KR100362210B1 - Process for producing nickel electrode - Google Patents

Process for producing nickel electrode Download PDF

Info

Publication number
KR100362210B1
KR100362210B1 KR1019950006583A KR19950006583A KR100362210B1 KR 100362210 B1 KR100362210 B1 KR 100362210B1 KR 1019950006583 A KR1019950006583 A KR 1019950006583A KR 19950006583 A KR19950006583 A KR 19950006583A KR 100362210 B1 KR100362210 B1 KR 100362210B1
Authority
KR
South Korea
Prior art keywords
nickel
electrode
impregnation
substrate
corrosion
Prior art date
Application number
KR1019950006583A
Other languages
Korean (ko)
Other versions
KR960036172A (en
Inventor
이형복
박사인
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to KR1019950006583A priority Critical patent/KR100362210B1/en
Publication of KR960036172A publication Critical patent/KR960036172A/en
Application granted granted Critical
Publication of KR100362210B1 publication Critical patent/KR100362210B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • H01M4/28Precipitating active material on the carrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • H01M4/0497Chemical precipitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: A process for producing nickel electrode is provided to increase durability of the electrode, to improve the cycle life of battery, and to decrease the time required to produce the electrode. CONSTITUTION: The process for producing nickel electrode comprises the step of forming active materials on the nickel substrate having porosity greater than 80% by means of a chemical impregnation method. The process is characterized in that the first impregnation step is carried out in 5M or more of Ni(NO3)2·6H2O aqueous solution in a short time to prevent the corrosion of nickel substrate, and then the second impregnation step is carried out repeatedly in 5M or more of Ni(NO3)2·6H2O aqueous solution for the time sufficient to form the required amount of active materials.

Description

니켈전극 제조방법Nickel Electrode Manufacturing Method

본 발명은 니켈전극 제조방법에 관한 것으로서, 좀 더 상세하게는 알칼리수용액을 전해질로 사용하는 니켈-아연전지, 니켈-카드륨전지등의 알칼리수용액 2차전지의 제조에 있어서 특히, 니켈수산화물을 활물질로 사용하는 니켈전극의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a nickel electrode, and more particularly, in the manufacture of an alkaline aqueous solution secondary battery such as a nickel-zinc battery or a nickel-cadmium battery using an alkaline aqueous solution as an electrolyte. It relates to a method for producing a nickel electrode used as.

니켈수산화물을 활물질로 사용하는 니켈전극은 니켈수산화물이 갖는 우수한 전기화학적 특성으로 인하여 오래 전부터 널리 이용되고 있다. 이러한 니켈전극을 제조하는 종래의 방법으로는 스폰지형태의 니켈 포옴(foam)에 수산화니켈을 직접 주입하여 만드는 페이스트(paste)식의 제조방법, 니켈분말을 성형하여 다공성 금속기판으로 소결한 뒤 전기화학적, 또는 화학적 반응에 의해 기공내에 수산화니켈 활물질을 형성시켜 주는 소결식 전극제조법 등이 주로 이용되고 있다. 이중에서 화학적 함침방법으로 전극을 제조하는 경우에는 활물질을 형성시키는 과정에서 화학반응에 의하여 다공성 니켈극판에 부식이 발생, 극판의 강도가 저하되고, 전극의 용량변화 등과 같은 전기화학적 특성도 변화되어 전극으로서 사용될 경우 전지특성에 악영향을 초래하는 문제점이 있었다. 특히, 기공도가 80% 이상으로 높은 다공성 니켈기판을 사용하는 경우에 이의 영향은 심각하여 함침과정에서 부식에 대한 적절한 제어가 요구되었다.Nickel electrodes using nickel hydroxide as an active material have been widely used for a long time because of the excellent electrochemical properties of nickel hydroxide. Conventional methods for manufacturing such nickel electrodes include a paste-type manufacturing method made by directly injecting nickel hydroxide into a sponge-type nickel foam, and forming a nickel powder, followed by sintering into a porous metal substrate, followed by electrochemical Or a sintered electrode manufacturing method for forming a nickel hydroxide active material in pores by chemical reaction is mainly used. In the case of manufacturing the electrode by the chemical impregnation method, the corrosion of the porous nickel plate caused by the chemical reaction in the process of forming the active material, the strength of the plate is reduced, the electrochemical characteristics such as the change of the capacity of the electrode is also changed When used as a battery, there was a problem of adversely affecting battery characteristics. In particular, when a porous nickel substrate having a porosity of 80% or more is used, its effect is severe and proper control of corrosion during the impregnation process is required.

알칼리축전지용 니켈전극을 제조하는데 있어 함침방법을 사용하는 경우에는 공정중에 발생하는 다공성 니켈기판의 부식을 제어하기 위하여 미합중국 특허 제 4863484호 및 제 4554056호에 기재된 바와같이 다양한 형태의 시도가 이루어져 있다. 특히, 전기화학적 방법을 도입하는 경우에 부식의 영향은 어느정도 줄일 수 있었지만, 양산공정에의 적용이 어렵고, 공정조건을 관리하기가 매우 어려우므로 실용화하기 어렵다는 문제점이 있었다. 반면, 화학적 방법에 의한 함침과정을 거치는 경우에는 사용하는 반응 용액의 pH, 농도, 온도 및 시간등을 조절하여 다공성 니켈기판의 부식을 제어하려는 시도가 많이 이루어지고 있다. 그러나, 다공성 니켈기판의 기공도가 80% 이상으로 큰 것을 사용하는 경우에는 상기와 같은 제어만으로는 효과적인 부식억제가 불가능하여 부식에 의한 전극의 기계적 특성저하 및 싸이클 수명저하등의 문제점이 있었다. 특히, 화학함침법을 사용하여 다공성의 니켈기판에 수산화니켈 활물질을 형성시키는 경우에는 반응용액 및 결정구조의 특성상 1회의 함침에 의하여 요구되는 충분한 양의 활물질을 형성시킬 수 없고, 수회의 반복적인 과정을 거쳐야만 하는 공정상의 특징이 있다. 이러한 반복과정에서 기판의 부식제어는 특히 중요한 항목으로, 어떻게 부식특성을 제어하는가에 따라 최종적인 전극특성이 좌우되는 특징이 있다.In the case of using the impregnation method for manufacturing nickel electrodes for alkaline storage batteries, various forms of attempts have been made as described in US Pat. Nos. 4863484 and 4554056 to control corrosion of porous nickel substrates generated during the process. In particular, when the electrochemical method is introduced, the effect of corrosion can be reduced to some extent, but there is a problem in that it is difficult to apply to a mass production process and it is difficult to put practical use because it is very difficult to manage process conditions. On the other hand, in the case of the impregnation process by a chemical method, many attempts to control the corrosion of the porous nickel substrate by adjusting the pH, concentration, temperature and time of the reaction solution to be used. However, in the case where the porosity of the porous nickel substrate is larger than 80%, effective corrosion inhibition is not possible only by the above control, which causes problems such as deterioration of mechanical properties of the electrode and cycle life. In particular, when the nickel hydroxide active material is formed on the porous nickel substrate by chemical impregnation, it is impossible to form a sufficient amount of the active material required by one impregnation due to the characteristics of the reaction solution and the crystal structure. There are process features that must go through. Corrosion control of the substrate is a particularly important item in this iteration process. The final electrode characteristics depend on how the corrosion characteristics are controlled.

따라서, 본 발명의 목적은 상술한 문제점을 해결하기 위하여 화학함침방법에 의한 니켈전극 제조방법에 있어서, 특히 80% 이상의 기공도를 갖는 다공성 니켈기판을 사용하는 경우에 함침과정에서의 부식을 억제시키기 위하여 첫번째 함침시간을 짧게 하므로써 최상의 특성이 발현되는 니켈전극 제조방법을 제공하는데 있다.Accordingly, an object of the present invention is to suppress the corrosion during the impregnation process in the method of manufacturing a nickel electrode by the chemical impregnation method, particularly in the case of using a porous nickel substrate having a porosity of 80% or more in order to solve the above problems. In order to provide a method for producing a nickel electrode that exhibits the best properties by shortening the first impregnation time.

상기 목적을 달성하기 위한 본 발명의 니켈전극 제조방법은 다공도가 80% 이상인 니켈기판에 화학함침법으로 활물질을 형성시키는 니켈기판 제조방법에 있어서, (a) 5M이상의 Ni(NO3)2·6H2O 수용액에서 다공성 니켈기판의 부식을 가능한 억제시키기 위하여 침적시간이 짧은 최초 함침공정 단계, (b) 5M이상의 Ni(NO3)2· 6H2O수용액에서 요구되는 양만큼의 충분한 활물질을 형성시키기 위하여 침적시간을 충분히 유지시키는 2회째 이상의 함침공정 단계로 이루어진다.Nickel electrode manufacturing method of the present invention for achieving the above object is a nickel substrate manufacturing method for forming an active material on the nickel substrate having a porosity of 80% or more by chemical impregnation, (a) Ni (NO 3 ) 2 · 6H of 5M or more Initial impregnation process step with a short deposition time in order to possibly inhibit corrosion of the porous nickel substrate in a 2 O aqueous solution, (b) to form a sufficient active material as required in an aqueous solution of Ni (NO 3 ) 2 · 6H 2 O over 5 M In order to sufficiently maintain the deposition time, the second or more impregnation process steps are performed.

이하, 본 발명의 구성을 좀 더 구체적으로 살펴보면, 다음과 같다.Hereinafter, the configuration of the present invention in more detail, as follows.

본 발명에 따른 80% 이상의 기공도를 갖는 다공성 니켈기판을 사용하여 함침방법에 의한 니켈전극을 제조하는데 있어서, 특히 화학함침방법에 의하여 다공성 니켈기판의 기공에 수산화니켈 활물질을 형성시키는 니켈전극 제조방법은 기본적으로 하기 (a), (b)단계로 이루어 지며, 이후 수회의 (b)단계가 반복되는 단계로 더 이루어진다.In manufacturing a nickel electrode by the impregnation method using a porous nickel substrate having a porosity of 80% or more according to the present invention, in particular, a nickel electrode active method for forming a nickel hydroxide active material in the pores of the porous nickel substrate by a chemical impregnation method Is basically made up of the following steps (a) and (b), and then further includes a step in which the steps (b) are repeated several times.

(a)단계는 5M이상의 Ni(NO3)2· 6H2O 수용액에서 다공성 니켈기판의 부식을 억제시키기 위하여 침적시간이 짧은 최초 함침공정 단계로서, 일반적으로 다공성니켈기판에 수산화니켈 활물질을 형성시킬 때 나타나는 반응은 우선 적절한 조건으로 제어된 질산니켈수용액에 다공성 니켈기판을 침적, 적절한 시간만큼 유지시킨 뒤 꺼내어 KOH용액과 화학반응시키므로써 다공성 니켈기판의 기공내에 존재하는 질산니켈과 KOH가 반응하여 수산화니켈 활물질이 형성되게 된다. 이러한 반응을 하기 제 1식에 표현하였다.Step (a) is an initial impregnation process step with a short deposition time in order to suppress corrosion of the porous nickel substrate in an aqueous solution of Ni (NO 3 ) 2 · 6H 2 O of 5 M or more. Generally, a nickel hydroxide active material is formed on the porous nickel substrate. The reaction occurs when the nickel nitrate solution is controlled to the appropriate conditions and the porous nickel substrate is deposited and maintained for an appropriate time, and then taken out and chemically reacted with the KOH solution. Nickel active material is formed. This reaction is expressed in the following formula.

이러한 반응은 질산니켈염과 수산화니켈의 밀도차에 의해 1회의 조작으로 원하는 만큼의 활물질을 형성시킬 수 없고 여러차례의 반복적인 과정을 실시하므로써 요구되는 양의 활물질을 형성시킬 수 있다. 반면 공정의 앞부분인 질산니켈수용액에 다공성 니켈기판을 침적시켜 놓는 과정에서 상기 제 1식에 앞서 니켈기판과 질산염 용액사이에 하기 제 2식과 같은 부식반응이 우선적으로 발생, 기판의 니켈 일부가 부식되어 일부는 탈락하고, 나머지는 제 1식에서와 같이 수산화니켈을 형성하게 된다.This reaction can not form as many active materials as desired by one operation due to the difference in density of nickel nitrate salt and nickel hydroxide, and can form the required amount of active material by performing a plurality of repetitive processes. On the other hand, in the process of depositing the porous nickel substrate in the nickel nitrate solution, which is the first part of the process, a corrosion reaction such as the following equation 2 occurs preferentially between the nickel substrate and the nitrate solution prior to the first equation, and the nickel part of the substrate is corroded. Some are eliminated and others form nickel hydroxide as in the first equation.

이러한 부식반응은 특히 화학함침과정의 첫회 과정에서 현저하게 발생하므로 이 과정이 전극의 기계적 특성을 지배하게 된다. 이렇게 부식 및 부식으로 인한 활물질의 형성이 이루어진 후 KOH와의 반응으로 활물질을 형성시키는 과정을 거치게 된다. 즉, 함침과정으로 활물질을 형성하는 과정은 기계적 강도저하를 유발시키는부식과정과 활물질 형성의 증대를 목적으로 하는 반응으로 나눌 수 있는데, 이중에서도 부식반응을 최소화시키는 것이 중요한 역할을 하게 된다. 따라서, 이러한 화학함침과정중에서 발생하는 다공성 니켈기판의 부식을 가능한 한 억제하기 위하여 니켈기판을 5M이상의 Ni(NO3)2· 6H2O수용액에서 3-30분 침적시킨 후 알칼리용액에서 반응시키고, 수세/건조시키는 함침단계를 거치므로써 상기 식에서와 같은 부식반응을 최대한 억제한다. 이때, Ni(NO3)2· 6H2O수용액의 농도는 반응속도의 저하를 방지하기 위하여 5M이상이 되어야 하며, 바람직하기로는 5.2M - 6M이고, 니켈기판의 침적시간은 다공성 니켈기판의 기공내에 질산염이 충분히 충진될 정도로 3-30분이 적절하며 3분보다 시간이 짧아지면 충분한 반응이 이루어지지 못하게 되고 30분보다 침적시간이 길어지면 부식반응이 급속히 진행하게 되므로 바람직하지 못하다.This corrosion reaction is particularly pronounced during the first stage of the chemical impregnation process, which governs the mechanical properties of the electrode. Thus, after the formation of the active material due to corrosion and corrosion is subjected to the process of forming the active material by reaction with KOH. That is, the process of forming the active material by the impregnation process can be divided into a corrosion process that causes a decrease in mechanical strength and a reaction for the purpose of increasing the active material formation, of which the minimization of the corrosion reaction plays an important role. Therefore, in order to suppress the corrosion of the porous nickel substrate generated during the chemical impregnation process as much as possible, the nickel substrate was immersed in an Ni (NO 3 ) 2 · 6H 2 O aqueous solution of 5 M or more for 3-30 minutes and then reacted in an alkaline solution. The impregnation step of washing / drying minimizes the corrosion reaction as in the above formula. At this time, the concentration of the aqueous solution of Ni (NO 3 ) 2 · 6H 2 O should be 5M or more in order to prevent a decrease in the reaction rate, preferably 5.2M-6M, the deposition time of the nickel substrate is a pore of the porous nickel substrate 3-30 minutes is appropriate enough to sufficiently fill the nitrates, and if the time is shorter than 3 minutes, the reaction is not sufficient, and if the deposition time is longer than 30 minutes, the corrosion reaction proceeds rapidly, which is not preferable.

(b)단계는 5M이상의 Ni(NO3)2· 6H2O수용액에서 요구되는 양만큼의 충분한 활물질을 형성시키기 위하여 침적시간을 충분히 유지시키는 2회째 이상의 함침공정 단계로서, 5M이상의 Ni(NO3)2·6H2O수용액에서 통상적인 침적시간으로 침적시킨 후 건조시켜 알칼리 수용액에서 반응시키고, 수세/건조시킨다.Step (b) is the second or more impregnation process steps to maintain sufficient deposition time in order to form a sufficient active material in an amount of 5 M or more Ni (NO 3 ) 2 · 6H 2 O aqueous solution, Ni (NO 3) ) 2 .6H 2 O Aqueous solution was immersed in the usual immersion time, dried and reacted in an aqueous alkali solution, washed with water and dried.

또한, 충분한 활물질이 충진되도록 수회의 (b)단계를 더 가질 수 있다.In addition, it may further have several steps (b) to fill a sufficient active material.

따라서, 본 발명에 따른 화학함침법에 의한 니켈전극 제조방법은 수회 반복하는 함침과정의 유지시간을 조절, 첫회째의 함침과정은 짧게 하고, 2회째 이후의 함침과정은 장시간 유지시켜 주므로써 특히, 첫회의 함침과정에서 많이 발생되는 부식을 억제하고, 다공성기판의 부식으로 인한 기계적특성의 손상없이 요구되는 양만큼의 활물질을 충분히 형성시켜주므로서 이러한 방법으로 제조한 전극을 사용하여 2차전지를 제조하는 경우에 최대한의 특성을 발현할 수 있도록 구성되어 있다.Therefore, the method of manufacturing the nickel electrode by the chemical impregnation method according to the present invention controls the holding time of the impregnation process repeated several times, the first impregnation process is shortened, and the second impregnation process is maintained for a long time, in particular, The secondary battery is manufactured by using the electrode manufactured in this way by suppressing the corrosion generated during the first impregnation process and sufficiently forming the required amount of active material without damaging the mechanical properties due to the corrosion of the porous substrate. It is configured to express the maximum characteristics in the case.

이하, 본 발명의 효과를 실시예 1 및 비교예 1 - 2를 통하여 좀 더 구체적으로 살펴보지만, 하기예에 본 발명의 범주가 한정되는 것은 아니다.Hereinafter, the effects of the present invention will be described in more detail through Example 1 and Comparative Examples 1-2, but the scope of the present invention is not limited to the following examples.

실시예 1Example 1

화학함침용 다공성(porous) 니켈 기판은 카르보닐(carbonyl) 니켈에서 추출한 니켈 분말을 니켈 집전체에 소결시켜서 다공도가 약 82%이고, 두께가 0.85mm이 되도록 제조하였다. 이 기판을 5.4M Ni(NO3)26H2O수용액에 15분 침적(Dipping) 시킨 후에 건조하여 알칼리 용액에서 반응시켜 수세/건조하여 1회의 함침을 실시하고, 2회부터는 5.4M Ni(NO3)2· 6H2O 수용액에서 2시간 침적후에 1회 때와 같은 함침과정을 6회까지 반복하여 니켈전극 (a)를 제조하였다.The porous nickel substrate for chemical impregnation was prepared by sintering nickel powder extracted from carbonyl nickel to a nickel current collector to have a porosity of about 82% and a thickness of 0.85 mm. The substrate was immersed in 5.4M Ni (NO 3 ) 2 6H 2 O aqueous solution for 15 minutes, dried, reacted with alkaline solution, washed with water and dried once to impregnate, and then twice from 5.4M Ni (NO). 3 ) The nickel electrode (a) was prepared by repeating the same impregnation process up to six times after 2 hours of immersion in a 2 · 6H 2 O aqueous solution.

비교예 1Comparative Example 1

최초 함침 공정조건으로서 2.5M이상의 Ni(NO3)2· 6H2O 수용액에서 30분처리하는 것을 제외하고는 실시예 1과 동일하게 하여 니켈전극 (b)를 제조하였다.Nickel electrode (b) was prepared in the same manner as in Example 1, except that 30 min treatment was performed in an Ni (NO 3 ) 2 · 6H 2 O aqueous solution of 2.5M or more as an initial impregnation process condition.

비교예 2Comparative Example 2

최초 함침 공정조건으로서 4.0M N2H 수용액에서 60분간 처리한 것을 제외하고는 실시예 1과 동일하게 하여 니켈전극 (c)를 제조하였다.A nickel electrode (c) was prepared in the same manner as in Example 1, except that 60 min was treated in 4.0MN 2 H aqueous solution as the initial impregnation process conditions.

이와같이 제조한 니켈전극 (a), (b), (c)를 기계적 강도측정장치인 유니버셜 테스터(universal Tester)로 측정하여 니켈 기판의 부식량에 대한 기판의 강도변화를 제 1도에 도시하였다.The nickel electrodes (a), (b), and (c) thus prepared were measured by a universal tester, which is a mechanical strength measuring device, to show the change in strength of the substrate with respect to the amount of corrosion of the nickel substrate.

제 1도에서 알수 있는 바와 같이 본 발명의 비교예 2에 따른 전극 (c)은 기판의 강도가 거의 0에 가까웠으며 비교예 1에 따른 전극(b)은 기판의 강도가 연속적인 진동을 계속 받는 전기자동차용으로는 부적당하다. 그러나, 본 발명의 실시예 1에 따른 전극(a)은 기판의 강도가 충분하여 전기자동차용으로 적당함을 알 수 있다.As can be seen in FIG. 1, the electrode (c) according to Comparative Example 2 of the present invention had a strength close to zero of the substrate, and the electrode (b) according to Comparative Example 1 was subjected to continuous vibration of the substrate. Not suitable for electric vehicles. However, it can be seen that the electrode (a) according to the first embodiment of the present invention has a sufficient strength of the substrate and is suitable for electric vehicles.

그러므로, 본 발명의 화학함침법에 의한 니켈전극 제조방법은 80% 이상의 기공도를 갖는 다공성 니켈기판을 이용하여 알칼리 축전지용 니켈전극을 제조하는 경우 다음과 같은 효과가 있다.Therefore, the nickel electrode manufacturing method according to the chemical impregnation method of the present invention has the following effects when manufacturing a nickel electrode for an alkaline storage battery using a porous nickel substrate having a porosity of 80% or more.

첫째, 함침공정에서 발생하기 쉬운 다공성 니켈기판의 부식을 최대한 억제시키고, 전극의 기계적 강도를 유지시킬 수 있으므로 전지의 내구성을 증가시킨다.First, since the corrosion of the porous nickel substrate, which is likely to occur in the impregnation process, can be suppressed to the maximum and the mechanical strength of the electrode can be maintained, the durability of the battery is increased.

둘째, 전극의 기계적 특성의 저하없이 요구되는 양의 활물질을 형성시킬 수 있으므로 싸이클수명이 보다 향상된 전극을 제조할 수 있다.Second, since the active material can be formed in the required amount without deterioration of the mechanical properties of the electrode, it is possible to manufacture an electrode with improved cycle life.

세째, 제조공정상 새로운 과정을 추가하는 것이 아니라 기존공정의 조작방법을 간단히 변화시켜 적용할 수 있으므로 제조가 용이하고 양산 적용이 간편하다.Third, it is easy to manufacture and easy to mass-produce because it can be applied simply by changing the operation method of the existing process rather than adding a new process in the manufacturing process.

네째, 초기의 함침시간을 단축시키므로써 전체적인 전극제조기간을 단축시킬 수 있고, 공정의 효율화를 꾀할 수 있으며, 생산성 향상이 가능하다.Fourth, by shortening the initial impregnation time can shorten the overall electrode manufacturing period, the efficiency of the process, it is possible to improve the productivity.

제 1 도는 본 발명과 종래기술에 따른 니켈기판의 부식량에 대한 니켈 기판의 강도변화를 비교 도시한 그래프.1 is a graph showing the change in strength of a nickel substrate with respect to the amount of corrosion of the nickel substrate according to the present invention and the prior art.

Claims (2)

다공도가 80% 이상인 니켈기판에 화학함침법으로 활물질을 형성시키는 니켈기판 제조방법에 있어서, (a) 5M이상의 Ni(NO3)2· 6H2O수용액에서 다공성 니켈기판의 부식을 가능한 억제시키기 위하여 침적시간이 짧은 최초 함침공정 단계, (b) 5M이상의 Ni(NO3)2·6H2O수용액에서 요구되는 양만큼의 충분한 활물질을 형성시키기 위하여 침적시간을 충분히 유지시키는 2회째 이상의 함침공정 단계로 이루어지는 것을 특징으로 하는 니켈전극 제조방법.In the method of manufacturing a nickel substrate in which the active material is formed on a nickel substrate having a porosity of 80% or more by chemical impregnation, (a) to inhibit the corrosion of the porous nickel substrate in a Ni (NO 3 ) 2 · 6H 2 O aqueous solution of 5 M or more. Initial impregnation process step with short deposition time, (b) at least the second impregnation process step to maintain sufficient deposition time to form sufficient active material in the amount required in Ni (NO 3 ) 2 .6H 2 O solution of 5M or more. Nickel electrode production method characterized in that made. 제 1항에 있어서, 상기 최초함침시인 (a)단계의 침적시간이 3~30분임을 특징으로 하는 니켈전극 제조방법.The method of claim 1, wherein the deposition time of the first impregnation step (a) is 3 to 30 minutes.
KR1019950006583A 1995-03-27 1995-03-27 Process for producing nickel electrode KR100362210B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950006583A KR100362210B1 (en) 1995-03-27 1995-03-27 Process for producing nickel electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950006583A KR100362210B1 (en) 1995-03-27 1995-03-27 Process for producing nickel electrode

Publications (2)

Publication Number Publication Date
KR960036172A KR960036172A (en) 1996-10-28
KR100362210B1 true KR100362210B1 (en) 2003-03-10

Family

ID=37490727

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950006583A KR100362210B1 (en) 1995-03-27 1995-03-27 Process for producing nickel electrode

Country Status (1)

Country Link
KR (1) KR100362210B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170167A (en) * 1984-02-13 1985-09-03 Japan Storage Battery Co Ltd Manufacturing method for alkaline cell electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170167A (en) * 1984-02-13 1985-09-03 Japan Storage Battery Co Ltd Manufacturing method for alkaline cell electrode

Also Published As

Publication number Publication date
KR960036172A (en) 1996-10-28

Similar Documents

Publication Publication Date Title
US3653967A (en) Positive electrode for use in nickel cadmium cells and the method for producing same and products utilizing same
KR100362210B1 (en) Process for producing nickel electrode
US4863484A (en) Process for producing battery electrodes by electrochemical reduction
EP0878858B1 (en) Electrode for alkaline storage battery and method for manufacturing the same
US3779810A (en) Method of making a nickel positive electrode for an alkaline battery
US4032697A (en) Methods of producing electrodes for alkaline batteries
KR100328678B1 (en) Preparation method of nickel electrode for alkali storage battery
US4292143A (en) Method of making sintered plaque nickel electrodes
US3533842A (en) Process for impregnating sintered nickel plaques
JP2639916B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JP2567672B2 (en) Sintered cadmium negative electrode for alkaline storage battery and method for producing the same
JPH0589876A (en) Manufacture of ni electrode for alkaline storage battery
JP3679653B2 (en) Method for producing alkaline storage battery
JPS6290864A (en) Manufacture of nickel hydroxide electrode for alkaline storage battery
JP3127725B2 (en) Sintered substrate for alkaline storage battery and method for producing the same
JPH0410181B2 (en)
JPS6074262A (en) Manufacture of nickel electrode
JPS6043630B2 (en) Manufacturing method for electrode plates for nickel-cadmium storage batteries
JPH04359864A (en) Non-sintering nickel positive electrode and its manufacture
JP3738171B2 (en) Method for producing sintered electrode for alkaline storage battery
JPS60225356A (en) Method of manufacturing nickel positive electrode for alkaline storage battery
JPH0475257A (en) Manufacture of nickel hydroxide electrode for alkaline storage battery
JPS63314763A (en) Manufacture of nickel hydroxide electrode for alkaline storage battery
JPH1173953A (en) Nickel electrode for alkaline storage battery and its manufacture
JPS62281268A (en) Manufacture of cathode plate for alkaline storage battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20081106

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee