JPS59132563A - Manufacture of nickel electrode for battery - Google Patents

Manufacture of nickel electrode for battery

Info

Publication number
JPS59132563A
JPS59132563A JP58007793A JP779383A JPS59132563A JP S59132563 A JPS59132563 A JP S59132563A JP 58007793 A JP58007793 A JP 58007793A JP 779383 A JP779383 A JP 779383A JP S59132563 A JPS59132563 A JP S59132563A
Authority
JP
Japan
Prior art keywords
cobalt
nickel
electrode
salt
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58007793A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwaki
勉 岩城
Hiroshi Kawano
川野 博志
Takashi Ishikawa
石川 孝志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58007793A priority Critical patent/JPS59132563A/en
Publication of JPS59132563A publication Critical patent/JPS59132563A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the utilization factor and the life of a nickel electrode by forming the nickel electrode while impregnating a porous electrode having nickel hydroxide as an active material with a weak acid salt solution of cobalt followed by heat resolution of its salt. CONSTITUTION:Nickel hydroxide, carbonyl nickel powder, graphite, fiber and carbonyl metal cobalt powder are mixed while adding a carboxymethylcellulose solution for forming paste to be applied to a punching metal for an electrode core material followed by dipping into the solution consisting of cobalt acetate, water and acetic acid while being heated in the air and then dipped into the running water for forming a paste type nickel electrode. Accordingly, the utilization factor and a life can be improved by simple operation while using cobalt having little corrosive action against the electrode and weak acid acetic cobalt having a big dissolution power and performing heat resolution of said salt.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ニッケルーカドミウム蓄電池、ニッケルー鉄
蓄電池、ニッケルー水素電池などに用いるニッケル電極
の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing nickel electrodes used in nickel-cadmium storage batteries, nickel-iron storage batteries, nickel-hydrogen batteries, and the like.

従来例の構成とその問題点 イヒ この種の水シラケルを活物質とするニッケル電極の構造
としては、かってはポケット式、最近は焼結式か主流を
占めている。ポケット式は、よ  ゛く知られているよ
うに、孔を多く設けた鋼製の容器に水酸化ニッケルを黒
鉛などの導電材とともに機械的に充填したものである。
Conventional structure and its problems The structure of this type of nickel electrode using water silacel as an active material used to be the pocket type, but recently the sintered type has been the mainstream. The pocket type, as is well known, is a steel container with many holes that is mechanically filled with nickel hydroxide along with a conductive material such as graphite.

従って電極は外観」二は堅牢に出来ているが、活物質は
導電材や容器とは接触して存在しているのみであるから
、大電流放電ての分極が大きく、利用率も低くなる。捷
だ、急充電などの苛酷な条件では寿命が短くなるなどの
問題点がある。
Therefore, although the electrode has a robust appearance, since the active material exists only in contact with the conductive material and the container, polarization during large current discharge is large and the utilization rate is low. There are problems such as shortening the lifespan under harsh conditions such as rapid charging.

これに対して焼結式では、微孔を有する焼結体中に活物
質が強固に付着、内蔵された形で充填されているので、
上記ポケット式にみられるよう々問題は少なく、大電流
放電特性、急充電特性、寿命いずれの点でも大きな改良
がはかられている。
On the other hand, in the sintering method, the active material is firmly attached and embedded in the sintered body with micropores.
There are fewer problems than with the pocket type, and major improvements have been made in terms of large current discharge characteristics, rapid charging characteristics, and lifespan.

ところが、焼結体の製造、活物質の充填いずれにおいて
も工程は複雑であって、ポケット式に比べればかなり高
価になる問題がある。焼結式に代えて孔径、多孔度とも
大きい発泡メタルを活物質支持体として用い、これにペ
ースト状にした活物質すなわち水酸化ニッケルを直接充
填する方法が開発され、少々くとも活物質の充填工程の
簡易化がはかられている。
However, both the production of the sintered body and the filling of the active material are complicated, and there is a problem that the cost is considerably higher than that of the pocket type. Instead of the sintering method, a method has been developed in which a foamed metal with a large pore size and porosity is used as an active material support, and a paste-like active material, that is, nickel hydroxide, is directly filled into the foamed metal. Efforts are being made to simplify the process.

さらに簡単な方法がいわゆるペースト式であって、芯材
としてネット、孔あき板、エキスバンドメタルなどの二
次元的な多孔体を用い、これに活物質と結着剤を混合し
てペースト状にしたものを塗着し、これをスリットある
いはローラ間を通すことにより平滑化して、乾燥後、必
要に応じて加圧するものである。この方法は、芯材が極
めて安価であり、また活物質の充填も容易であるので製
法としては理想的であり、多くの提案がされている。ペ
ースト式電極の歴史は古く、製法はやや異なるがペース
ト式鉛極板は極めて広く用いられている。1だ、カドミ
ウム極についても実用化されている。
An even simpler method is the so-called paste method, in which a two-dimensional porous material such as a net, perforated plate, or expanded metal is used as the core material, and an active material and a binder are mixed with this material to form a paste. The coated material is applied, smoothed by passing it through slits or between rollers, and after drying, pressure is applied as necessary. This method is ideal as a manufacturing method because the core material is extremely inexpensive and filling with the active material is easy, and many proposals have been made. Paste-type electrodes have a long history, and although the manufacturing method is slightly different, paste-type lead electrode plates are extremely widely used. 1. Cadmium poles have also been put into practical use.

これらに対してニッケル極についても多くの提案がある
にもかかわらず実用化ができない理由としては、次のよ
うな点が挙げられる。
The following are the reasons why nickel electrodes have not been put into practical use despite many proposals.

(1)  ニッケルつまり活物質としての充電時でのオ
キシ水酸化ニッケル、放電時の水酸化ニッケルいずれも
すぐれた導電体ではない。従って導電材を別に加える必
要があり、加えても利用率か向上し難い。また、加えす
ぎると絶対容量が小さくなってしまう。
(1) Nickel, that is, neither nickel oxyhydroxide as an active material during charging nor nickel hydroxide during discharging is an excellent conductor. Therefore, it is necessary to separately add a conductive material, and even if it is added, it is difficult to improve the utilization rate. Moreover, if too much is added, the absolute capacity will become small.

(坤 充放電の繰り返しにより活物質の体積変化は当然
あるが、ニッケル極では膨潤が激しく生じる。
(Kon) Although the volume of the active material naturally changes due to repeated charging and discharging, nickel electrodes undergo severe swelling.

主に上記の要因かペースト式ニッケル極の広範囲な実用
化を阻害しているのである。
The above-mentioned factors are mainly preventing the widespread practical use of paste-type nickel electrodes.

つまり、まず強度をあげて(掲のような膨潤、またこれ
に伴う活物質の脱落を防ぐ方法として、従来(r!、種
々の結着剤が考えられてき飢しかし、強度を向上させる
ために、結着剤を大量に加えれば、電圧特性は劣り、利
用率も低下してしまう。これを抑制するためにニッケル
粉末や黒鉛ナトカ加えられたか、多量に加えると活物質
の占める割合が減少するし、少ないと利用率が小さい点
で問題があった。
In other words, as a method to first increase the strength (see below) and prevent the swelling and accompanying falling off of the active material, various binders have been considered, but in order to improve the strength, If a large amount of binder is added, the voltage characteristics will deteriorate and the utilization rate will decrease.In order to suppress this, nickel powder or graphite was added, or if a large amount is added, the proportion of active material decreases. However, if there were too few, there was a problem in that the utilization rate was low.

以上の結着剤の添加やその他の耐電解液性の繊維は、ペ
ースト式あるいは加圧式のニッケル極、いわゆる非焼結
式ニッケル極の特性や寿命をある程度向上させることが
できるが、従来の焼結式に比べるとはるかに劣るために
実用」二広く用いられ−るに至っていない。
The addition of binders and other electrolyte-resistant fibers can improve the properties and lifespan of pasted or pressurized nickel electrodes, so-called non-sintered nickel electrodes, to some extent; It has not been widely used in practical use because it is far inferior to the conventional method.

以上のように、ボケ・ント式2発泡メタル式、ペースト
式、加圧式などのように、水酸化ニッケルを直接支持体
に充填することにより得られる非焼結式ニッケル極は、
強度と導電性とが相反する因子になるので、高性能が得
られにくい。そこで、利用率を向上させるために、コバ
ルトtたはコバルト化合物の添加が注目されている。そ
の添加方法としては、一般的に、活物質混合物中に金属
コバルトの水酸化物ないし酸化物を加える方法が採られ
ているか、活物質充填後にコバルト塩溶液を含浸し、次
にアルカリ溶液に浸漬してコバルト塩をコバルトの水酸
化物に転化する方法もある。
As mentioned above, non-sintered nickel electrodes obtained by directly filling a support with nickel hydroxide, such as the Boke-Nt type 2 foam metal type, paste type, and pressurized type, are
Since strength and conductivity are contradictory factors, it is difficult to obtain high performance. Therefore, in order to improve the utilization rate, the addition of cobalt t or a cobalt compound is attracting attention. Generally, the addition method is to add metal cobalt hydroxide or oxide to the active material mixture, or to impregnate the active material with a cobalt salt solution and then immerse it in an alkaline solution. Another method is to convert the cobalt salt to cobalt hydroxide.

しかし、これらの方法によっても利用率の向上は十分で
ない。また、後者の方法では、アルカリ除去のための水
洗に長期間を要する不都合もある。
However, even with these methods, the utilization rate is not sufficiently improved. The latter method also has the disadvantage that washing with water to remove alkali requires a long period of time.

発明の目的 本発明は、以上に鑑み、コバルト化合物の添加によって
、特に非焼結式ニッケル電極の利用率を向上することを
目的とし、さらには電極の腐食がなく、水洗も容易な方
法を提供することを目的とする。
Purpose of the Invention In view of the above, the present invention aims to particularly improve the utilization rate of non-sintered nickel electrodes by adding a cobalt compound, and furthermore provides a method that does not cause electrode corrosion and is easy to wash with water. The purpose is to

発明の構成 本発明は、水酸化ニッケルを活物質とする多孔性電極に
、コバルトの弱酸塩の溶液を含浸し、ついで@記塩を加
熱分解することを特徴とする。
Structure of the Invention The present invention is characterized in that a porous electrode containing nickel hydroxide as an active material is impregnated with a solution of a weak cobalt salt, and then the salt is thermally decomposed.

本発明の方法では、一般に用いられる硝酸、硫酸、塩酸
などの強酸のコバルト塩“を用いず、弱酸塩を用いてい
るので後の加熱分解時に電極を腐食するおそれが少なく
、またアルカリに浸せきすることなく、加熱分解するの
で、アルカリ除去のための長時間の水洗工程が不要とな
る。つまり、加熱分解後に水洗しても、この場合は残存
の弱酸を除くためであるから、その時間は極めて短くて
よいのである。たとえばアルカリ除去のためには常温の
流水であれば、好ましくは数時間を要するのに対して、
本発明の場合は10〜20分間で十分である。
The method of the present invention does not use the generally used cobalt salts of strong acids such as nitric acid, sulfuric acid, and hydrochloric acid, but instead uses weak acid salts, so there is less risk of corrosion of the electrode during subsequent thermal decomposition, and it also reduces the risk of corrosion of the electrode during subsequent thermal decomposition. Since it is thermally decomposed without any residual acid, there is no need for a long water washing process to remove the alkali.In other words, even if water is washed after thermal decomposition, the time required is extremely long as the purpose is to remove the remaining weak acid. For example, it takes several hours to remove alkali using running water at room temperature.
In the case of the present invention, 10 to 20 minutes is sufficient.

実施例の説明 ペースト式ニッケル電極に適用した実施例を説明する。Description of examples An example applied to a paste-type nickel electrode will be described.

寸ず、200メツツユのふるいを通過する粒度の水酸化
ニッケル1にりとカーボニルニッケル粉末509、黒鉛
80g1直径0.lWm1.長さ3〜5rr1mのアク
リロニトリル−塩化ビニル共重合体繊維20gおよびカ
ーボニル金属コバルト粉末309を混合し、これにカル
ボキンメチルセルロースの3重量多水溶液を1 ky加
えてペーストとした。
One part nickel hydroxide with a particle size that can pass through a 200-millimeter sieve, 509 g of carbonyl nickel powder, 80 g of graphite, 100 g of diameter. lWm1. 20 g of acrylonitrile-vinyl chloride copolymer fibers having a length of 3 to 5 mm and 309 carbonyl metal cobalt powders were mixed, and 1 ky of a 3-weight polyhydric solution of carboquine methyl cellulose was added thereto to form a paste.

一方、電極の芯材としては、厚さ0.1順の鉄板に穴径
2祁、中心間ピ・ソチ3mmで開孔したノくンチングメ
タルにニンケルメ・ツキを施したものを使用した。この
芯材の両面に上記ペーストを塗着し、スリットを通過さ
せ、乾燥後の厚さを1.0±0.06てにした。その後
、酢酸コバルト400gを水11に溶解し、これに5g
の酢酸を加えた溶液に浸せきし、乾燥後170°Cで2
0分間空気中で加熱した。こうして得たニッケル電極を
Aとし、この後に常温の流水中に15分間浸せきしたも
のをBとする。
On the other hand, as the core material of the electrode, a punched metal plate with a hole diameter of 2mm and a center-to-center distance of 3mm in a 0.1-thick iron plate was used. The above paste was applied to both sides of this core material, passed through a slit, and the thickness after drying was set to 1.0±0.06. Then, 400 g of cobalt acetate was dissolved in 11 water, and 5 g of cobalt acetate was dissolved in this water.
Soaked in a solution of acetic acid and dried at 170°C for 2 hours.
Heated in air for 0 minutes. The nickel electrode obtained in this manner is designated as A, and the electrode that was immersed in running water at room temperature for 15 minutes is designated as B.

比較例として、上記ペースト中のカーボニルコバルトの
量を50gとし、前記酢酸コバルトの含浸及びそれに続
く処理をしない電極を01同様にペースト中のカーボニ
ルコバルトの代わりに酸化コバルトを709用いた電極
をDとする。また、前記酢酸コバルトの代わりに、コバ
ルトイオン濃度か前記と等しい濃度の硝酸コバルト溶液
を用い前記Bと同様の含浸、加熱分解水洗の処理を施し
た電極をEとする。
As a comparative example, the amount of carbonyl cobalt in the paste was 50 g, and the electrode without impregnation with cobalt acetate and subsequent treatment was 01. An electrode with cobalt oxide 709 instead of carbonyl cobalt in the paste was used as D. do. In addition, an electrode E is obtained by using a cobalt nitrate solution having a cobalt ion concentration or the same concentration as above, instead of the cobalt acetate, and subjecting it to the same impregnation and thermal decomposition and water washing treatments as B.

これらの極板を幅120tmn、長さ63C)tran
に裁断し、ついでローラ間を通して加圧し、ポリ四フッ
化エチレンの水性ディスパージョン(樹脂分5重量%)
を加えた後乾燥した。電極の厚さは0.7配であった。
These plates are 120tmn in width and 63C in length.
It is then cut into pieces, then passed between rollers and pressurized to form an aqueous dispersion of polytetrafluoroethylene (resin content: 5% by weight).
was added and then dried. The thickness of the electrode was 0.7 mm.

この電極を幅38Tnmで長さを220mmにした。This electrode had a width of 38 Tnm and a length of 220 mm.

性でiヒを比較するための電池として、単2サイズの密
閉形ニッケルーカドミウム蓄電池を用いた。
A AA-sized sealed nickel-cadmium storage battery was used as a battery for comparing the characteristics.

カドミウム負極は以下のようにして製造したものを用い
た。1す、酸化カドミウムを主体とするペーストをニッ
ケルメッキした鉄製のパンチングメタルの両面に塗着し
、所定の厚さに設定されたスリット中を通過させ、乾燥
工程を経て、厚さ0.7胴の極板を得た。その後、苛性
カリの10重量係水溶液中で部分充電して酸化カドミウ
ムの一部を金属カドミウムに変化させ、さらに、水洗、
乾燥後、加圧して厚さO,F56rnmにした。
The cadmium negative electrode manufactured as follows was used. 1. Apply a paste mainly composed of cadmium oxide to both sides of a nickel-plated iron punching metal, pass it through a slit set to a predetermined thickness, and go through a drying process to form a cylinder with a thickness of 0.7 mm. The electrode plate was obtained. Thereafter, a part of the cadmium oxide was changed into metal cadmium by partial charging in a 10% by weight aqueous solution of caustic potassium, and then washed with water.
After drying, it was pressurized to a thickness of 56 nm.

セパレータにはポリアミドの不織布を用い、電解液には
苛性カリの25重量係水溶液に少贋の水酸化リチウムを
溶解したものを1セル当たり6.5CCを用いた。
A polyamide non-woven fabric was used as the separator, and as the electrolytic solution, a small amount of lithium hydroxide was dissolved in a 25% by weight aqueous solution of caustic potash, and 6.5 CC was used per cell.

これらの電池の充填容量と各放電時での利用率、それに
充電は0.15C,放電はO,4Cの条件で放電し、初
期容量の60係まで低下した場合を寿命としたサイクル
寿命を次表に示す。
The charging capacity of these batteries, the utilization rate at each discharge, and the cycle life when the battery is discharged under the conditions of 0.15C for charging and 0.4C for discharge, and the life when the battery decreases to 60 times the initial capacity are as follows. Shown in the table.

この表より明らかなように、本発明のニッケル極を用い
た電池Aは、利用率、寿命ともすぐれ、水処理工程を加
えたBではさらに改良されていることかわかる。これに
比へて硝酸コバルトを用い/ζEでは、加熱時に電極が
腐食されて強度が低下し、若干寿命か短い。また、この
程度の処理では硝酸根が完全に除去されないので利用率
もやや劣る。
As is clear from this table, battery A using the nickel electrode of the present invention has excellent utilization rate and life, and it can be seen that battery B, which includes a water treatment process, is further improved. In contrast, in /ζE using cobalt nitrate, the electrode is corroded during heating, resulting in a decrease in strength and a slightly shorter lifespan. In addition, with this level of treatment, the nitrate roots are not completely removed, so the utilization rate is also somewhat inferior.

以上のように、電極に対して腐食作用が少ないコバルト
と弱酸の塩、実施例では安価で溶解度も比較的大きく、
分解も比較的簡単に生じる酢酸コバルトを用いたが、こ
の塩を加えて加熱分解することにより、極めて利用率が
向上し、寿命も向」二できるニッケル橙を提供できるも
のである。塩としては、酢酸コバルトの他に、リン酸、
ヒ酸、クエン酸、シュウ酸、チオシアン酸、キ酸などと
コバルトとの塩が用いられる。
As mentioned above, the salts of cobalt and weak acids that have little corrosive effect on electrodes, and the examples used, are inexpensive and have relatively high solubility.
Cobalt acetate, which is relatively easily decomposed, was used, but by adding this salt and thermally decomposing it, it is possible to provide nickel orange with extremely improved utilization and a long lifespan. In addition to cobalt acetate, phosphoric acid,
Salts of cobalt with arsenic acid, citric acid, oxalic acid, thiocyanic acid, phosphoric acid, etc. are used.

なお、弱酸とコバルトの塩は、一般には水に対する溶解
度か小さいので、実施例のように、あらかじめ活物質混
合物中に金属コバルトあるいはコバルト化合物、とくに
酸化物を加えておくのかよい。
Note that salts of weak acids and cobalt generally have low solubility in water, so it is advisable to add metallic cobalt or a cobalt compound, especially an oxide, to the active material mixture in advance, as in the example.

コバルトの弱酸塩溶液を多孔性電析に含浸し、加熱分1
q「することにより、コバルトの化合物(おそらく酸化
物)か、活物質を結合する役目も果たすので、ペースト
式や加圧式2発泡メタル式、ポケット式のように活物質
としての水酸化ニッケルを直接充填した比較的強度の小
さいニッケル極に適している。しかし、焼結式でも利用
率の向上に効果か太きい。
Impregnate porous electrodeposit with cobalt weak acid salt solution and heat for 1 minute.
By doing so, it also serves to bind the cobalt compound (probably an oxide) or the active material, so nickel hydroxide as the active material can be directly bonded as in the paste type, pressurized type, foam metal type, and pocket type. It is suitable for filled nickel electrodes, which have relatively low strength.However, sintered type is also effective in improving the utilization rate.

発明の効果 以−にのように、本発明によれば、簡単々操作で、利用
率、寿命の向上したニッケル電極を得ることができる。
Effects of the Invention As described above, according to the present invention, a nickel electrode with improved utilization rate and lifetime can be obtained with simple operation.

Claims (1)

【特許請求の範囲】[Claims] (1)  水酸化ニッケルを活物質とする多孔性電極に
、コバルトの弱酸塩の溶液を含浸し、ついて前記塩を加
熱分解することを特徴とする電池用ニッケル電極の製造
法。 (旬 前記多孔性電極が、水酸化ニッケルとともに金属
コバルト、酸化コバルト4たは水酸化コバルトを保持す
る特許請求の範囲第1項記載の電池用ニッケル電極の製
造法。 (曇 前記塩が、酢酸コバルト、クエン酸コバルト。 シュウ酸コバルト、ギ酸コバルト’+ IJン酸コバル
ト、ヒ酸コバルト及びチオシアン酸コバルトよりなる群
から選んだものである特許請求の範囲第1項記載の電池
用ニッケル電極の製造法。
(1) A method for producing a nickel electrode for a battery, which comprises impregnating a porous electrode containing nickel hydroxide as an active material with a solution of a weak cobalt salt, and then thermally decomposing the salt. (A method for producing a nickel electrode for a battery according to claim 1, wherein the porous electrode holds metal cobalt, cobalt oxide 4, or cobalt hydroxide together with nickel hydroxide. Cobalt, cobalt citrate. Cobalt oxalate, cobalt formate' + cobalt IJ phosphate, cobalt arsenate, and cobalt thiocyanate. Manufacture of a nickel electrode for a battery according to claim 1. Law.
JP58007793A 1983-01-19 1983-01-19 Manufacture of nickel electrode for battery Pending JPS59132563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58007793A JPS59132563A (en) 1983-01-19 1983-01-19 Manufacture of nickel electrode for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58007793A JPS59132563A (en) 1983-01-19 1983-01-19 Manufacture of nickel electrode for battery

Publications (1)

Publication Number Publication Date
JPS59132563A true JPS59132563A (en) 1984-07-30

Family

ID=11675524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58007793A Pending JPS59132563A (en) 1983-01-19 1983-01-19 Manufacture of nickel electrode for battery

Country Status (1)

Country Link
JP (1) JPS59132563A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7601464B2 (en) * 2001-12-20 2009-10-13 Panasonic Corporation Electrode core material and battery using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7601464B2 (en) * 2001-12-20 2009-10-13 Panasonic Corporation Electrode core material and battery using the same

Similar Documents

Publication Publication Date Title
US3779810A (en) Method of making a nickel positive electrode for an alkaline battery
US3053924A (en) Battery electrode and method of making the same
JPS59132563A (en) Manufacture of nickel electrode for battery
US6120937A (en) Electrode for alkaline storage battery and method for manufacturing the same
JPS59151758A (en) Manufacture of nickel electrode
JP3708350B2 (en) Sintered nickel positive electrode for alkaline storage battery
JPS58198856A (en) Manufacture of negative cadmium plate for alkaline storage battery
JPS6074262A (en) Manufacture of nickel electrode
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JP3097238B2 (en) Anode plate for alkaline storage battery
JPS60146453A (en) Manufacture of nickel electrode for alkaline battery
JPS5916268A (en) Manufacture of battery using nickel electrode
JPH10149824A (en) Manufacture of hydrogen storage alloy electrode
JPS5923467A (en) Manufacture of sealed type nickel cadmium storage battery anode plate
JP2932711B2 (en) Manufacturing method of hydrogen storage alloy electrode for alkaline battery
JPH04126358A (en) Manufacture of hydrogen absorbing alloy electrode for alkaline battery
JPS60170160A (en) Non-sintering system nickel electrode manufacturing method
JPS63266766A (en) Manufacture of nickel electrode for battery
JPS58175262A (en) Manufacture of nickel electrode for battery
JPS5832363A (en) Manufacture of negative cadmium electrode for alkaline storage battery
JPH0620717A (en) Manufacture of sealed nickel-cadmium storage battery
JPS62122063A (en) Manufacture of nickel positive plate for alkaline storage battery
JPH05151965A (en) Manufacture of nickel electrode for alkaline storage battery
JPH08124576A (en) Electrode supporter for alkaline battery and manufacture of electrode for alkaline battery