JPS58126671A - Manufacture of cathode plate for alkaline storage battery - Google Patents

Manufacture of cathode plate for alkaline storage battery

Info

Publication number
JPS58126671A
JPS58126671A JP57006839A JP683982A JPS58126671A JP S58126671 A JPS58126671 A JP S58126671A JP 57006839 A JP57006839 A JP 57006839A JP 683982 A JP683982 A JP 683982A JP S58126671 A JPS58126671 A JP S58126671A
Authority
JP
Japan
Prior art keywords
substrate
nickel
aqueous solution
added
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57006839A
Other languages
Japanese (ja)
Inventor
Junji Kuraki
椋木 淳二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57006839A priority Critical patent/JPS58126671A/en
Publication of JPS58126671A publication Critical patent/JPS58126671A/en
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • H01M4/28Precipitating active material on the carrier
    • H01M4/29Precipitating active material on the carrier by electrochemical methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve capacity density by adding a benzene derivative to a nickel salt aqueous solution of an electrolyte. CONSTITUTION:About 3% carboxymethylcellulose aqueous solution is added to carbonyl nickel powder to make paste. This paste is applied to a nickel plated perforated steel plate and dried, and sintered in a reducing atmosphere at about 900 deg.C to obtain a substrate having about 80% porosity. When 2,7 sodium naphthalenedisulfonate is added to a solution in an active mass filling process, a fine nickel hydroxide active mass 4 is formed and filled in order from the innermost pore of the substrate, and filled densely in pores of the substrate. Therefore, capacity density is increased. Sodium saccharinate as well as sodium 2,7- naphthalenedisulfonate is used as a benzene derivative.

Description

【発明の詳細な説明】 本発明は、アルカリ蓄電池用陽極板の容量密度の向上を
目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention aims to improve the capacity density of an anode plate for an alkaline storage battery.

アルカリ蓄電池用陽極板の製造法には、(a)基板の孔
中にニッケル塩を含浸させたのち水酸化カリウム、又は
水酸化す) IJウム水溶液中で陰分解して水酸化ニッ
ケルを形成する方法、建)基板の孔中にニッケル塩を含
浸させたのち、乾燥後約230゜〜240℃で熱分解し
て、水酸化ニッケルを形成する方法、(c)基板の孔中
に二、ケル塩を含浸させたのち、水酸化カリウム、又は
水酸化ナトリウム水溶液に含浸し、化学反応によって水
酸化ニッケルを形成する方法があった。これらはいずれ
も含浸−反応の操作を数回繰り返す必要があり、経済性
を考えると、約330 mAh/crn3の容量密度で
あった。
The method for producing an anode plate for an alkaline storage battery includes (a) impregnating nickel salt into the pores of the substrate, and then decomposing the nickel salt in an aqueous solution of potassium hydroxide or hydroxide to form nickel hydroxide. (c) A method of impregnating nickel salt into the pores of the substrate and then thermally decomposing it at about 230° to 240°C to form nickel hydroxide; (c) Injecting nickel salt into the pores of the substrate. There is a method in which nickel hydroxide is formed by a chemical reaction by impregnating it with salt and then impregnating it with an aqueous solution of potassium hydroxide or sodium hydroxide. All of these required repeating the impregnation-reaction operation several times, and considering economic efficiency, the capacity density was about 330 mAh/crn3.

一方、操作の繰り返しをなくする方法として、(d)ニ
ッケル塩の水溶液中で、基板を陰極として分解して水酸
化ニッケルを形成する方法がある。この方法は、材料で
ある二、ケル塩の水溶液中で、基板の孔中に水酸化ニッ
ケルを形成し、材料の供給が連続して行なわれるので繰
り返しが不要になる。しかし、この方法で良好な条件を
選択して実施した場合で、容量密度は他の3方法と同様
約330 mAh/1−rn3であった。本発明は(d
)の方法で容量密度を向上させようとするものである。
On the other hand, as a method for eliminating repetition of operations, there is a method (d) in which nickel hydroxide is formed by decomposing the substrate in an aqueous solution of nickel salt, using the substrate as a cathode. In this method, nickel hydroxide is formed in the pores of the substrate in an aqueous solution of dikel salt as a material, and since the material is continuously supplied, repetition is unnecessary. However, when this method was carried out under favorable conditions, the capacity density was about 330 mAh/1-rn3, similar to the other three methods. The present invention is (d
) is an attempt to improve capacity density.

カーボニルニッケル粉末ヲカルポキシメチルセルローズ
の約3%の水溶液でペースト状にする。
Carbonyl nickel powder is made into a paste with an approximately 3% aqueous solution of carpoxymethyl cellulose.

そのペーストを、厚さ:80μ、孔径:15φ咽、L″
ツチ25閣のニッケルメッキした開孔鋼板を芯材として
、塗着乾燥後、還元雰囲気中で、約900℃で焼結し、
多孔度約80%の基板とする。
Thickness: 80μ, pore diameter: 15φ, L″
A nickel-plated perforated steel plate from Tsuchi 25 Kaku is used as the core material, and after coating and drying, it is sintered at approximately 900℃ in a reducing atmosphere.
The substrate has a porosity of about 80%.

次いで、次の条件で活物質を充填する。Next, the active material is filled under the following conditions.

すなわち、比重1.30 (80℃)の硝酸ニッケル溶
液に待根Aは、2,7ナフタリン・ノスルホン酸ソーダ
は0、Bは、硝酸ニッケル水溶液11に対し10m9添
加した電解液を使用する。そして、相手板としてニッケ
ル板を用い、電流密度8A/dm2で30分分間型解す
る。その後、水洗・乾燥し周知の方法で化成し陽極板と
する。
That is, an electrolytic solution in which 2,7 naphthalene/sodium nosulfonate is added to a nickel nitrate solution having a specific gravity of 1.30 (80° C.) at 0, and 10 m9 of nickel nitrate aqueous solution 11 is used for B is used. Then, using a nickel plate as a mating plate, the mold was demolded for 30 minutes at a current density of 8 A/dm2. Thereafter, it is washed with water, dried, and chemically converted by a well-known method to form an anode plate.

化成を終了した極板A及びBについて、比重1.26(
20℃)の水酸化カリウム水溶液中で、ニッケル板を相
手板に用い容量を測定した。
Regarding the electrode plates A and B that have undergone chemical formation, the specific gravity is 1.26 (
The capacity was measured in a potassium hydroxide aqueous solution at 20° C. using a nickel plate as a counter plate.

充K : 0. I CmAX 16h放電: 0.2
 CmA、−1,OVまでその結果を次に示す。
Full K: 0. I CmAX 16h discharge: 0.2
The results up to CmA, -1, OV are shown below.

以上から、2,7ナフタリン・ノスルホン酸ソーダを電
解液に添加した極板Bの方が約10チ容量密度が向上し
ている。この点について説明すると、第1図ないし第3
図は基板の孔中に活物質が充填される状況を示したもの
で、第1図は基板で、1は孔、2は芯材、3はニッケル
粉末であり、第2図は添加物を加えない場合、第3図は
ベンゼン誘導体を添加した場合のそれぞれの活物質4の
充填の状況を示す。この図から解るように、2,7ナフ
タリン・ノスルホン酸ソーダを添加すると、第3図のよ
うに微細な水酸化ニッケルとなり、基板の孔の奥から充
填が進み、基板の孔中に密に充填されるため容量密度が
犬となり、一方、2,7ナフタリン・ノスルホン酸ソー
ダを添加しない場合は第2図のように基板の表面に付着
する部分があり、基板の孔中には粗にしか充填されない
ため容量密度が小となる。
From the above, the capacity density of electrode plate B in which 2,7-naphthalene-nosulfonic acid sodium was added to the electrolytic solution was improved by about 10 cm. To explain this point, Figures 1 to 3
The figure shows how the active material is filled into the pores of the substrate. Figure 1 is the substrate, 1 is the hole, 2 is the core material, 3 is the nickel powder, and Figure 2 is the filling of the active material. When not added, FIG. 3 shows the filling situation of each active material 4 when a benzene derivative is added. As can be seen from this figure, when 2,7-naphthalene/sodium nosulfonate is added, it becomes fine nickel hydroxide as shown in Figure 3, and the filling progresses from the depths of the pores of the substrate, filling them densely into the pores of the substrate. On the other hand, if 2,7 naphthalene/nosulfonic acid sodium is not added, there will be a portion that adheres to the surface of the substrate as shown in Figure 2, and the pores of the substrate will only be roughly filled. Since the capacitance density is not increased, the capacitance density becomes small.

なお、ベンゼン誘導体としては2,7ナフタリノ・ノス
ルホン酸ソーダについて説明したがサッカリン酸ナトリ
ウムでもよく、又は両方共添加しても良い。
Although sodium 2,7-naphthalinosulfonate has been described as the benzene derivative, sodium saccharinate may also be used, or both may be added.

以上のように本発明によれば、ニッケル塩の水溶液中に
ベンゼン誘導体を添加することにより容量密度の向上を
図ることができる。
As described above, according to the present invention, capacity density can be improved by adding a benzene derivative to an aqueous solution of a nickel salt.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は基板を示す図、第2図は添加物を加えない場合
の活物質の充填状況を示す図、第3図は添加物を加えた
場合の活物質の充填状況を示す図である。 1・・・孔、2・・・芯材、3・・・ニッケル粉末、4
・・・活物質。
Figure 1 is a diagram showing the substrate, Figure 2 is a diagram showing the active material filling situation when no additives are added, and Figure 3 is a diagram showing the active material filling status when additives are added. . 1... Hole, 2... Core material, 3... Nickel powder, 4
...Active material.

Claims (1)

【特許請求の範囲】[Claims] (1)  カーボニルニッケル粉末をペースト状にし、
開孔鋼板からなる芯材に塗着・乾燥後、焼結した多孔性
の基板を活物質を形成する塩の水溶液中で陰分解して、
多孔性基板の孔中に水酸化ニッケルを形成して作成する
アルカリ蓄電池用陽極板の製造法において、ニッケル塩
の水溶液中にベンゼン誘導体を添加したことを特徴とす
るアルカリ蓄電池用陽極板の製造法。 方、又は2種類共添加したことを特徴とする特許請求の
範囲第(1)項記載のアルカリ蓄電池用陽極板の製造法
(1) Make carbonyl nickel powder into a paste,
After coating and drying a core material made of a perforated steel plate, the sintered porous substrate is decomposed in an aqueous solution of salt that forms the active material.
A method for producing an anode plate for an alkaline storage battery, which is produced by forming nickel hydroxide in the pores of a porous substrate, characterized in that a benzene derivative is added to an aqueous solution of a nickel salt. . A method for producing an anode plate for an alkaline storage battery according to claim (1), characterized in that one or both of these are added together.
JP57006839A 1982-01-21 1982-01-21 Manufacture of cathode plate for alkaline storage battery Granted JPS58126671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57006839A JPS58126671A (en) 1982-01-21 1982-01-21 Manufacture of cathode plate for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57006839A JPS58126671A (en) 1982-01-21 1982-01-21 Manufacture of cathode plate for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPS58126671A true JPS58126671A (en) 1983-07-28

Family

ID=11649404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57006839A Granted JPS58126671A (en) 1982-01-21 1982-01-21 Manufacture of cathode plate for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS58126671A (en)

Similar Documents

Publication Publication Date Title
JPS58126671A (en) Manufacture of cathode plate for alkaline storage battery
JPS5932865B2 (en) Manufacturing method of positive electrode for alkaline storage batteries
JPS58123661A (en) Manufacture of positive plate for alkaline storage battery
JPS6161227B2 (en)
JP2000311680A (en) Sintered type positive electrode plate for nickel- hydrogen battery, its manufacture and nickel-hydrogen battery
JP2898421B2 (en) Method for producing sintered nickel electrode for alkaline secondary battery
JP2000133258A (en) Positive plate for alkaline storage battery and its manufacture
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JP2567672B2 (en) Sintered cadmium negative electrode for alkaline storage battery and method for producing the same
JPS5838459A (en) Manufacture of plate for enclosed alkaline battery
JPS59146160A (en) Production method of substrate for alkali storage battery
JP2639916B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JPS6074262A (en) Manufacture of nickel electrode
JPS5925172A (en) Manufacture of cadmium electrode for alkaline battery
JP3272009B2 (en) Method for producing nickel electrode for alkaline storage battery
JPH0410181B2 (en)
JP2988218B2 (en) Manufacturing method of sintered cathode plate for alkaline storage battery
JPS5929374A (en) Manufacture of cadmium electrode for alkaline battery
JPS60258854A (en) Method of manufacturing paste type cadmium negative pole
JPS6043630B2 (en) Manufacturing method for electrode plates for nickel-cadmium storage batteries
JPS62103972A (en) Manufacture of cathode plate for alkaline storage battery
JPS62281268A (en) Manufacture of cathode plate for alkaline storage battery
JPS60146453A (en) Manufacture of nickel electrode for alkaline battery
JPS6127861B2 (en)
JPS59132563A (en) Manufacture of nickel electrode for battery