JPS63314763A - Manufacture of nickel hydroxide electrode for alkaline storage battery - Google Patents

Manufacture of nickel hydroxide electrode for alkaline storage battery

Info

Publication number
JPS63314763A
JPS63314763A JP62150593A JP15059387A JPS63314763A JP S63314763 A JPS63314763 A JP S63314763A JP 62150593 A JP62150593 A JP 62150593A JP 15059387 A JP15059387 A JP 15059387A JP S63314763 A JPS63314763 A JP S63314763A
Authority
JP
Japan
Prior art keywords
nickel
active material
sintered substrate
substrate
impregnation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62150593A
Other languages
Japanese (ja)
Other versions
JPH0550100B2 (en
Inventor
Hironori Honda
本田 浩則
Shinsuke Nakahori
中堀 真介
Kozo Otsuki
大槻 浩三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62150593A priority Critical patent/JPS63314763A/en
Publication of JPS63314763A publication Critical patent/JPS63314763A/en
Publication of JPH0550100B2 publication Critical patent/JPH0550100B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • H01M4/28Precipitating active material on the carrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To suppress the corrosion of a nickel sintered substrate, increase the filling quantity of an active material, and simplify the electrode production process by filling the active material into the porous nickel sintered substrate by the preset process. CONSTITUTION:A porous nickel sintered substrate coated with cobalt oxide is immersed in a nickel nitrate aqueous solution adjusted for the temperature of 60-100 deg.C and pH of 0-2 then alkali-treated, thereby nickel nitrate is changed into nickel hydroxide, and an active material is filled into the porous nickel sintered substrate. When cobalt oxide is coated on the substrate surface, the passivation region is expanded to pH 0-2, and the corrosion of the nickel sintered substrate due to the impregnation of the active material is suppressed at pH 0-2. Since the pH region of the impregnation liquid is decreased, the turbidity of the impregnation liquid is decreased, and the blinding of the substrate is suppressed.

Description

【発明の詳細な説明】 ビ】 産業上の利用分野 本発明は、ニッケルーカドミクム蓄電池、ニッケルー亜
鉛蓄シ池等のアルカリ蓄電池に用いられる水酸化ニッケ
ル電極の製造方法に関するもので6る。
DETAILED DESCRIPTION OF THE INVENTION B] Field of Industrial Application The present invention relates to a method for manufacturing a nickel hydroxide electrode used in alkaline storage batteries such as nickel-cadmium storage batteries and nickel-zinc storage batteries.

(ロ)従来の技術 従来、水酸化ニッケル電極は、多孔性ニッケル焼結基板
を硝酸ニッケル水溶液の含浸液中に浸漬後、アルカリ水
溶液中で硝酸ニッケルを水酸化物である水酸化ニッケル
に変換して活物質化する工程t−m夛返して所要量の活
物質を充填して製造さnている。そして上記工程の1サ
イクル当りの活物質充填itt増加させて含浸画数を減
少させるために含浸液として、硝酸ニッケル6水塩の著
しく高磯度の水溶液を用い、その粘度を低下させるため
60℃以上の高温にして浸漬する方法が広く行われてい
る。しかしながら、この方法は含浸液の硝酸ニッケル水
溶液中の遊離硝酸濃度が高くなり、シかも高温であるた
めニッケル焼結基板の腐蝕がおこり、極板の強度や電極
性能の低下を起こしていた。したがってこの腐蝕上抑制
するためにニッケル基板表面に酸化ニッケルの皮膜?:
影形成せる方法(特開昭59−78457号、特開昭5
9−96659号など〕がるるかその効果は十分なもの
でにない。
(b) Conventional technology Conventionally, nickel hydroxide electrodes are produced by immersing a porous nickel sintered substrate in an impregnating solution of an aqueous nickel nitrate solution, and then converting the nickel nitrate into nickel hydroxide, a hydroxide, in an aqueous alkaline solution. The active material is produced by repeating the steps t-m and filling the required amount of active material. In order to increase the active material loading per cycle of the above process and reduce the number of impregnation fractions, an extremely high-strength aqueous solution of nickel nitrate hexahydrate is used as the impregnating liquid, and in order to reduce its viscosity, it is 60°C or higher. A method of immersion at high temperatures is widely used. However, in this method, the concentration of free nitric acid in the aqueous nickel nitrate solution of the impregnating solution becomes high, and the high temperature also causes corrosion of the nickel sintered substrate, resulting in a decrease in the strength of the electrode plate and electrode performance. So is there a nickel oxide film on the nickel substrate surface to suppress this corrosion? :
Method for forming shadows (JP-A-59-78457, JP-A-5
No. 9-96659, etc.] The effect is not sufficient.

そこで本発明者は、特願昭61−249115号に、ニ
ッケル焼槽基板の活物質含浸時の腐食に起因する1に極
性能の劣化全抑制するために、硝酸ニッケル水溶液のP
H金1〜2に調整して焼結基板の表面にN1(OH)z
・2(NO3)2°2H20の被膜全形成させるという
水酸化ニッケル電極の製造方法を提案しCいる。この方
法によれば、硝酸ニッケル水溶液よりなる含浸液に対し
、ニッケル焼結基板が不S態化し、基板自身の腐食を抑
制することが可能となる。しかしながらこの方法に訃い
て、問題点がないというわ(すではない。つま夛、活物
質含浸工程時、浸漬、アルカ9処理、水洗からなる一連
の工程の1サイクル当りの活物質充填量が少なく不十分
で69、所定の活物質充填量を得るためには含浸回数を
多く必要とするという問題点がめった。
Therefore, the present inventor proposed in Japanese Patent Application No. 61-249115 that a nickel nitrate aqueous solution containing P.
N1 (OH) on the surface of the sintered substrate with H gold adjusted to 1 to 2
・We proposed a method for manufacturing nickel hydroxide electrodes in which a film of 2(NO3)2°2H20 is entirely formed. According to this method, the nickel sintered substrate becomes passivated by the impregnating liquid made of the nickel nitrate aqueous solution, making it possible to suppress corrosion of the substrate itself. However, it is said that there are no problems with this method. During the active material impregnation process, the amount of active material filled per cycle of the series of steps consisting of immersion, alkali 9 treatment, and water washing is small. This was insufficient69, and a problem occurred in that a large number of impregnations were required to obtain a predetermined filling amount of active material.

(ハ)発明が解決しようとする問題点 本発明は前記問題点に鑑みなされたもので6ワて、ニッ
ケル焼結基板の腐食を抑制しつつ、活物質の充填量全増
大せしめ、更には直極裂造工程の簡略化を目的とするも
のである。
(c) Problems to be Solved by the Invention The present invention has been made in view of the above-mentioned problems, and has the following six points: While suppressing the corrosion of the nickel sintered substrate, it can increase the total amount of active material filled, and furthermore, it can directly The purpose is to simplify the polar splitting process.

に)問題点を解決するための手段 本発明のアルカリ蓄電池用水酸化ニッケル電極のM遣方
法は、酸化コバルトで被覆した多孔性ニッケル焼結基板
を、温度6O−100℃、PHAO〜2に調整された硝
酸ニッケル水浴液に浸漬した後、アルカリ処理すること
により前記硝酸ニッケルを水酸化ニッケルに変化させ、
前記多孔性ニッケル焼結基板に活物質を充填することを
特徴とするものである。
B) Means for Solving the Problems The method of using the nickel hydroxide electrode for alkaline storage batteries of the present invention is to prepare a porous nickel sintered substrate coated with cobalt oxide at a temperature of 6O-100°C and adjusted to a PHAO of ~2. After immersing the nickel nitrate in a water bath solution, the nickel nitrate is changed to nickel hydroxide by an alkali treatment,
The method is characterized in that the porous nickel sintered substrate is filled with an active material.

(ホ)作 用 本発明者らによって、多孔性ニッケル焼結基板表面を酸
化コバルトで被覆してひくと、不動態化領域がPHO〜
2へと広がることが見い出さnた。その結果、PHO〜
2においてニッケル焼結基板の活物質含浸時の腐食が抑
制さnる。
(e) Effect When the present inventors coated the surface of a porous nickel sintered substrate with cobalt oxide, the passivation region became PHO~
It was found that this spreads to 2. As a result, PHO~
In No. 2, corrosion of the nickel sintered substrate during impregnation with the active material is suppressed.

1次、含浸液のpH領域を下げることにより、硝酸ニッ
ケル含浸液中に生成する分解生成物に起因する、含浸液
のにごシが減少する。従汲、PH1〜2の領域において
は、にごりによるニッケル焼結基板表面の付着物に起因
して、ニッケル焼結基板の孔が目づま夕を起こしてい九
。これは、含浸工程lサイクルにおける含浸量(活物質
充填量]の増加分を少なくさせる。しかし本発明におい
ては、含浸時のpHをO〜1に下げる事が可能とな夛、
こnに起因して含浸時のニッケル焼結基板表面への付着
物の生成が抑えらnるので、孔の目づまりが抑制できる
。“更に、酸化コバルトの反覆によってpH0−1の領
域においてもニッケル焼結基板の腐食は抑制されている
が、含浸時においてニッケル焼結基板表面上の不要な活
物質が若干溶解し、孔への含浸液の浸透が、PH1〜2
のときよシも良好になる。このような作用によりて含?
!!回数を減少させることができ、工程のWi略化が可
能となる。
First, by lowering the pH range of the impregnating liquid, the bitterness of the impregnating liquid due to decomposition products generated in the nickel nitrate impregnating liquid is reduced. Accordingly, in the pH range of 1 to 2, the pores of the nickel sintered substrate become clogged due to deposits on the surface of the nickel sintered substrate caused by cloudiness. This reduces the increase in the amount of impregnation (loaded amount of active material) in one cycle of the impregnation process. However, in the present invention, it is possible to lower the pH during impregnation to 0 to 1.
Due to this, the formation of deposits on the surface of the nickel sintered substrate during impregnation is suppressed, so that clogging of the pores can be suppressed. “Furthermore, corrosion of the nickel sintered substrate is suppressed even in the pH range of 0-1 by repeating cobalt oxide, but during impregnation, some unnecessary active material on the surface of the nickel sintered substrate is dissolved, and the pores are filled with Penetration of impregnating liquid is at PH1~2
When the time comes, the condition will also improve. Contains due to this kind of action?
! ! The number of times can be reduced, and the process can be simplified.

(へ)突流側 含浸液として比重1.75、温度80℃、PHを硝酸も
しくは水酸化ニッケルを添加して−l〜3の種々のpH
fi[に保持した、硝酸ニッケル水溶液を用意した。次
いで、多孔度約8596のニッケル焼結基板に水酸化コ
バル)1−含浸後、200℃で加熱する事によシ酸化コ
バルトで被覆し7+、基板、及び被覆していない基板そ
れぞrt t’、前記硝酸ニッケル水溶液に60分間浸
漬し、直ちに水洗乾燥した後、重量測定した。このとき
の重量t−bgとする。これを酢酸アンモニクムーアン
モニア水溶液中に16時間浸漬して、活物jX全抽出し
、水洗、乾燥した後、重量測定した。このときの重量を
egとする。また活物質含浸時のニッケル焼結基板の重
tをaとした。活物質充填量、含浸液に溶解した基板ニ
ッケルの百分率をαとすると、aは次式%式% また−万、活物質の酢酸アンモニクムーアンモニア水溶
液処理による抽出量百分率とβすると、βは次式で求め
らnる。
(f) As the rush side impregnating liquid, the specific gravity is 1.75, the temperature is 80℃, and the pH is adjusted to various pH values from -1 to 3 by adding nitric acid or nickel hydroxide.
An aqueous nickel nitrate solution maintained at a temperature of 0.5 to 0.5 was prepared. A sintered nickel substrate with a porosity of about 8596 was then impregnated with cobalt hydroxide (1) and then coated with cobalt siloxide by heating at 200°C, and the substrate and uncoated substrate were each rt t'. The sample was immersed in the nickel nitrate aqueous solution for 60 minutes, immediately washed with water and dried, and then weighed. The weight at this time is t-bg. This was immersed in an aqueous solution of ammonium acetate and ammonia for 16 hours to extract all active substances jX, washed with water, dried, and then weighed. Let the weight at this time be eg. Further, the weight t of the nickel sintered substrate at the time of impregnation with the active material was defined as a. Let α be the active material filling amount and the percentage of substrate nickel dissolved in the impregnating solution, then a is the following formula % formula % and - 10,000, and β is the percentage of the active material extracted by ammonium acetate and ammonia aqueous solution treatment, then β is It can be calculated using the following formula.

尚、酸化コバルトで皮覆した(本発明に係るもの)場合
、酸化コバルトは酢酸アンモニウム−アンモニア水溶液
に溶解しないため、酸化コバルトを皮覆した後のニッケ
ル焼結基板重遺はaとしている。そしてこれらより求め
らnるαはニッケル焼結基板の腐食の程度、βは腐食に
より焼結基板のニッケルが活物質化した量を示している
In the case of coating with cobalt oxide (according to the present invention), cobalt oxide does not dissolve in ammonium acetate-ammonia aqueous solution, so the weight of the nickel sintered substrate after coating with cobalt oxide is a. Then, α obtained from these indicates the degree of corrosion of the nickel sintered substrate, and β indicates the amount of nickel in the sintered substrate converted into an active material due to corrosion.

第1図は酸化コバルトで皮覆させた場合(図中0、ム〕
と、未反覆の場合(図中0.Δ]のα、βとピHの関係
を示したものである。これより酸化コバルトで皮覆した
場合は、pHo〜2の範囲でα、βが最小になり、基板
の腐食を抑制できることがわかる。
Figure 1 shows the case where the skin is coated with cobalt oxide (0 and m in the figure).
The figure shows the relationship between α, β and PH in the case of unrepeated coating (0.Δ in the figure). From this, when coated with cobalt oxide, α and β are in the range of pHo ~ 2. It can be seen that corrosion of the substrate can be suppressed.

また、多孔度85g6の焼結式ニッケル基板金比重1.
35の水酸化コバルトに浸漬し、200℃で加熱して、
酸化コバルトで皮覆しλ後、比重L75を、温度80℃
、FHO−1に調整した硝酸ニラ化し、水洗、乾燥する
工程を所定口故繰り返して電極(Alを製作した。次に
同様の含浸液のPHを1〜2、−1〜0.2〜3に調整
する事以外、寅極囚と同体にして、[極(B)、(C)
、(DJを、そnぞれ製作した。
In addition, a sintered nickel substrate with a porosity of 85g6 and a gold specific gravity of 1.
immersed in 35 cobalt hydroxide and heated at 200°C,
After coating with cobalt oxide, the specific gravity is L75 and the temperature is 80℃.
An electrode (Al) was produced by repeating the steps of nitric acid adjustment to FHO-1, washing with water, and drying for a predetermined time.Next, the pH of the same impregnation solution was adjusted to 1 to 2, -1 to 0.2 to 3. Other than adjusting to
, (DJ), respectively.

このようにして製作した電極を、酢酸アンモニクムーア
ンモニア水溶液中16時間、浸漬して、活物質全抽出し
た。そしてこのときのニッケル焼結基板表面要部の粒子
構造を辰t、走査型電子顕謬−− 微誂写真を、第2図に示した。ここで電極cAJは第2
図(a)、電極0は第2図(1))というようにそnぞ
れ対応している。これより電IdIi囚、βノは0、◎
と比べて孔蝕等O腐食が抑制さnていることがわかる。
The thus produced electrode was immersed in an aqueous solution of ammonium acetate and ammonia for 16 hours to completely extract the active material. The particle structure of the main part of the surface of the nickel sintered substrate at this time is shown in FIG. 2, and a scanning electron micrograph is shown in FIG. Here, electrode cAJ is the second
(a) and electrode 0 correspond to each other as shown in FIG. 2 (1)). From this, the electric IdIi prisoner, β is 0, ◎
It can be seen that O corrosion such as pitting is suppressed compared to the conventional method.

また第3図は、活物質含浸時の含浸回数と、含浸量(活
物質充填量)の関係を示したものである。
Further, FIG. 3 shows the relationship between the number of times of impregnation during impregnation of the active material and the amount of impregnation (the amount of active material filled).

こnより電準因は、0と比較して、含浸回数による含浸
量の増茄が大きい事が分かる。これは活物質含浸時のF
HO差に起−するものである。つまり、電極囚では含浸
口&が6図、IE電極では含浸回数が8回必要となる。
It can be seen from this that the increase in the amount of impregnation due to the number of impregnations is large compared to the electric standard factor of 0. This is F when impregnated with active material.
This is caused by the difference in HO. In other words, the number of impregnation ports required for the electrode capacitor is 6, and the number of impregnations required for the IE electrode is 8 times.

したがってPHfo〜1にすることによシ、1””tl
〜2としたときより含浸回数t−減らすことが可能とな
る。尚、ここで活物質の充填は、ニッケル焼結基板を硝
酸ニッケルよりなる活物質含浸液に浸漬した後、アルカ
リ水溶液に浸漬してアルカリ処理し、水洗を行うという
一連の工程t”繰り返し行ったものである。
Therefore, it is better to set PHfo~1, 1""tl
It becomes possible to reduce the number of impregnations by t compared to when it is set to ~2. The active material was filled by repeating a series of steps in which the nickel sintered substrate was immersed in an active material impregnating solution made of nickel nitrate, then immersed in an alkaline aqueous solution for alkali treatment, and then washed with water. It is something.

(ト]発明の効果 本発明によれば、高温、高濃度の硝酸ニッケル水溶液で
もFIHθ〜2の範囲でニッケル焼結基板の腐食を抑制
することができ、特にFHO〜1にする事により含浸L
!l!l攻を削減することが可能となるので、工程の簡
略化が計n1その工業的価1直はきわめて大きい。
(g) Effects of the Invention According to the present invention, corrosion of nickel sintered substrates can be suppressed in the range of FIHθ~2 even in a high-temperature, high-concentration nickel nitrate aqueous solution, and in particular, by setting FHO~1, the impregnated L
! l! Since it is possible to reduce the number of attacks, the simplification of the process is n1 in total, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はニッケル焼結基板にお(するα、βとrHとの
関係を示す図、第2図はいずれもニッケル焼結基板表面
要部の粒子構造を示す電子顕微鏡写真であってe)及び
(b)[本発明によるもの、(C]及び(山は比較例に
よるものであ)、3g3図は活物質含浸回数と活物質充
填量との関係を示した図である。 第1図 (PH) 第2図 (Q) (C) (b) (d)
Figure 1 is a diagram showing the relationship between α, β and rH on a nickel sintered substrate, and Figure 2 is an electron micrograph showing the particle structure of the main part of the surface of the nickel sintered substrate. and (b) [according to the present invention, (C] and (mountains are based on comparative examples). Figure 3g3 is a diagram showing the relationship between the number of times of impregnation of the active material and the amount of active material filled. (PH) Figure 2 (Q) (C) (b) (d)

Claims (2)

【特許請求の範囲】[Claims] (1)酸化コバルトで被覆した多孔性ニッケル焼結基板
を、温度60〜100℃、pHが0〜2に調整された硝
酸ニッケル水溶液に浸漬した後、アルカリ処理すること
により前記硝酸ニッケルを水酸化ニッケルに変化させ、
前記多孔性ニッケル焼結基板に活物質を充填することを
特徴とするアルカリ蓄電池用水酸化ニッケル電極の製造
方法。
(1) A porous nickel sintered substrate coated with cobalt oxide is immersed in a nickel nitrate aqueous solution adjusted to a temperature of 60 to 100°C and a pH of 0 to 2, and then treated with an alkali to hydroxylate the nickel nitrate. converted to nickel,
A method for manufacturing a nickel hydroxide electrode for an alkaline storage battery, comprising filling the porous nickel sintered substrate with an active material.
(2)前記pHを0〜1とすることを特徴とする特許請
求の範囲第(1)項記載のアルカリ蓄電池用水酸化ニッ
ケル電極の製造方法。
(2) The method for manufacturing a nickel hydroxide electrode for an alkaline storage battery according to claim (1), wherein the pH is set to 0 to 1.
JP62150593A 1987-06-17 1987-06-17 Manufacture of nickel hydroxide electrode for alkaline storage battery Granted JPS63314763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62150593A JPS63314763A (en) 1987-06-17 1987-06-17 Manufacture of nickel hydroxide electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62150593A JPS63314763A (en) 1987-06-17 1987-06-17 Manufacture of nickel hydroxide electrode for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS63314763A true JPS63314763A (en) 1988-12-22
JPH0550100B2 JPH0550100B2 (en) 1993-07-28

Family

ID=15500272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62150593A Granted JPS63314763A (en) 1987-06-17 1987-06-17 Manufacture of nickel hydroxide electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS63314763A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2687507A1 (en) * 1992-02-18 1993-08-20 Hughes Aircraft Co Nickel electrode on which there is a cobalt oxide passivation layer, method for its production and its use in an electrical accumulator cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51121742A (en) * 1975-04-17 1976-10-25 Matsushita Electric Ind Co Ltd Method of producing nickel plate
JPS6074262A (en) * 1983-09-30 1985-04-26 Furukawa Battery Co Ltd:The Manufacture of nickel electrode
JPS6237874A (en) * 1985-08-10 1987-02-18 Sanyo Electric Co Ltd Manufacture of nickel hydroxide electrode of alkaline storage battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51121742A (en) * 1975-04-17 1976-10-25 Matsushita Electric Ind Co Ltd Method of producing nickel plate
JPS6074262A (en) * 1983-09-30 1985-04-26 Furukawa Battery Co Ltd:The Manufacture of nickel electrode
JPS6237874A (en) * 1985-08-10 1987-02-18 Sanyo Electric Co Ltd Manufacture of nickel hydroxide electrode of alkaline storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2687507A1 (en) * 1992-02-18 1993-08-20 Hughes Aircraft Co Nickel electrode on which there is a cobalt oxide passivation layer, method for its production and its use in an electrical accumulator cell

Also Published As

Publication number Publication date
JPH0550100B2 (en) 1993-07-28

Similar Documents

Publication Publication Date Title
JPS63314763A (en) Manufacture of nickel hydroxide electrode for alkaline storage battery
US3269864A (en) Electrodes for alkaline storage batteries
US3305398A (en) Method for making nickel electrodes for electrolytic cells
JPS6139398B2 (en)
JP2639916B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JPS6074262A (en) Manufacture of nickel electrode
US3540930A (en) Production of negative electrodes for nickel-cadmium batteries
US3533842A (en) Process for impregnating sintered nickel plaques
JPS63105468A (en) Manufacture of nickel hydroxide electrode for alkaline storage battery
KR100362210B1 (en) Process for producing nickel electrode
JP2567672B2 (en) Sintered cadmium negative electrode for alkaline storage battery and method for producing the same
JP2988218B2 (en) Manufacturing method of sintered cathode plate for alkaline storage battery
JPS60225356A (en) Method of manufacturing nickel positive electrode for alkaline storage battery
JPS63114061A (en) Manufacture of sintered nickel electrode for alkaline storage battery
JP3055387B2 (en) Manufacturing method of electrode plate for alkaline storage battery
JPH0714576A (en) Manufacture of unsintered electrode
JPS58102513A (en) Method of compounding tantalum sintered electrode
JPS63128555A (en) Manufacture of nickel hydroxide electrode for alkaline storage battery
JPS6041758A (en) Manufacture of plate for alkaline storage battery
JPS6068555A (en) Manufacture of plate for alkaline storage battery
JPS59124119A (en) Method of producing solid electrolytic condenser
JPS63121255A (en) Manufacture of sintered type cadmium negative electrode
JPS62105367A (en) Manufacture of plate for alkaline storage battery
JPS59181456A (en) Manufacture of negative plate of alkali storage battery
JPS58102514A (en) Method of compounding tantalum sintered electrode

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term