JP3061303B2 - Method for producing sintered nickel electrode for alkaline secondary battery - Google Patents

Method for producing sintered nickel electrode for alkaline secondary battery

Info

Publication number
JP3061303B2
JP3061303B2 JP3225012A JP22501291A JP3061303B2 JP 3061303 B2 JP3061303 B2 JP 3061303B2 JP 3225012 A JP3225012 A JP 3225012A JP 22501291 A JP22501291 A JP 22501291A JP 3061303 B2 JP3061303 B2 JP 3061303B2
Authority
JP
Japan
Prior art keywords
nickel
salt
electrode
impregnation
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3225012A
Other languages
Japanese (ja)
Other versions
JPH0547377A (en
Inventor
浩 服部
宏和 貴堂
修 石田
龍 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP3225012A priority Critical patent/JP3061303B2/en
Publication of JPH0547377A publication Critical patent/JPH0547377A/en
Application granted granted Critical
Publication of JP3061303B2 publication Critical patent/JP3061303B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、化学含浸法によるアル
カリ二次電池用の焼結式ニッケル電極の製造方法に関す
る。
The present invention relates to a method for producing a sintered nickel electrode for an alkaline secondary battery by a chemical impregnation method.

【0002】[0002]

【従来の技術】アルカリ二次電池用の焼結式ニッケル電
極の製造方法としては、化学含浸法と電解含浸法が採用
されている〔例えば、前者については、A.Fleis
cher,Trans.Electrochem.So
c.94,289(1948)、後者については、E.
J.McHenry,Electrochem.Tec
hnol.5,275(1967)〕。
2. Description of the Related Art As a method for producing a sintered nickel electrode for an alkaline secondary battery, a chemical impregnation method and an electrolytic impregnation method are employed. Fleis
cher, Trans. Electrochem. So
c. 94, 289 (1948);
J. McHenry, Electrochem. Tec
hnol. 5,275 (1967)].

【0003】化学含浸法では、硝酸ニッケルなどのニッ
ケル塩の水溶液中に基体となるニッケル焼結体を浸漬
し、ニッケル焼結体の空孔中にニッケル塩を充填した
後、水酸化ナトリウムなどのアルカリ水溶液中に浸漬し
て、ニッケル塩を中和して活物質である水酸化ニッケル
に変換する。そして、これらの含浸工程を所定量の水酸
化ニッケルがニッケル焼結体に充填し終わるまで繰り返
し、その後、アルカリ水溶液中で化成し、水洗、乾燥し
て、ニッケル電極が製造される。
In the chemical impregnation method, a nickel sintered body serving as a substrate is immersed in an aqueous solution of a nickel salt such as nickel nitrate, and the pores of the nickel sintered body are filled with the nickel salt. The nickel salt is immersed in an aqueous alkaline solution to neutralize the nickel salt and convert it to nickel hydroxide, which is an active material. Then, these impregnation steps are repeated until a predetermined amount of nickel hydroxide is completely filled in the nickel sintered body, and thereafter, it is formed in an alkaline aqueous solution, washed with water, and dried to produce a nickel electrode.

【0004】これに対して、電解含浸法は、ニッケル塩
の水溶液中にニッケル焼結体を浸漬し、ついで電解還元
し、ニッケル焼結体の空孔中に水酸化ニッケルを析出さ
せて、ニッケル電極を製造する方法であるが、化学含浸
法に比べて、水酸化ニッケルの充填密度が低いという欠
点がある。
[0004] On the other hand, in the electrolytic impregnation method, a nickel sintered body is immersed in an aqueous solution of a nickel salt, then electrolytically reduced, and nickel hydroxide is precipitated in pores of the nickel sintered body. This is a method of manufacturing an electrode, but has a disadvantage that the packing density of nickel hydroxide is lower than that of the chemical impregnation method.

【0005】ところで、上記の化学含浸法による含浸工
程では、含浸液が硝酸酸性であるため、ニッケル焼結体
は下記の反応式により、含浸液中に溶解し、 4Ni+HNO3 +6H2 O → 4Ni2++NH4 + +9OH- 生成したOH- により、Ni2+が沈殿して水酸化ニッケ
ル〔Ni(OH)2 〕になる。
In the impregnation step by the chemical impregnation method, since the impregnating solution is nitric acid acidic, the nickel sintered body is dissolved in the impregnating solution according to the following reaction formula, and 4Ni + HNO 3 + 6H 2 O → 4Ni 2 + + NH 4 + + 9OH -The generated OH - causes Ni 2+ to precipitate to nickel hydroxide [Ni (OH) 2 ].

【0006】この現象は、特に第1回目の含浸工程にお
いて著しく、これがニッケル電極の容量を増加させる要
因になっている。
[0006] This phenomenon is remarkable especially in the first impregnation step, and this causes the capacity of the nickel electrode to increase.

【0007】また、化学含浸法による含浸液には、ニッ
ケル電極の利用率の向上や充放電に伴う電極の膨潤を抑
制してサイクル特性を向上させるために、亜鉛塩やコバ
ルト塩などの添加物が添加され、最終的に水酸化ニッケ
ルと固溶するようになっている。
The impregnating liquid obtained by the chemical impregnation method contains additives such as zinc salts and cobalt salts in order to improve the utilization rate of the nickel electrode and to suppress the swelling of the electrode due to charge and discharge to improve the cycle characteristics. Is added so that the solid solution eventually becomes a solid solution with nickel hydroxide.

【0008】[0008]

【発明が解決しようとする課題】しかし、前記のよう
に、ニッケル焼結体が溶解した部分に生成した水酸化ニ
ッケルは、上記亜鉛塩やコバルト塩などの添加物の濃度
が低いため、それらの添加物の作用を充分に発揮するこ
とができない。
However, as described above, the nickel hydroxide formed in the portion where the nickel sintered body is dissolved has a low concentration of additives such as the zinc salt and the cobalt salt. The effect of the additive cannot be fully exhibited.

【0009】そのため、電位をかけて含浸を行うこと
で、ニッケル焼結体を溶解せずに水酸化ニッケルを充填
することが行われているが、これはニッケル電極の容量
を低下させる原因になる。
[0009] For this reason, nickel hydroxide is filled without dissolving the nickel sintered body by dissolving the nickel sintered body by applying an electric potential, but this causes a reduction in the capacity of the nickel electrode. .

【0010】本発明は、ニッケル焼結体の溶解が生じた
場合に添加物の作用が充分に発揮できないという問題点
やニッケル焼結体の溶解を抑制した場合に容量が低下す
るといった問題点を解消し、高容量で、かつ充放電に伴
う膨潤の少ない焼結式ニッケル電極を提供することを目
的とする。
The present invention solves the problem that the effect of the additive cannot be sufficiently exerted when the nickel sintered body is melted, and that the capacity is reduced when the melting of the nickel sintered body is suppressed. It is an object of the present invention to provide a sintered nickel electrode having a high capacity and a small swelling due to charge and discharge.

【0011】[0011]

【課題を解決するための手段】本発明は、第1回目の含
浸に、ニッケル塩を含まない亜鉛塩の水溶液またはニッ
ケル塩を含まない亜鉛塩とコバルト塩との水溶液を用い
ることによって、ニッケル焼結体が溶解した部分に生成
した水酸化ニッケルと水酸化亜鉛〔Zn(OH2 〕また
は水酸化亜鉛〔Zn(OH)2 〕と水酸化コバルト〔C
o(OH)2 〕とが固溶し、それらの添加物の作用を充
分に発揮できるようにして、上記目的を達成したもので
ある。
According to the present invention, the nickel impregnation is carried out by using an aqueous solution of a zinc salt containing no nickel salt or an aqueous solution of a zinc salt containing no nickel salt and a cobalt salt in the first impregnation. Nickel hydroxide and zinc hydroxide [Zn (OH 2 ) or zinc hydroxide [Zn (OH) 2 ] and cobalt hydroxide [C
o (OH) 2 ] is dissolved, and the effects of these additives can be sufficiently exhibited, thereby achieving the above object.

【0012】すなわち、ニッケル焼結体の溶解による水
酸化ニッケルの生成は、主として第1回目の含浸工程で
生じるので、この第1回目の含浸にニッケル塩を含まな
い亜鉛塩またはニッケル塩を含まない亜鉛塩とコバルト
塩との水溶液を用いることによって、ニッケル焼結体の
溶解により生成する水酸化ニッケルに水酸化亜鉛や水酸
化コバルトなどが必要な濃度で固溶するようにして、ニ
ッケル焼結体の溶解による容量増加を生かしながら、上
記添加物の作用を充分に発揮できるようにしたのであ
る。
That is, since the formation of nickel hydroxide by dissolution of the nickel sintered body mainly occurs in the first impregnation step, the first impregnation does not include the zinc salt or the nickel salt containing no nickel salt. By using an aqueous solution of a zinc salt and a cobalt salt, zinc hydroxide, cobalt hydroxide, and the like are dissolved in a necessary concentration in nickel hydroxide produced by dissolution of the nickel sintered body. The effect of the above-mentioned additive can be sufficiently exerted while taking advantage of the increase in capacity due to dissolution of the compound.

【0013】ここで、上記の亜鉛塩または亜鉛塩とコバ
ルト塩などの添加物の作用について述べると、これらの
亜鉛塩または亜鉛塩とコバルト塩などの添加物は、活物
質の導電性を高め、かつ充放電に伴うニッケル電極の膨
潤の原因となるγ−NiOOHの生成を抑制する。
Here, the action of the above-mentioned additives such as the zinc salt or the zinc salt and the cobalt salt is described. The additive such as the zinc salt or the zinc salt and the cobalt salt enhances the conductivity of the active material, Further, generation of γ-NiOOH, which causes swelling of the nickel electrode due to charge and discharge, is suppressed.

【0014】充放電に伴うニッケル電極の膨潤は、充放
電サイクル特性を低下させる要因になるが、上記の添加
物は、水酸化ニッケルの結晶層間距離を制御し、層間に
カリウムの水和物が侵入するのをしにくくすることによ
って、上記γ−NiOOHの生成を抑制するものと考え
られる。
The swelling of the nickel electrode due to charge / discharge causes a reduction in charge / discharge cycle characteristics. However, the above additive controls the distance between nickel hydroxide crystal layers, and potassium hydrate is formed between the layers. It is considered that the generation of γ-NiOOH is suppressed by making it difficult to penetrate.

【0015】本発明において、亜鉛塩としては、たとえ
ばZn(NO3 2 ・6H2 O、ZnSO4 ・7H
2 O、Zn(CH3 COO)2 ・2H2 Oなどが用いら
れる。また、コバルト塩としては、たとえばCo(NO
3 2 ・6H2 O、CoSO4 ・7H2 O、Co(CH
3 COO)2 ・4H2 Oなどが用いられる。
In the present invention, examples of the zinc salt include Zn (NO 3 ) 2 .6H 2 O and ZnSO 4 .7H
2 O, Zn (CH 3 COO) 2 .2H 2 O and the like are used. As the cobalt salt, for example, Co (NO
3) 2 · 6H 2 O, CoSO 4 · 7H 2 O, Co (CH
3 COO) 2 .4H 2 O or the like is used.

【0016】第1回目の含浸には、ニッケル塩を含まな
い亜鉛塩の水溶液またはニッケル塩を含まない亜鉛塩と
コバルト塩の水溶液を用いるが、この際の亜鉛塩の濃度
としては1〜5重量%で、コバルト塩の濃度としては1
〜5重量の%程度が適している。
In the first impregnation, an aqueous solution of a zinc salt containing no nickel salt or an aqueous solution of a zinc salt and a cobalt salt not containing a nickel salt is used. % And the concentration of cobalt salt is 1
About 5% by weight is suitable.

【0017】第2回目以降の含浸には、従来同様の含浸
液を使用すればよく、また、基体として用いるニッケル
焼結体も従来同様のものを使用することができる。
For the second and subsequent impregnations, the same impregnation liquid as in the prior art may be used, and a nickel sintered body used as the substrate may be the same as the conventional one.

【0018】[0018]

【実施例】つぎに、実施例を挙げて本発明をより具体的
に説明する。
Next, the present invention will be described more specifically with reference to examples.

【0019】実施例1 まず、焼結式ニッケル電極の基体として用いるニッケル
焼結体の作製方法について説明する。なお、以下におい
て、濃度を示す%はいずれも重量基準によるものであ
る。
Example 1 First, a method for producing a nickel sintered body used as a substrate of a sintered nickel electrode will be described. In the following,% indicating the concentration is based on weight.

【0020】メチルセルロース30gと水1リットルと
を混合したゲルにニッケル粉末を加えてニッケルスラリ
ーとし、このニッケルスラリーをニッケル製のパンチン
グメタル(厚さ:70μm、開口率:25%)の両面に
塗布し、還元雰囲気中900℃で20分間加熱してニッ
ケルを焼結することにより、ニッケル焼結体を作製し
た。
Nickel powder is added to a gel obtained by mixing 30 g of methylcellulose and 1 liter of water to form a nickel slurry. This nickel slurry is applied to both surfaces of a punching metal (thickness: 70 μm, opening ratio: 25%) made of nickel. The nickel was sintered by heating at 900 ° C. for 20 minutes in a reducing atmosphere to produce a nickel sintered body.

【0021】つぎに、このニッケル焼結体の空孔中に活
物質を充填する工程について説明する。
Next, the step of filling the pores of the nickel sintered body with the active material will be described.

【0022】まず、Co(NO3 2 ・6H2 Oを20
g、Zn(NO3 2 ・6H2 Oを20gおよびHNO
3 (硝酸)を2.5g容器内に入れ、その中に水を加え
て全容を1リットルにし、第1回目の含浸に用いる含浸
液を調製した。
First, Co (NO 3 ) 2 .6H 2 O was added to 20
g, 20 g of Zn (NO 3 ) 2 .6H 2 O and HNO
3 (Nitric acid) was placed in a 2.5 g container, and water was added therein to make the total volume 1 liter, thereby preparing an impregnation liquid to be used for the first impregnation.

【0023】この含浸液にニッケル焼結体を20分間浸
漬した後、含浸液中から取り出し、100℃で30分間
乾燥した後、80℃に加熱した30%NaOH(水酸化
ナトリウム)水溶液に10分間浸漬して、それぞれを水
酸化物に変換した。ついで、純水でアルカリ成分がなく
なるま洗浄した後、乾燥した。
The nickel sintered body is immersed in the impregnating liquid for 20 minutes, taken out of the impregnating liquid, dried at 100 ° C. for 30 minutes, and then heated in a 30% aqueous solution of NaOH (sodium hydroxide) heated to 80 ° C. for 10 minutes. Each was converted to hydroxide by immersion. Then, the substrate was washed with pure water until the alkaline component disappeared, and then dried.

【0024】つぎに、Co(NO3 2 ・6H2 Oを5
0g、Zn(NO3 2 ・6H2 Oを50g、Ni(N
3 2 ・6H2 Oを1000gおよびHNO3 を5g
容器内に入れ、その中に水を加えて全容を1リットルに
し、第2回目以降の含浸に用いる含浸液を調製した。
Next, Co (NO 3 ) 2 .6H 2 O was added to 5
0 g, 50 g of Zn (NO 3 ) 2 .6H 2 O, Ni (N
The O 3) 2 · 6H 2 O to 1000g and HNO 3 5 g
The mixture was placed in a container, and water was added thereto to make the total volume 1 liter, thereby preparing an impregnation liquid to be used for the second and subsequent impregnations.

【0025】この第2回目以降の含浸に用いる含浸液
に、上記のニッケル焼結体を上記と同条件下で含浸し、
中和し、この含浸工程を8回繰り返した後、30%Na
OH水溶液中で対極をニッケルとして、ニッケル焼結体
の空孔中に充填された水酸化ニッケル量(重量増加量)
に対し、2Cで60分間充電し、1.5Cで45分間放
電し、ついで純水中でアルカリ成分がなくなるまで洗浄
した後、乾燥してニッケル電極を製造した。
The impregnating liquid used for the second and subsequent impregnations is impregnated with the nickel sintered body under the same conditions as described above.
Neutralize and repeat this impregnation step eight times, then add 30% Na
Amount of nickel hydroxide filled in pores of nickel sintered body (weight increase) with nickel as counter electrode in OH aqueous solution
On the other hand, the battery was charged at 2 C for 60 minutes, discharged at 1.5 C for 45 minutes, washed in pure water until the alkali component disappeared, and then dried to produce a nickel electrode.

【0026】実施例2 Zn(NO3 2 ・6H2 Oを40gおよびHNO3
2.5g容器内に入れ、その中に水を加えて全容を1リ
ットルにし、第1回目の含浸に用いる含浸液を調製し、
これを第1回目の含浸に用いた以外は実施例1と同様に
してニッケル電極を製造した。
Example 2 40 g of Zn (NO 3 ) 2 .6H 2 O and 2.5 g of HNO 3 were placed in a vessel, and water was added therein to make the total volume 1 liter, which was used for the first impregnation. Prepare the impregnation liquid,
A nickel electrode was manufactured in the same manner as in Example 1 except that this was used for the first impregnation.

【0027】比較例1 第1回目の含浸に、実施例1の第2回目以降の含浸に使
用した含浸液〔Co(NO3 2 ・6H2 Oを50g、
Zn(NO3 2 ・6H2 Oを50g、Ni(NO3
2 ・6H2 Oを1000gおよびHNO3 を5g容器内
に入れ、その中に水を加えて全容を1リットルにしたも
の〕を用い、それ以外は実施例1と同様にしてニッケル
電極を製造した。
Comparative Example 1 In the first impregnation, 50 g of the impregnating liquid [Co (NO 3 ) 2 .6H 2 O used in the second and subsequent impregnations of Example 1;
50 g of Zn (NO 3 ) 2 .6H 2 O, Ni (NO 3 )
A nickel electrode was manufactured in the same manner as in Example 1 except that 1000 g of 2.6H 2 O and 5 g of HNO 3 were placed in a container, and water was added to make a total volume of 1 liter. .

【0028】比較例2 ポテンシオスタットを用いて含浸液中のニッケル焼結体
の電位をAg/AgCl参照電極に対して0.5Vに保
ちながら含浸を行った以外は、実施例1と同様にしてニ
ッケル電極を製造した。なお、電位を印加したのは含浸
液による焼結体の溶解を防止するためである。
Comparative Example 2 The procedure of Example 1 was repeated except that the impregnation was carried out using a potentiostat while maintaining the potential of the nickel sintered body in the impregnation liquid at 0.5 V with respect to the Ag / AgCl reference electrode. To produce a nickel electrode. The potential was applied to prevent the sintered body from being dissolved by the impregnating liquid.

【0029】比較例3 ポテンシオスタットを用いて含浸液中のニッケル焼結体
の電位をAg/AgCl参照電極に対して0.5Vに保
ちながら含浸を行った以外は、比較例1と同様にしてニ
ッケル電極を製造した。
Comparative Example 3 The procedure of Comparative Example 1 was repeated except that the impregnation was carried out using a potentiostat while maintaining the potential of the nickel sintered body in the impregnating liquid at 0.5 V with respect to the Ag / AgCl reference electrode. To produce a nickel electrode.

【0030】つぎに、上記実施例1〜2および比較例1
〜3のニッケル電極をそれぞれ正極として用い、負極に
はV22Ti16Zr16Ni39Cr7 の組成を持つ大過剰の
水素吸蔵合金を活物質とする水素吸蔵合金電極を用い
て、図1に示す試験用電池を作製した。
Next, the above Examples 1 and 2 and Comparative Example 1
It used to 3 nickel electrodes as the positive electrode, respectively, a negative electrode using a hydrogen absorbing alloy electrode for a large excess of hydrogen storage alloy having a composition of V 22 Ti 16 Zr 16 Ni 39 Cr 7 as an active material, in FIG. 1 The test battery shown was produced.

【0031】図1において、1は正極であり、この正極
1にはそれぞれ上記実施例1〜2および比較例1〜3で
製造されたニッケル電極が用いられている。2は負極で
あり、この負極2は上記のようにV22Ti16Zr16Ni
39Cr7 の組成を持つ水素吸蔵合金を活物質とする水素
吸蔵合金電極からなるものである。
In FIG. 1, reference numeral 1 denotes a positive electrode, and the positive electrode 1 uses nickel electrodes produced in Examples 1 and 2 and Comparative Examples 1 to 3, respectively. Numeral 2 is a negative electrode, and this negative electrode 2 is made of V 22 Ti 16 Zr 16 Ni as described above.
It is composed of a hydrogen storage alloy electrode using a hydrogen storage alloy having a composition of 39 Cr 7 as an active material.

【0032】3はポリプロピレン不織布からなるセパレ
ータで、4は電解液であり、この電解液4は30%水溶
液カリウム水溶液(ただし、17g/lの水酸化リチウ
ムを添加している)からなるものである。
Reference numeral 3 denotes a separator made of a polypropylene nonwoven fabric, and reference numeral 4 denotes an electrolytic solution. This electrolytic solution 4 is a 30% aqueous potassium solution (however, 17 g / l of lithium hydroxide is added). .

【0033】5および6はそれぞれニッケル製の集電体
であり、7はポリプロピレン製の容器である。
Numerals 5 and 6 denote current collectors made of nickel, and 7 denotes a container made of polypropylene.

【0034】上記5種類の電池を0.1Cで15時間充
電し、充電後、電池電圧が0.9Vになるまで0.2C
で放電し、その充放電を2回繰り返した後の放電容量を
調べ、それに基づいて容量密度を算出した。その結果を
表1に示す。
The above five types of batteries are charged at 0.1 C for 15 hours, and after charging, the batteries are charged at 0.2 C until the battery voltage becomes 0.9 V.
And the discharge capacity after repeating the charge and discharge twice was examined, and the capacity density was calculated based on the discharge capacity. Table 1 shows the results.

【0035】[0035]

【表1】 [Table 1]

【0036】表1に示すように、含浸時に電位をかけて
ニッケル焼結体の溶解を防止した比較例2〜3は、40
0mAh・cc-1以下と容量密度が低かったが、実施例
1〜2と比較例1は、容量密度が450mAh・cc-1
以上であり、比較例2〜3に比べて約15%容量密度が
大きかった。
As shown in Table 1, Comparative Examples 2 and 3 in which a potential was applied during impregnation to prevent dissolution of the nickel sintered body were
Although the capacity density was as low as 0 mAh · cc −1 or less, the capacity density of Examples 1-2 and Comparative Example 1 was 450 mAh · cc −1.
As described above, the capacity density was about 15% larger than that of Comparative Examples 2 and 3.

【0037】そこで、容量密度が大きい実施例1〜2お
よび比較例1について、上記充放電を継続し、充放電に
伴うニッケル電極の厚みの変化を調べた。測定されたニ
ッケル電極の厚みからニッケル電極の膨潤度を算出し、
その膨潤度と充放電サイクル数との関係を図2に示し
た。図2において、各ニッケル電極の初期の厚みは10
0%のところに示されている。
Therefore, in Examples 1 and 2 and Comparative Example 1 having large capacity densities, the charge / discharge was continued and the change in the thickness of the nickel electrode due to the charge / discharge was examined. Calculate the degree of swelling of the nickel electrode from the measured thickness of the nickel electrode,
FIG. 2 shows the relationship between the degree of swelling and the number of charge / discharge cycles. In FIG. 2, the initial thickness of each nickel electrode is 10
It is shown at 0%.

【0038】図2に示すように、比較例1では50回の
充放電サイクルで膨潤度が115%になったが、実施例
1では50回の充放電サイクルで膨潤度が107%で、
実施例2では50回の充放電サイクルで膨潤度が106
%であった。
As shown in FIG. 2, in Comparative Example 1, the swelling degree was 115% after 50 charge / discharge cycles, but in Example 1, the swelling degree was 107% after 50 charge / discharge cycles.
In Example 2, the degree of swelling was 106 after 50 charge / discharge cycles.
%Met.

【0039】膨潤した部分だけで比較すると、実施例1
では膨潤度が比較例1の45%であり、実施例2では膨
潤度が比較例1の40%であり、実施例1〜2は比較例
1に比べて膨潤度が低かった。
When only the swollen portion is compared, the results are shown in Example 1.
In Example 2, the degree of swelling was 45% of Comparative Example 1, Example 2 had a degree of swelling of 40% of Comparative Example 1, and Examples 1 and 2 had lower degrees of swelling than Comparative Example 1.

【0040】充放電サイクルに伴うニッケル電極の膨潤
は、充放電サイクル特性を低下させることになるので、
上記のような膨潤度の低減は充放電サイクル特性を向上
させることになるものと期待される。
Since the swelling of the nickel electrode due to the charge / discharge cycle deteriorates the charge / discharge cycle characteristics,
It is expected that the reduction in the degree of swelling as described above will improve the charge / discharge cycle characteristics.

【0041】[0041]

【発明の効果】以上説明したように、本発明では、化学
含浸法によるアルカリ二次電池用の焼結式ニッケル電極
の製造にあたり、第1回目の含浸に、ニッケル塩を含ま
ない亜鉛塩の水溶液またはニッケル塩を含まない亜鉛塩
とコバルト塩の水溶液を用いることによって、高容量
で、かつ充放電に伴う膨潤の少ない焼結式ニッケル電極
を製造することができた。
As described above, according to the present invention, in the production of a sintered nickel electrode for an alkaline secondary battery by a chemical impregnation method, an aqueous solution of a zinc salt containing no nickel salt is used in the first impregnation. Alternatively, by using an aqueous solution of a zinc salt and a cobalt salt containing no nickel salt, a sintered nickel electrode having a high capacity and less swelling due to charge and discharge could be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1〜2および比較例1〜3で得られたニ
ッケル電極の特性を調べるために作製した試験用電池を
示す概略断面図である。
FIG. 1 is a schematic cross-sectional view showing a test battery prepared for examining characteristics of nickel electrodes obtained in Examples 1 and 2 and Comparative Examples 1 to 3.

【図2】実施例1〜2および比較例1で得られたニッケ
ル電極の充放電サイクル数と充放電に伴うニッケル電極
の膨潤度との関係を示す図である。
FIG. 2 is a diagram showing the relationship between the number of charge / discharge cycles of the nickel electrode obtained in Examples 1 and 2 and Comparative Example 1 and the degree of swelling of the nickel electrode due to charge / discharge.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 電解液 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Electrolyte

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長井 龍 大阪府茨木市丑寅一丁目1番88号 日立 マクセル株式会社内 (56)参考文献 特開 昭52−97127(JP,A) 特開 平2−304867(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/24 - 4/32 H01M 4/52 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Ryu Nagai 1-88 Ushitora, Ibaraki-shi, Osaka Hitachi Maxell, Ltd. (56) References JP-A-52-97127 (JP, A) JP-A-2 -304867 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/24-4/32 H01M 4/52

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ニッケル焼結体をニッケル塩の水溶液中
に浸漬し、ニッケル焼結体の空孔中にニッケル塩を充填
した後、アルカリ水溶液中に浸漬して、ニッケル塩を中
和して水酸化ニッケルに変換する含浸中和を繰り返すア
ルカリ二次電池用の焼結式ニッケル電極の製造にあた
り、 第1回目の含浸に、ニッケル塩を含まない亜鉛塩の水溶
液またはニッケル塩を含まない亜鉛塩とコバルト塩との
水溶液を用いることを特徴とするアルカリ二次電池用の
焼結式ニッケル電極の製造方法。
1. A nickel sintered body is immersed in an aqueous solution of a nickel salt, the pores of the nickel sintered body are filled with a nickel salt, and then immersed in an alkaline aqueous solution to neutralize the nickel salt. In producing a sintered nickel electrode for an alkaline secondary battery that repeats impregnation and neutralization to convert to nickel hydroxide, the first impregnation involves an aqueous solution of a zinc salt containing no nickel salt or a zinc salt containing no nickel salt A method for producing a sintered nickel electrode for an alkaline secondary battery, comprising using an aqueous solution of nickel and a cobalt salt.
JP3225012A 1991-08-09 1991-08-09 Method for producing sintered nickel electrode for alkaline secondary battery Expired - Lifetime JP3061303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3225012A JP3061303B2 (en) 1991-08-09 1991-08-09 Method for producing sintered nickel electrode for alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3225012A JP3061303B2 (en) 1991-08-09 1991-08-09 Method for producing sintered nickel electrode for alkaline secondary battery

Publications (2)

Publication Number Publication Date
JPH0547377A JPH0547377A (en) 1993-02-26
JP3061303B2 true JP3061303B2 (en) 2000-07-10

Family

ID=16822695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3225012A Expired - Lifetime JP3061303B2 (en) 1991-08-09 1991-08-09 Method for producing sintered nickel electrode for alkaline secondary battery

Country Status (1)

Country Link
JP (1) JP3061303B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004081386A1 (en) 2003-03-13 2004-09-23 Yanmar Co., Ltd. Cover structure for engine

Also Published As

Publication number Publication date
JPH0547377A (en) 1993-02-26

Similar Documents

Publication Publication Date Title
EP0571630B1 (en) Method for production of nickel plate and alkali storage battery
JP5099479B2 (en) Nickel electrode for alkaline secondary battery, method for producing the same, and alkaline secondary battery
JPH09270253A (en) Manufacture of lithium nickelate positive plate and lithium battery
JP4496704B2 (en) Manufacturing method of nickel metal hydride battery
JP3245009B2 (en) Secondary battery and method of manufacturing the secondary battery
JP4412936B2 (en) Cobalt oxyhydroxide, method for producing the same, and alkaline storage battery using the same
CN113314770B (en) Alkaline secondary battery and preparation method thereof
JP3617203B2 (en) Manufacturing method of nickel metal hydride secondary battery
JP3061303B2 (en) Method for producing sintered nickel electrode for alkaline secondary battery
JP2889669B2 (en) Non-sintered nickel positive electrode plate for alkaline storage batteries
US3779810A (en) Method of making a nickel positive electrode for an alkaline battery
JP3324781B2 (en) Alkaline secondary battery
JP2898421B2 (en) Method for producing sintered nickel electrode for alkaline secondary battery
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JP4479136B2 (en) Method for producing nickel electrode material
JP4147748B2 (en) Nickel positive electrode and nickel-hydrogen storage battery
JP2932711B2 (en) Manufacturing method of hydrogen storage alloy electrode for alkaline battery
JPH04342957A (en) Manufacture of sintered ni electrode for alkaline secondary battery
JP3744306B2 (en) Manufacturing method of sintered nickel electrode for alkaline storage battery
JP3498727B2 (en) Method for producing nickel hydroxide positive plate for alkaline battery, nickel hydroxide positive plate for alkaline battery, and alkaline battery
JP4356119B2 (en) Sintered nickel electrode for alkaline storage battery
JP3094618B2 (en) Manufacturing method of hydrogen storage alloy electrode for alkaline storage battery
JP3225608B2 (en) Nickel hydroxide positive electrode plate for alkaline battery and method for producing the same
JP2558759B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000414