(A)と(B)の効果が大きい。捷だ、全体
のペーストを放置しなくても、本発明でもほぼ同程度の
効果があることがわかり、放置にともなうはん雑さを大
幅に減少させることができる。
As is clear from this table, the effects of (A) and (B) that were left to stand were greater than those that were used immediately. It has been found that the present invention has almost the same effect even if the entire paste is not left to stand, and the clutter that accompanies leaving the paste to stand can be significantly reduced.

なお、実施例では30℃で放置する場合を示したが、こ
れ以上の温度の場合には乾燥の速度を押えることが必要
であり、時間は数時間でよく、まだ20 ’Cの場合は
放置は1週間程度が最適である。
In addition, in the example, the case of leaving at 30°C is shown, but if the temperature is higher than this, it is necessary to slow down the drying speed, and the drying time may be several hours. The optimum time is about one week.

また、常時攪ばんを行う場合には放置の時間は短縮でき
て常温でも数時間程度でよい。また、このように金属コ
バルトを水酸化ニッケルの一部に加えて放置することが
効果があるのであって、はじめから酸化コバルトを加え
ることは、このような効果を期待する上では好ましいと
はいえない。
In addition, when constant stirring is performed, the time for standing can be shortened, and may be about several hours even at room temperature. Additionally, adding cobalt metal to a portion of nickel hydroxide and leaving it as is effective, while adding cobalt oxide from the beginning is preferable in terms of expecting such an effect. do not have.

寸だ実施例ではペースト式について述べたが、スポンジ
状金属多孔体を用いる場合でも同様であり、寸だ、ポケ
ット式の場合は乾燥状態のものを用いればよい。
In the embodiment, a paste type was described, but the same applies when using a sponge-like metal porous body, and in the case of a pocket type, a dry one may be used.

また、コバルトと水酸化ニッケルの一部をペースト状に
して放置し、乾燥したものは、簡単に粉砕してペースト
式あるいはポケット式に用いることができる。その点、
ニッケルとコバルトあるいはコバルト単独を水でぬらし
て放置後乾燥すると粉末が凝集し、強固な塊状になり、
これを微粉化するのが困難であり、本発明によればこの
ような不都合がない。
Further, if a part of cobalt and nickel hydroxide is left in the form of a paste and then dried, it can be easily crushed and used in a paste form or a pocket form. That point,
When nickel and cobalt or cobalt alone is wetted with water and left to dry, the powder will coagulate and form a solid lump.
It is difficult to pulverize this, and the present invention does not have this disadvantage.

以上のように、本発明によれば、非焼結式ニッケル電極
の利用率、寿命ともに向上することができる。
As described above, according to the present invention, both the utilization rate and the lifespan of a non-sintered nickel electrode can be improved.

Claims (1)

【特許請求の範囲】[Claims] 水酸化ニッケルを主成分とし、ニッケル粉末及びコバル
ト粉末を含む混合物をペースト状にする工程を有するニ
ッケル電極の製造法であって、前記コバルトと水酸化ニ
ッケルの一部の混合物に水を加え、放置により乾燥状態
にする工程を有する電池用ニッケル電極の製造法。
A method for producing a nickel electrode comprising the step of turning a mixture containing nickel hydroxide as a main component and nickel powder and cobalt powder into a paste, the method comprising: adding water to a part of the mixture of cobalt and nickel hydroxide, and leaving it to stand. A method for manufacturing a nickel electrode for a battery, which includes the step of drying the nickel electrode.
JP57004591A 1982-01-13 1982-01-13 Manufacture of nickel electrode for battery Pending JPS58121557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57004591A JPS58121557A (en) 1982-01-13 1982-01-13 Manufacture of nickel electrode for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57004591A JPS58121557A (en) 1982-01-13 1982-01-13 Manufacture of nickel electrode for battery

Publications (1)

Publication Number Publication Date
JPS58121557A true JPS58121557A (en) 1983-07-19

Family

ID=11588280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57004591A Pending JPS58121557A (en) 1982-01-13 1982-01-13 Manufacture of nickel electrode for battery

Country Status (1)

Country Link
JP (1) JPS58121557A (en)

Similar Documents

Publication Publication Date Title
US5514488A (en) Electrochemical secondary cell
US20140220441A1 (en) Iron electrode employing a polyvinyl alcohol binder
EP1218957A1 (en) Rechargeable nickel-zinc cells
CN111403739A (en) Nickel-cobalt-manganese acid lithium battery cell positive electrode active material, aluminum shell battery cell and manufacturing method thereof
US4000005A (en) Method for making a nickel positive electrode for an alkaline battery
US2994729A (en) Electrochemical battery and negative electrode therefor
JPS58121557A (en) Manufacture of nickel electrode for battery
JPS5875767A (en) Manufacture of nickel electrode for battery
JP3263603B2 (en) Alkaline storage battery
JP2926732B2 (en) Alkaline secondary battery
US3600226A (en) Method for making cadmium electrodes for nickel-cadmium cells
CA2086252A1 (en) Secondary or primary lithium battery
JPS5897267A (en) Manufacture of nickel electrode for battery
JPS58137965A (en) Manufacture of nickel electrode for battery
JPS5897266A (en) Manufacture of nickel electrode for battery
JP3249398B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH06215796A (en) Cylindrical nickel-hydrogen storage battery
JPS645421B2 (en)
JP2530281B2 (en) Alkaline storage battery
JPS58175262A (en) Manufacture of nickel electrode for battery
JPS5897265A (en) Manufacture of nickel electrode for battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPS6097560A (en) Sealed type alkaline storage battery
JPS5960966A (en) Manufacture of nickel electrode for battery