JPS62281268A - Manufacture of cathode plate for alkaline storage battery - Google Patents

Manufacture of cathode plate for alkaline storage battery

Info

Publication number
JPS62281268A
JPS62281268A JP61122885A JP12288586A JPS62281268A JP S62281268 A JPS62281268 A JP S62281268A JP 61122885 A JP61122885 A JP 61122885A JP 12288586 A JP12288586 A JP 12288586A JP S62281268 A JPS62281268 A JP S62281268A
Authority
JP
Japan
Prior art keywords
sintered nickel
raw
corrosion
substrate
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61122885A
Other languages
Japanese (ja)
Inventor
Toshio Henmi
逸見 敏夫
Narifumi Matsuki
松木 成文
Naoya Kobayashi
直哉 小林
Makoto Konishi
真 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP61122885A priority Critical patent/JPS62281268A/en
Publication of JPS62281268A publication Critical patent/JPS62281268A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To enlarge cathode capacity, by corroding a sintered nickel surface layer in an aqueous solution of raw-material salt so that it becomes an active material. CONSTITUTION:A sintered nickel surface layer is corroded in an aqueous solution of raw-material salt to become an active layer. And corrosion is promoted by heat decomposition of the raw-material salt so that the sintered nickel surface layer becomes an active material. Because the aqueous solution of raw- material salt is strong in acidity, its contact with sintered nickel particles on the sintered substrate causes a corroding reaction to raise PH in the vicinity of the reacting interface and then to generate NiOH(NO3) on the reaction surface, so that it becomes Ni(OH)2 by alkaline substitution. The corrosion layer formed of the sintered nickel particles is hence made to become the active material so that the capacity can be enlarged. Besides, corrosion reaction can be promoted by heating the raw-material salt in the small hole of the substrate after the preceded corrosion reaction.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は高容量アルカリ蓄電池用陽極板の製造方法の改
良に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention Field of Industrial Application The present invention relates to an improvement in a method for manufacturing an anode plate for a high capacity alkaline storage battery.

従来の技術 アルカリ蓄電池の高容量化に伴い陽極板の容量向上が不
可欠となった。陽極板の高容量化をはかるには、活物質
の充填量もしくは活物質の利用率を増加せしめるかある
いはその両者を向上せしめる必要がある。前者の対策と
しては、焼結式ニッケル基板の多孔度を増加せしめ活物
質充填量の増加をはかる方法や活物質保持体として焼結
式ニッケル基板の代りに三次元網状構造を有する金属ニ
ッケル多孔体を用い活物質充填量の増加をはかる方法が
提案されている。一方、活物質の利用率を向上せしめる
方法としでは、活物質へのコバルト添加が挙げられる。
Conventional Technology As the capacity of alkaline storage batteries increases, it has become essential to increase the capacity of the anode plate. In order to increase the capacity of the anode plate, it is necessary to increase the filling amount of the active material or the utilization rate of the active material, or to improve both. As a countermeasure for the former, methods include increasing the porosity of the sintered nickel substrate to increase the amount of active material filled, and using a metallic nickel porous material with a three-dimensional network structure as an active material holder instead of the sintered nickel substrate. A method has been proposed to increase the amount of active material filled. On the other hand, a method for improving the utilization rate of the active material is to add cobalt to the active material.

発明が解決しようとする問題点 上記製造方法の中で、焼結基体の多孔度を増加させる方
法及び三次元網状構造を有する金属ニッケル多孔体は活
物質充填量は増加するが基板内のニッケル密度が低いた
めに、基板の機械的強度か十分でなく、極板を捲回する
際に亀裂が入り易くかつ集電性も劣る欠点を有している
Problems to be Solved by the Invention Among the above manufacturing methods, the method of increasing the porosity of the sintered substrate and the metal nickel porous body having a three-dimensional network structure increase the amount of active material filled, but the nickel density within the substrate increases. Because of the low resistance, the mechanical strength of the substrate is not sufficient, and the electrode plate is easily cracked when wound, and the current collecting property is also poor.

また、コバルト添加においては活物質中の水酸化コバル
トが多くなり、活物質の膨潤化や放電電圧の低下が認め
られる。
Furthermore, when cobalt is added, the amount of cobalt hydroxide in the active material increases, causing swelling of the active material and a decrease in discharge voltage.

問題点を解決するための手段 本発明は上記の如き欠点を除去するもので、原料塩水溶
液中で焼結ニッケル表面層を腐食させ活物質化せしめか
つ原料塩の熱分解により腐食を増加せしめ、焼結ニッケ
ル表面層を活物質化するものである。
Means for Solving the Problems The present invention eliminates the above-mentioned drawbacks by corroding the sintered nickel surface layer in an aqueous raw material salt solution to make it an active material, and increasing the corrosion due to thermal decomposition of the raw material salt. The sintered nickel surface layer is made into an active material.

作用 原料塩水溶液は強酸性を有しCいるので、焼結基板の焼
結ニッケル粒子と接することにより、腐食反応が起り反
応界面近傍のPHが上昇して反応面にN IOH(N 
Q 、)が生成し、アルカリ置換1こよってN i  
(OH) 、となることにより、焼結ニッケル粒子の腐
食層を活物質化せしめ容量の向上をはかることができる
Since the active raw material salt aqueous solution is strongly acidic and contains C, when it comes into contact with the sintered nickel particles of the sintered substrate, a corrosion reaction occurs, the pH near the reaction interface increases, and NIOH (N
) is formed, and alkali substitution 1 results in N i
(OH) , the corroded layer of the sintered nickel particles becomes an active material and the capacity can be improved.

また前記腐食反応の後基板の細孔内の原料塩を加熱する
ことにより、腐食反応を促進せしめることができる。
Furthermore, by heating the raw material salt in the pores of the substrate after the corrosion reaction, the corrosion reaction can be accelerated.

実施例 原料塩水溶液には1〜10wtcfIの硝酸コバルトあ
るいは硝酸カドミウムを含有する硝酸ニッケル水溶液(
液温50’Cにて比重1,70.PH1)、アルカリ水
溶液には20Wt=1の水酸化ナトリウム水溶液を使用
した。
The example raw material salt aqueous solution includes a nickel nitrate aqueous solution containing 1 to 10 wtcfI of cobalt nitrate or cadmium nitrate (
Specific gravity 1.70 at liquid temperature 50'C. PH1), and a 20Wt=1 sodium hydroxide aqueous solution was used as the alkaline aqueous solution.

実験l 焼結式ニッケル基板(彫50XW50Xto、ss)を
原料塩水溶液に浸漬したもの又は浸漬後に熱分解(L2
Q’Cにて10分間)を行なったものについて、各々の
基板を水洗した後水酸化物を溶解して焼結ニッケルの腐
食量を測定した。この結果をit図に示す。第り図より
焼結ニッケルの腐食割合は浸漬時間の増加に伴ない増加
することがわかる。また熱分解を行なうことにより腐食
割合は更に増すことがわかる。
Experiment 1 A sintered nickel substrate (50
After washing each substrate with water and dissolving the hydroxide, the amount of corrosion of the sintered nickel was measured. This result is shown in the it diagram. It can be seen from the figure that the corrosion rate of sintered nickel increases as the immersion time increases. It can also be seen that the corrosion rate increases further by thermal decomposition.

なお、浸漬時間の効果は60分で一定となる。Note that the effect of immersion time becomes constant at 60 minutes.

実験2 焼結式ニッケル基板を原料塩水溶液に60分間浸漬し、
熱分解、アルカリ置換及び水洗という化学含浸法の一連
の操作を数回繰返した。含浸終了後活物質を溶解して焼
結ニッケルの腐食量を測定した。この結果を第2図に示
す。第2図より焼結ニッケルの腐食割合は含浸回数を重
ねるに伴い減少し、含浸回数4回以降において、焼結ニ
ッケルの腐食は起らないことがわかる。
Experiment 2 A sintered nickel substrate was immersed in a raw salt aqueous solution for 60 minutes,
A series of chemical impregnation operations including thermal decomposition, alkali substitution, and water washing were repeated several times. After the impregnation was completed, the active material was dissolved and the amount of corrosion of the sintered nickel was measured. The results are shown in FIG. From FIG. 2, it can be seen that the corrosion rate of sintered nickel decreases as the number of impregnations increases, and corrosion of sintered nickel does not occur after the number of impregnations after 4 times.

実験3 実験2と同様の条件にて含浸した極板をニッケル板を対
極としで過剰な電解液(20W t 4水酸化ナトリウ
ム水溶液、20′C)中で理論容量に対し0.2C!で
10時間充電し、0.20で放電して容量を測定した。
Experiment 3 An electrode plate impregnated under the same conditions as in Experiment 2 was placed in an excess electrolyte (20 W t 4 sodium hydroxide aqueous solution, 20'C) using a nickel plate as a counter electrode, at a temperature of 0.2 C compared to the theoretical capacity! The battery was charged for 10 hours at a temperature of 0.20, then discharged at a temperature of 0.20, and the capacity was measured.

この結果を第3図に示す。第3図より、焼結ニッケルの
腐食Aによる活物質化証を含めた放電時の利用率は約1
16憾にもなり、焼結式ニッケル基板の細孔内に焼結ニ
ッケルの腐食を起さずに水酸化ニッケルを沈着せしめた
場合Bに比べ、約40壬も放電8針が向上することがわ
かる、 発明の効果 本発明により、焼結式ニッケル基板に活物質を充填する
際に原料塩水溶液にC焼結ニッケルを腐食せしめるかも
しくは腐食を起させた後に基板の細孔内の原料塩を熱分
解せしめることにより、腐食を更に増加せしめることに
よって、陽極容量を著しく向上ならしめることができる
等工業的価値きわめて大なるものである。
The results are shown in FIG. From Figure 3, the utilization rate during discharge, including evidence of active material conversion due to corrosion A of sintered nickel, is approximately 1.
16 Unfortunately, if nickel hydroxide is deposited in the pores of a sintered nickel substrate without causing corrosion of the sintered nickel, the discharge rate of 8 needles will be improved by about 40 mm compared to B. According to the present invention, when filling a sintered nickel substrate with an active material, the C sintered nickel is corroded by an aqueous solution of raw material salt, or the raw material salt in the pores of the substrate is removed after corrosion is caused. Thermal decomposition further increases corrosion, thereby significantly increasing the anode capacity, and has extremely great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼結式ニッケル基板を原料塩水溶液1こ浸漬し
た際の浸漬時間と焼結ニッケルの腐食割合の関係を示す
曲線図、第2図は含浸回数と焼結ニッケルの腐食割合を
示す曲線図、第3図は含浸回数と陽極板容量及び利用率
との関係を示す曲線図である。
Figure 1 is a curve diagram showing the relationship between the immersion time and the corrosion rate of sintered nickel when a sintered nickel substrate is immersed in one raw salt aqueous solution, and Figure 2 is a curve diagram showing the relationship between the number of times of impregnation and the corrosion rate of sintered nickel. FIG. 3 is a curve diagram showing the relationship between the number of impregnations, the capacity of the anode plate, and the utilization rate.

Claims (1)

【特許請求の範囲】 1、焼結式ニッケル基板を原料塩水溶液に浸漬させ、次
いでアルカリ水溶液中で基板の細孔に活物質として原料
塩の水酸化物を沈着せしめるアルカリ蓄電池用陽極板の
含浸工程において、原料塩水溶液にて焼結ニッケル表面
層を腐食させ活物質化せしめることを特徴とするアルカ
リ蓄電池用陽極板の製造方法。 2、原料塩水溶液による焼結ニッケルの腐食操作後基板
を原料塩の熱分解温度以上に加熱し基板の細孔内の原料
塩を熱分解せしめることにより焼結ニッケル表面層の腐
食を更に増加せしめることを特徴とするアルカリ蓄電池
用陽極板の製造方法。
[Claims] 1. Impregnation of an anode plate for an alkaline storage battery by immersing a sintered nickel substrate in an aqueous raw salt solution, and then depositing the hydroxide of the raw salt as an active material in the pores of the substrate in an aqueous alkaline solution. A method for producing an anode plate for an alkaline storage battery, the process comprising corroding a sintered nickel surface layer in an aqueous solution of raw material salt to convert it into an active material. 2. After the corrosion of the sintered nickel with the raw salt aqueous solution, the substrate is heated above the thermal decomposition temperature of the raw salt to thermally decompose the raw salt in the pores of the substrate, thereby further increasing the corrosion of the sintered nickel surface layer. A method for producing an anode plate for an alkaline storage battery, characterized in that:
JP61122885A 1986-05-28 1986-05-28 Manufacture of cathode plate for alkaline storage battery Pending JPS62281268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61122885A JPS62281268A (en) 1986-05-28 1986-05-28 Manufacture of cathode plate for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61122885A JPS62281268A (en) 1986-05-28 1986-05-28 Manufacture of cathode plate for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPS62281268A true JPS62281268A (en) 1987-12-07

Family

ID=14847043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61122885A Pending JPS62281268A (en) 1986-05-28 1986-05-28 Manufacture of cathode plate for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS62281268A (en)

Similar Documents

Publication Publication Date Title
GB2104279A (en) Method of loading metallic battery plaques
US3779810A (en) Method of making a nickel positive electrode for an alkaline battery
KR830000240B1 (en) Manufacturing method of nickel electrode
US6120937A (en) Electrode for alkaline storage battery and method for manufacturing the same
JPS62281268A (en) Manufacture of cathode plate for alkaline storage battery
JPS6074262A (en) Manufacture of nickel electrode
US3533842A (en) Process for impregnating sintered nickel plaques
JP2951940B2 (en) Electrode for alkaline storage battery, method for producing the same, and alkaline storage battery
JP2639916B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JP3061303B2 (en) Method for producing sintered nickel electrode for alkaline secondary battery
JPS6290864A (en) Manufacture of nickel hydroxide electrode for alkaline storage battery
JPH0475255A (en) Manufacture of nickel hydroxide electrode for alkaline storage battery
JP3540557B2 (en) Nickel electrode for alkaline storage battery and method for producing the same
JPS6043630B2 (en) Manufacturing method for electrode plates for nickel-cadmium storage batteries
JPS59132563A (en) Manufacture of nickel electrode for battery
JPH0410176B2 (en)
KR100328678B1 (en) Preparation method of nickel electrode for alkali storage battery
JPH04332469A (en) Manufacture of sintered nickel electrode for alkaline secondary battery
JPS59146160A (en) Production method of substrate for alkali storage battery
JP2000133258A (en) Positive plate for alkaline storage battery and its manufacture
JP2638055B2 (en) Manufacturing method of paste-type cadmium negative electrode for alkaline storage battery
JPS63164160A (en) Manufacture of cathode plate for alkaline battery
JPS58126671A (en) Manufacture of cathode plate for alkaline storage battery
JPS5927457A (en) Manufacture of nickel positive pole for alkali cell
JPS58186163A (en) Manufacture of cadmium negative electrode for alkaline battery