JPH0773871A - Bipolar plate for lead-acid battery - Google Patents

Bipolar plate for lead-acid battery

Info

Publication number
JPH0773871A
JPH0773871A JP5240746A JP24074693A JPH0773871A JP H0773871 A JPH0773871 A JP H0773871A JP 5240746 A JP5240746 A JP 5240746A JP 24074693 A JP24074693 A JP 24074693A JP H0773871 A JPH0773871 A JP H0773871A
Authority
JP
Japan
Prior art keywords
lead
layer
pbo
active material
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5240746A
Other languages
Japanese (ja)
Inventor
Takao Omae
孝夫 大前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP5240746A priority Critical patent/JPH0773871A/en
Publication of JPH0773871A publication Critical patent/JPH0773871A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To lengthen the life of a lead-acid battery by using a bipolar plate in which a conductive oxide layer and a dense PbO2 layer are formed on a positive active material side of a base and a lead layer on a negative active material side. CONSTITUTION:A bipolar plate for lead-acid battery is manufactured by forming a conductive oxide layer 2, a dense alpha-PbO2 layer 3, a beta-PbO2 layer 4 on a positive active material 5 side of a base made of a corrosion resistant metal such as Ti, and a lead or lead alloy layer 6 on a negative active material 7 side. The dense PbO2 layer preferably has a ratio of micropores whose pore size is 10mum or less to the total volume of 10% or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、バイポーラ式鉛蓄電池
用極板の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved electrode plate for a bipolar lead acid battery.

【0002】[0002]

【従来の技術とその課題】従来の一般的な鉛蓄電池は、
正、負極板およびセパレータを重ね合わせ、極板どうし
を接続するためのストラップおよびストラップと一体に
なっているセル間接続柱を形成して極板群とし、電槽に
挿入した後、隣接したセルのセル間接続柱どうしを電気
抵抗溶接等により溶接し、各セルを直列に接続して所定
電圧の電池としている。そのため、極板どうしを接続す
るためのストラップやセル間接続柱などの部品が必要と
なり、部品点数や工程数が多くなる、内部抵抗が大き
い、軽量化や容積効率の向上が困難、といったような問
題を有していた。このような問題を解決する一つの方法
として、バイポーラ式鉛蓄電池が提案されている。
2. Description of the Related Art Conventional lead-acid batteries are
After stacking the positive and negative plates and separators, forming a strap for connecting the electrode plates and the inter-cell connecting column that is integrated with the strap into an electrode plate group and inserting it into the battery case The inter-cell connecting columns are welded by electric resistance welding or the like, and the cells are connected in series to form a battery having a predetermined voltage. Therefore, parts such as straps for connecting the electrode plates and connecting pillars between cells are required, resulting in a large number of parts and processes, large internal resistance, difficulty in weight reduction and improvement in volumetric efficiency. Had a problem. A bipolar lead-acid battery has been proposed as one method for solving such a problem.

【0003】バイポーラ式鉛蓄電池は、バイポーラ極板
とセパレータを順次積層して構成される。バイポーラ極
板に使用される基体は、セル間の電気的接続、電解液の
隔離および活物質の保持といった機能をもっている。従
って、バイポーラ式鉛蓄電池では、従来の鉛蓄電池に用
いられるストラップやセル間接続柱などの部品がなくな
るため、内部抵抗が低くかつ高い容積効率を得ることが
できる。
A bipolar lead acid battery is constructed by sequentially laminating a bipolar electrode plate and a separator. The substrate used for the bipolar electrode plate has functions of electrical connection between cells, isolation of an electrolytic solution, and retention of an active material. Therefore, in the bipolar lead-acid battery, parts such as straps and inter-cell connecting columns used in the conventional lead-acid battery are eliminated, so that the internal resistance is low and high volume efficiency can be obtained.

【0004】バイポーラ極板の基体には、現在のところ
鉛または鉛合金のシートが用いられている。しかし、鉛
合金の比重は約11g/cm3 と大きいために電池重量
が重くなってしまうという欠点がある。さらに鉛合金は
正極電位におかれた場合、徐々に鉛が二酸化鉛となる反
応が起こり腐食される。バイポーラ極板に用いている鉛
または鉛合金シートが腐食され基体を貫通した場合、基
体両面に形成した正極および負極活物質が短絡し、バイ
ポーラ極板としての機能は全く損なわれてしまう。この
ような理由から、軽量かつ耐食性に優れたバイポーラ極
板が求められている。
At present, a lead or lead alloy sheet is used as the base of the bipolar plate. However, since the specific gravity of lead alloy is as large as about 11 g / cm 3 , there is a drawback that the weight of the battery becomes heavy. Furthermore, when the lead alloy is placed at the positive electrode potential, the reaction of gradually converting lead to lead dioxide occurs and is corroded. When the lead or lead alloy sheet used for the bipolar electrode plate is corroded and penetrates the substrate, the positive electrode and negative electrode active materials formed on both sides of the substrate are short-circuited, and the function as the bipolar electrode plate is completely lost. For these reasons, there is a demand for a bipolar electrode plate that is lightweight and has excellent corrosion resistance.

【0005】さらに現行のバイポーラ極板は、従来のペ
ースト式極板のように格子体に活物質を充填して活物質
の保持を行う方法と異なり、平坦なシートの両表面に活
物質を塗布するだけの構造であるため、充放電により活
物質の体積が変化すると、活物質の脱落や活物質と基体
との接触不良などが生じ易く、短寿命となることがあっ
た。
Further, the current bipolar electrode plate is different from the conventional paste type electrode plate in which the active material is held in the lattice by filling the active material on the both surfaces of the flat sheet. However, if the volume of the active material changes due to charge and discharge, the active material may easily come off, the contact between the active material and the substrate may be poor, and the life may be shortened.

【0006】[0006]

【課題を解決するための手段】本発明は、上述したバイ
ポーラ極板の問題点を解決するものであり、それは耐食
性金属からなる基体を用い、この片面に正極活物質、他
の面に負極活物質を形成してなる鉛蓄電池用バイポーラ
極板において、該基体の正極活物質側には導電性酸化物
層および緻密なPbO2 層が形成され、該基体の負極活
物質側には鉛層または鉛合金層が形成されていることを
特徴とするものである。
The present invention is to solve the above-mentioned problems of the bipolar electrode plate, which uses a substrate made of a corrosion-resistant metal, one side of which is a positive electrode active material and the other side of which is a negative electrode active material. In a lead-acid battery bipolar plate formed of a substance, a conductive oxide layer and a dense PbO 2 layer are formed on the positive electrode active material side of the substrate, and a lead layer or a dense PbO 2 layer is formed on the negative electrode active material side of the substrate. It is characterized in that a lead alloy layer is formed.

【0007】耐食性金属としては、チタン、ジルコニウ
ム、ニオブ、タンタル、タングステンまたはこれらの基
合金が、鉛合金よりも軽く、耐食性も優れているため使
用可能である。
As the corrosion-resistant metal, titanium, zirconium, niobium, tantalum, tungsten, or a base alloy thereof can be used because it is lighter than the lead alloy and has excellent corrosion resistance.

【0008】バイポーラ極板の構造は、耐食性金属から
なる基体の正極活物質側に導電性酸化物層および緻密な
PbO2 層を形成しその上に正極活物質を設け、また負
極活物質側に鉛または鉛合金層を形成しその上に負極活
物質を設けたものである。この作製方法を、基体にチタ
ンを用いた場合を例にとり順を追って説明する。
The structure of the bipolar electrode plate is such that a conductive oxide layer and a dense PbO 2 layer are formed on the positive electrode active material side of a substrate made of a corrosion-resistant metal, the positive electrode active material is provided thereon, and the negative electrode active material side is provided. A lead or lead alloy layer is formed and a negative electrode active material is provided thereon. This manufacturing method will be described step by step using the case where titanium is used for the substrate as an example.

【0009】チタン基体の表面には、空気中で不働態被
膜が形成しているために、前処理として不働態被膜を除
去する必要がある。除去の方法として例えば、ワイヤー
ブラシ等で基体表面を研磨し、次に沸騰塩酸中でエッチ
ング処理を行う方法がある。こうすることでチタン表面
の不働態被膜はほとんど除去できる。
Since the passivation film is formed on the surface of the titanium substrate in the air, it is necessary to remove the passivation film as a pretreatment. As a removing method, for example, there is a method of polishing the surface of the substrate with a wire brush or the like, and then performing an etching treatment in boiling hydrochloric acid. By doing so, almost all the passive film on the titanium surface can be removed.

【0010】ついで不働態被膜を取り除いたチタン基体
の正極活物質側となる一方の面の表面上に、導電性酸化
物層を形成する。チタンの耐食性の高さは、表面に生成
する不働態被膜に起因しているため、集電体として使用
するためには、不働態被膜にかわる被膜をチタン表面に
形成する必要がある。この被膜の役割は、チタン基体と
PbO2 層との電気的接続、およびPbO2 の酸化作用
によるチタン表面への不働態被膜形成の防止である。ス
ズ、アンチモン、チタン、タンタル、パラジウム、白金
などの酸化物は、導電性を有していることから、この被
膜として適している。
Then, a conductive oxide layer is formed on the surface of one surface of the titanium substrate from which the passivation film has been removed, which is the positive electrode active material side. Since the high corrosion resistance of titanium is due to the passivation film formed on the surface, it is necessary to form a film in place of the passivation film on the titanium surface in order to use it as a current collector. The role of this coating is to electrically connect the titanium substrate and the PbO 2 layer and to prevent the formation of a passive coating on the titanium surface due to the oxidation action of PbO 2 . Oxides of tin, antimony, titanium, tantalum, palladium, platinum and the like are suitable for this film because they have conductivity.

【0011】酸化物被膜の種類は単独でもかまわない
が、他種の金属酸化物をドープしたり、異なる種類の酸
化物を重ね合わせたりすることで、導電性をあげること
ができる。例えば、アンチモンをドープしたスズ酸化
物、タンタルとチタンとの複合酸化物、スズ酸化物層と
パラジウム酸化物層とをかさねたものなどが使用でき
る。
The type of the oxide film may be a single type, but the conductivity can be increased by doping another type of metal oxide or superposing different types of oxides. For example, tin oxide doped with antimony, a composite oxide of tantalum and titanium, a tin oxide layer and a palladium oxide layer overlaid, and the like can be used.

【0012】酸化物被膜の厚みは0.1から10μm程
度、好ましくは1μm程度が適当である。厚みが薄すぎ
ると不働態被膜が生成し易くなり、厚すぎると導電性が
低下するためである。
The thickness of the oxide film is about 0.1 to 10 μm, preferably about 1 μm. This is because if the thickness is too thin, a passive film is likely to be formed, and if it is too thick, the conductivity decreases.

【0013】酸化物被膜は、熱分解法などにより作製で
きる。例えば、四塩化スズと三塩化アンチモンを所定量
だけプロパノール等の溶媒に溶かした溶液をチタン基体
に塗布し、500℃程度で焼成することで、チタン表面
にアンチモンをドープしたスズ酸化物(SnO2 −Sb
2 3 )が形成される。酸化物層の厚みは、溶液塗布・
焼成の回数によって制御できる。
The oxide film can be produced by a thermal decomposition method or the like. For example, a solution obtained by dissolving tin tetrachloride and antimony trichloride in a predetermined amount in a solvent such as propanol is applied to a titanium substrate and baked at about 500 ° C., so that the surface of titanium is doped with antimony tin oxide (SnO 2 -Sb
2 O 3 ) is formed. The thickness of the oxide layer is
It can be controlled by the number of firings.

【0014】つぎに、導電性酸化物層の上にPbO2
を形成する。PbO2 層の形成は、PbO2 粉末とバイ
ンダーとを混合したものをプレスして形成する方法や電
着により形成する方法等があるが、電着で行う方が一般
的である。PbO2 の結晶構造にはα型とβ型がある。
α型は、β型に比べて劣化し易いが電着歪が少ないとい
う特徴をもつ。一方β型は、劣化しにくいが電着歪が大
きいという特徴をもつ。電着歪があると電着層にクラッ
クが入りやすくなり、電極が劣化しやすくなる。
Next, a PbO 2 layer is formed on the conductive oxide layer. The PbO 2 layer can be formed by pressing a mixture of PbO 2 powder and a binder, forming by electrodeposition, etc., but the electrodeposition is generally performed. The crystal structure of PbO 2 includes α type and β type.
The α type is more prone to deterioration than the β type, but has a characteristic of less electrodeposition strain. On the other hand, the β type has a characteristic that it is less likely to deteriorate but has a large electrodeposition strain. If there is electrodeposition strain, the electrodeposition layer is likely to crack, and the electrode is likely to deteriorate.

【0015】α−PbO2 の電着は、鉛イオンを含んだ
アルカリ浴中で通電することによって行うことができ
る。β−PbO2 の電着は、例えば硝酸鉛浴中で通電す
ることによって行うことができる。
The electrodeposition of α-PbO 2 can be carried out by applying an electric current in an alkaline bath containing lead ions. The electrodeposition of β-PbO 2 can be performed, for example, by energizing in a lead nitrate bath.

【0016】PbO2 層に求められる機能としては、電
子伝導性を有しかつ電気化学的に不活性であることであ
る。つまり鉛蓄電池正極において、活物質が放電した場
合でも電着PbO2 層は放電されないことが要求され
る。電着PbO2 層が放電するとPbO2 よりも分子容
の大きなPbSO4 が形成されるため、電極が破壊され
てしまう。
The function required for the PbO 2 layer is that it has electronic conductivity and is electrochemically inactive. That is, in the positive electrode of the lead storage battery, it is required that the electrodeposited PbO 2 layer is not discharged even when the active material is discharged. When the electrodeposited PbO 2 layer is discharged, PbSO 4 having a larger molecular volume than PbO 2 is formed and the electrode is destroyed.

【0017】PbO2 層の反応性は、PbO2 の結晶化
度や多孔度に影響される。結晶化度は電着により作製し
た場合にはほぼ一定であると考えられる。そこで、多孔
度と反応性との関係を調査した。電着時の電流密度、溶
液濃度、温度等を変えることで各種多孔度のα,β−P
bO2 をスズ酸化物被膜を形成したチタン基体上に作製
し電極とした。一般に電流密度を大きくしたり、溶液濃
度を薄くしたり、温度を下げたりすることで、電析のし
かたが不均一になり多孔度は大きくなる。それぞれのP
bO2 層の厚みは約100μmとした。
The reactivity of the PbO 2 layer is affected by the crystallinity and porosity of PbO 2 . The crystallinity is considered to be almost constant when it is produced by electrodeposition. Therefore, the relationship between porosity and reactivity was investigated. Α, β-P of various porosities can be obtained by changing the current density, solution concentration, temperature, etc. during electrodeposition.
bO 2 was prepared on a titanium substrate on which a tin oxide film was formed, and used as an electrode. Generally, by increasing the current density, decreasing the solution concentration, or lowering the temperature, the electrodeposition becomes non-uniform and the porosity increases. Each P
The thickness of the bO 2 layer was about 100 μm.

【0018】これらの電極について、電位走査を繰り返
し、反応性を調べた。電位走査の範囲は、鉛蓄電池正極
が充放電時に示す電位と同じになるようにしているた
め、鉛蓄電池の充放電サイクル試験をシミュレートした
ものとみなすことができる。反応性の評価は、500サ
イクル目の還元側の電気量の大きさにより行った。還元
電気量が大きいほど、PbO2 がPbSO4 へと変化す
る反応が多い、すなわち放電されやすいといえる。試験
条件を次に示した。
With respect to these electrodes, the potential scanning was repeated to examine the reactivity. Since the range of potential scanning is set to be the same as the potential of the positive electrode of the lead storage battery during charging and discharging, it can be regarded as simulating the charge / discharge cycle test of the lead storage battery. The reactivity was evaluated by the amount of electricity on the reducing side at the 500th cycle. It can be said that as the amount of reduced electricity increases, the number of reactions in which PbO 2 changes to PbSO 4 increases, that is, discharge is more likely. The test conditions are shown below.

【0019】試験極 :チタン電極 対極 :純鉛板 参照極 :Hg/Hg2 SO4 走査範囲:0.6−1.8V 走査速度:1V/分 電解液 :比重1.30H2 SO4 温度 :25℃ 縦軸に反応性を示す指標として500サイクル目の還元
電気量を、横軸に多孔度をとったものを図1に示す。多
孔度は、その体積に占める直径10μm以下の細孔の割
合を示している。α,β−PbO2 ともに多孔度が10
%以上になると反応性が急激に大きくなり、α−PbO
2 では20%以上、β−PbO2 では25%以上で増加
の割合がほぼ一定となった。また、α,β−PbO2
もに10%以下では反応性が小さくその差は小さかった
が、10%以上ではα−PbO2の方が反応性が高くな
った。PbO2 の反応は、硫酸イオンが関与しているこ
とから硫酸イオンの拡散が起こり易いもの、つまり多孔
度の高いものほど反応性が高くなったものと思われる。
これらの結果から、α,β−PbO2 いずれも多孔度を
10%以下とすれば、反応性が低く、鉛蓄電池正極側に
用いても破壊されにくいPbO2 層が得られることがわ
かった。
Test electrode: Titanium electrode Counter electrode: Pure lead plate Reference electrode: Hg / Hg 2 SO 4 scanning range: 0.6-1.8 V Scanning speed: 1 V / min Electrolyte: Specific gravity 1.30 H 2 SO 4 Temperature: 25 ° C. The vertical axis represents the amount of reduced electricity at the 500th cycle as an index of reactivity, and the horizontal axis represents porosity. The porosity indicates the ratio of pores having a diameter of 10 μm or less in the volume. Both α and β-PbO 2 have a porosity of 10
%, The reactivity rapidly increases, and α-PbO
The increase rate was almost constant at 20% or more for 2 and 25% or more for β-PbO 2 . When both α and β-PbO 2 were 10% or less, the reactivity was small and the difference was small, but when 10% or more, α-PbO 2 was higher in reactivity. It is considered that the reaction of PbO 2 has a higher reactivity as the sulfate ion is more likely to diffuse because the sulfate ion is involved, that is, the higher the porosity.
From these results, it was found that when the porosity of both α and β-PbO 2 was 10% or less, the reactivity was low and a PbO 2 layer which was not easily broken even when used on the positive electrode side of the lead storage battery was obtained.

【0020】PbO2 層については、多孔度を10%以
下にすればα,β−PbO2 のいずれを用いてもかまわ
ないが、全体としての電着歪を低減させるために、α−
PbO2 層とβ−PbO2 とを交互に積層するのが好ま
しい。PbO2 層の厚みは、薄すぎると電極の破壊が起
こり易くなり、厚すぎると電気抵抗や内部歪が増大する
ので、α−PbO2 層の厚みは5−100μm程度、β
−PbO2 層の厚みは5−100μm程度が適当であ
る。
With respect to the PbO 2 layer, either α or β-PbO 2 may be used as long as the porosity is 10% or less, but in order to reduce the electrodeposition strain as a whole, α-
It is preferable to alternately stack PbO 2 layers and β-PbO 2 . If the thickness of the PbO 2 layer is too thin, electrode breakage easily occurs, and if it is too thick, electrical resistance and internal strain increase, so the thickness of the α-PbO 2 layer is about 5-100 μm, β
A suitable thickness of the -PbO 2 layer is about 5-100 μm.

【0021】次に、基体の負極活物質側の面に鉛層また
は鉛合金層を形成する。形成方法は熱蒸着、スパッタ、
イオンプレーティングなど物理的方法によるものや、め
っき、化学的気相成長法などの化学的方法によるものが
可能である。鉛層または鉛合金層の厚みは1−100μ
m程度が適当である。例えば、電気めっきにより鉛層を
形成する場合には、正極面をシールし、ほうふっ酸鉛浴
中で通電することにより負極面にのみ鉛めっきを行うこ
とができる。
Next, a lead layer or a lead alloy layer is formed on the surface of the substrate on the side of the negative electrode active material. The formation method is thermal evaporation, sputtering,
A physical method such as ion plating or a chemical method such as plating or chemical vapor deposition is possible. Thickness of lead layer or lead alloy layer is 1-100μ
m is suitable. For example, when a lead layer is formed by electroplating, the positive electrode surface can be sealed and the negative electrode surface can be plated with lead by energizing in a lead borofluoride bath.

【0022】このようにして作製した基体上に、鉛電池
で通常用いられているペースト状の正極・負極活物質を
それぞれの面に塗布し、化成することでバイポーラ極板
が完成する。本発明のバイポーラ極板の構造の一例を図
2に示した。1はチタンなどの耐食性金属基体、2は導
電性酸化物層、3はα−PbO2 層、4はβ−PbO2
層、5は正極活物質、6は鉛または鉛合金層、7は負極
活物質である。
A bipolar electrode plate is completed by applying a paste-like positive electrode / negative electrode active material, which is usually used in a lead battery, on each surface of the base material thus produced and forming the base material. An example of the structure of the bipolar electrode plate of the present invention is shown in FIG. 1 is a corrosion resistant metal substrate such as titanium, 2 is a conductive oxide layer, 3 is an α-PbO 2 layer, 4 is β-PbO 2
Layer 5 is a positive electrode active material, 6 is a lead or lead alloy layer, and 7 is a negative electrode active material.

【0023】図3に、バイポーラ極板用の基体の一例を
示した。これは耐食性金属のシートからなる基体1、シ
ートに機械加工によって半球状の凹凸をつけた部分であ
る凹凸部8、セル間の隔離のため樹脂などに埋設される
部分であるセル間隔離部9からなり、凹凸部の一方の面
である正極活物質充填面10には導電性酸化物層および
PbO2 層が形成してあり、もう一方の面である負極活
物質充填面11には鉛または鉛合金層が形成してある。
FIG. 3 shows an example of a substrate for a bipolar electrode plate. This is a base body 1 made of a corrosion-resistant metal sheet, an uneven portion 8 that is a portion having a hemispherical unevenness formed by machining on the sheet, and an inter-cell isolation portion 9 that is a portion that is embedded in a resin or the like to isolate cells. The conductive oxide layer and the PbO 2 layer are formed on the positive electrode active material-filled surface 10, which is one surface of the uneven portion, and the lead oxide or PbO 2 layer is formed on the other surface. A lead alloy layer is formed.

【0024】図4は直方体状の凹凸をつけた基体、図5
は波状の凹凸を付けた基体である。図3,4,5に示し
た基体は、その凹凸部に正、負極活物質が充填されるた
めに、従来の平坦なシートに活物質を塗布する構造のバ
イポーラ極板に比べ活物質の脱落や剥離が起きにくい。
また、集電部の表面積が凹凸にすることで大幅に増大す
るため、充放電時の電流密度が小さくなり活物質の利用
率向上や電圧ロス等が低下するといった特徴も有してい
る。
FIG. 4 is a base body having a rectangular parallelepiped unevenness, and FIG.
Is a substrate having wavy unevenness. Since the bases shown in FIGS. 3, 4 and 5 are filled with the positive and negative electrode active materials in the irregularities, the active material is removed more than the conventional bipolar electrode plate having a structure in which the active material is applied to a flat sheet. And peeling is less likely to occur.
Moreover, since the surface area of the current collector is greatly increased by making it uneven, the current density at the time of charging / discharging is reduced, and the utilization factor of the active material is improved and the voltage loss is also reduced.

【0025】[0025]

【実施例】JIS2種のチタンからなる縦幅50mm、
横幅50mm、厚み0.05mmのシートに、直径1m
m、高さ0.5mmの半球状の凹凸を形成した図3に示
したような基体を作製した。凹凸部の大きさは縦幅40
mm、横幅40mmとした。凹凸の形成は、直径1mm
の鋼球を等間隔に敷き詰め、その上にシートをプレスす
ることによって行った。また、比較のために鉛−カルシ
ウム−スズ合金からなる同一寸法のシートでも同様の基
体を作製した。
Example: A vertical width of 50 mm made of JIS type 2 titanium,
A sheet with a width of 50 mm and a thickness of 0.05 mm has a diameter of 1 m.
A substrate as shown in FIG. 3 in which hemispherical irregularities of m and a height of 0.5 mm were formed was produced. The size of the uneven part is 40 in width
The width was 40 mm. Concavo-convex formation is 1 mm in diameter
Steel balls were spread at equal intervals, and the sheet was pressed thereon. Also, for comparison, a similar substrate was prepared using a sheet of lead-calcium-tin alloy having the same size.

【0026】この基体をワイヤーブラシで金属光沢がで
るまで磨いた後、25%沸騰塩酸中に1時間浸せきして
エッチングを行った。
This substrate was polished with a wire brush until it had a metallic luster, and then immersed in 25% boiling hydrochloric acid for 1 hour for etching.

【0027】まず正極活物質充填面に酸化物層およびP
bO2 層の形成を行った。チタン基体上への酸化物層の
形成は、それぞれ四塩化スズ、三塩化アンチモン、四塩
化チタン、五塩化タンタルなどの溶液を、単独あるいは
混合してチタン基体上に塗布後、焼成して行う。
First, an oxide layer and P are formed on the surface filled with the positive electrode active material.
A bO 2 layer was formed. The formation of the oxide layer on the titanium substrate is carried out by coating solutions of tin tetrachloride, antimony trichloride, titanium tetrachloride, tantalum pentachloride, etc., alone or in mixture, and then baking the solutions.

【0028】アンチモンをドープしたスズ酸化物を形成
するために、四塩化スズ0.1モル、三塩化アンチモン
0.03モルおよび少量の塩酸をプロパノールに溶かし
た溶液を用いている。チタン・タンタルの複合酸化物を
形成するためには、それぞれ0.1Mの四塩化チタンと
五塩化タンタルおよび少量の塩酸をプロパノールに溶か
した溶液を用いている。
To form the antimony-doped tin oxide, a solution of 0.1 mol of tin tetrachloride, 0.03 mol of antimony trichloride and a small amount of hydrochloric acid in propanol is used. In order to form a titanium-tantalum complex oxide, a solution of 0.1 M titanium tetrachloride and tantalum pentachloride and a small amount of hydrochloric acid in propanol is used.

【0029】チタン基体をそれぞれの溶液に浸漬後、基
体を約200rpmで回転させた。こうすることで余分
な液が飛び散って、薄く均一に基体上に溶液を塗布する
ことができた。その後予備乾燥として、50℃で約1時
間放置した。この時、負極活物質充填面は耐酸性のテー
プでシールし、この面には溶液が塗布されないようにし
た。
After immersing the titanium substrate in each solution, the substrate was rotated at about 200 rpm. By doing so, the excess liquid was scattered and the solution could be applied thinly and uniformly on the substrate. Then, as preliminary drying, it was left at 50 ° C. for about 1 hour. At this time, the surface filled with the negative electrode active material was sealed with an acid resistant tape so that the solution was not applied to this surface.

【0030】焼成は次のように行った。溶液の塗布・乾
燥が終わった基体を酸化雰囲気の電気炉に入れ、140
℃で10分おいたのち500℃まで昇温し、500℃で
30分おき、その後徐冷した。140℃では水分の除
去、500℃では酸化物の生成がおこっている。酸化物
層の厚みが約1μmとなるまで、溶液塗布・焼成を数回
繰り返した。
The firing was performed as follows. The substrate on which the solution has been applied and dried is placed in an electric furnace in an oxidizing atmosphere,
After 10 minutes at 0 ° C, the temperature was raised to 500 ° C, kept at 500 ° C for 30 minutes, and then gradually cooled. Water is removed at 140 ° C, and oxides are generated at 500 ° C. Solution coating and firing were repeated several times until the thickness of the oxide layer was about 1 μm.

【0031】次に、酸化物層を形成したチタン基体上に
PbO2 層を形成した。α−PbO2 の電着は、水酸化
鉛を飽和させた4〜5Nの水酸化ナトリウム溶液中で、
温度40〜50℃、電流密度5〜10mA/cm2 で通
電して行った。β−PbO2の電着は、pHを4付近に
保った30〜40重量%の硝酸鉛溶液中で、温度70〜
80℃、電流密度50〜100mA/cm2 で通電する
ことで行った。これらの条件で形成したαおよびβ−P
bO2 は、その多孔度が10%以下となった。今回は、
αおよびβ−PbO2 層の厚みは約50μmとした。
Next, a PbO 2 layer was formed on the titanium substrate on which the oxide layer was formed. The electrodeposition of α-PbO 2 is carried out in a 4 to 5N sodium hydroxide solution saturated with lead hydroxide,
The current was applied at a temperature of 40 to 50 ° C. and a current density of 5 to 10 mA / cm 2 . The electrodeposition of β-PbO 2 was carried out at a temperature of 70 to 40 in a 30 to 40 wt% lead nitrate solution in which the pH was kept around 4.
It was performed by energizing at 80 ° C. and a current density of 50 to 100 mA / cm 2 . Α and β-P formed under these conditions
The porosity of bO 2 was 10% or less. This time,
The thickness of the α and β-PbO 2 layers was about 50 μm.

【0032】つぎに負極活物質充填面に鉛層を形成し
た。形成は電気めっきにより行った。電着浴は、ほうフ
ッ化鉛40体積%、ほうフッ化水素酸5体積%、ほう酸
2重量%、ゼラチン0.04重量%の水溶液である。正
極活物質充填面を耐食性のテープでシールし、温度40
℃、電流密度30mA/cm2 で通電し、厚み約10μ
mの鉛層を形成した。
Next, a lead layer was formed on the surface filled with the negative electrode active material. The formation was performed by electroplating. The electrodeposition bath is an aqueous solution containing 40% by volume of lead borofluoride, 5% by volume of hydrofluoric acid, 2% by weight of boric acid and 0.04% by weight of gelatin. Seal the positive electrode active material filled surface with corrosion resistant tape and
Approximately 10μ in thickness when energized at 30 ℃ / current density of 30mA / cm 2.
m lead layer was formed.

【0033】図6に示したように、凹凸が形成された基
体の酸化物層およびPbO2 層形成面に正極活物質ペー
ストを、もう一方の鉛層形成面に負極活物質ペーストを
充填してバイポーラ極板12とした。
As shown in FIG. 6, the oxide layer and the PbO 2 layer forming surface of the substrate on which the irregularities are formed are filled with the positive electrode active material paste, and the other lead layer forming surface is filled with the negative electrode active material paste. The bipolar electrode plate 12 was used.

【0034】図7、図8にバイポーラ電池を示した。図
7は凹凸を形成した基体を用いたもの、図8は凹凸の加
工をしていない平坦な基体を用いたものである。これら
は、5枚のバイポーラ極板と2枚の端極板からなり、6
セルが直列に接続された構造であり、公称電圧12V公
称容量3Ahのバイポーラ密閉式鉛蓄電池である。
A bipolar battery is shown in FIGS. FIG. 7 shows the case where a base body having irregularities is used, and FIG. 8 shows the case where a flat base body having no irregularity processing is used. These consist of 5 bipolar plates and 2 end plates,
It is a structure in which cells are connected in series and is a bipolar sealed lead acid battery having a nominal voltage of 12 V and a nominal capacity of 3 Ah.

【0035】端極板は、片面のみに正または負極活物質
が充填されている。セパレータ13には、微細なガラス
繊維からなり電解液を保持するセパレータ(以後単にセ
パレータと呼ぶ)を用いた。バイポーラ極板とセパレー
タとを交互に積層し、セル間隔離部9の周囲を樹脂で固
め樹脂枠16とし、セル間で電解液の移動が起こらない
ようにした。この時、各セルの上部には電解液を注入す
るための注液口17を設けた。この穴には、電解液注入
後に排気弁18を取り付ける。電解液を注入後、通常の
電槽化成を行ない、排気弁を取り付けて本発明のバイポ
ーラ電池が完成した。
The end plate is filled with a positive or negative electrode active material only on one side. As the separator 13, a separator made of fine glass fibers and holding an electrolytic solution (hereinafter simply referred to as a separator) was used. Bipolar electrode plates and separators were alternately laminated, and the periphery of the inter-cell isolation portion 9 was solidified with resin to form a resin frame 16 so that the electrolytic solution did not move between cells. At this time, a liquid injection port 17 for injecting an electrolytic solution was provided at the top of each cell. An exhaust valve 18 is attached to this hole after the electrolyte is injected. After injecting the electrolytic solution, ordinary battery case formation was performed, and an exhaust valve was attached to complete the bipolar battery of the present invention.

【0036】こうして作製した電池について各種容量試
験や寿命試験を行った。電池内容を表1に示した。
Various capacity tests and life tests were conducted on the batteries thus manufactured. The battery contents are shown in Table 1.

【0037】[0037]

【表1】 [Table 1]

【0038】正極側に酸化物被膜のみを形成しPbO2
層を形成しなかったバイポーラ極板を用いた電池は(N
o.1)、電槽化成のために定電流通電を行うと電圧が
異常に上昇して、化成を行うことができなかった。これ
は、チタン表面への不働態被膜の形成が原因と思われ
る。酸化物被膜のみでは、鉛蓄電池正極側での不働態被
膜生成防止には不十分であるといえる。
Only the oxide film was formed on the positive electrode side to form PbO 2
A battery using a bipolar electrode without forming a layer is (N
o. 1) When conducting constant current energization for battery case formation, the voltage increased abnormally and formation could not be performed. This is probably due to the formation of a passive film on the titanium surface. It can be said that the oxide film alone is insufficient for preventing the formation of the passive film on the positive electrode side of the lead storage battery.

【0039】正極側に酸化物被膜およびPbO2 層を形
成したチタン基体のバイポーラ極板を用いた電池(N
o.2〜6)は、従来品の鉛合金基体のバイポーラ極板
を用いた電池(No.7,8)と同様に異常無く電槽化
成を行うことができた。
A battery using a titanium-based bipolar electrode plate having an oxide film and a PbO 2 layer formed on the positive electrode side (N
o. In Nos. 2 to 6), the battery case formation could be performed without any abnormality as in the case of the conventional battery (No. 7, 8) using the lead alloy-based bipolar electrode plate.

【0040】初期容量試験として、25℃,0.2CA
放電および−15℃・5CA放電を行った。それぞれの
放電持続時間および5CA放電時の5秒目電圧を、N
o.8(従来品)を100として比較した結果を表2に
示す。
As an initial capacity test, 25 ° C., 0.2 CA
Discharge and -15 ° C-5CA discharge were performed. Each discharge duration and the voltage at the 5th second at 5CA discharge are set to N
o. Table 2 shows the results of comparison when 8 (conventional product) was set to 100.

【0041】[0041]

【表2】 [Table 2]

【0042】凹凸を形成していないチタン基体(No.
5)と鉛合金基体(No.8)とを比較するとチタン基
体の方が、放電容量や電圧は小さかったが、これはチタ
ンの電気抵抗が鉛合金の約2倍と大きいことによるもの
と思われる。
A titanium substrate having no irregularities (No.
5) and the lead alloy substrate (No. 8) were compared, the titanium substrate had smaller discharge capacity and voltage, but this is probably because the electric resistance of titanium is about twice that of the lead alloy. Be done.

【0043】放電容量や電圧は、凹凸を形成した鉛合金
基体(No.7)が最も大きかった。これは、凹凸を形
成させたことで活物質と基体との接触表面積が増え、活
物質利用率が向上したことや、電気抵抗が低減したため
と思われる。
Regarding the discharge capacity and the voltage, the lead alloy substrate (No. 7) having the irregularities was the largest. This is considered to be because the contact surface area between the active material and the substrate was increased by forming the unevenness, the utilization ratio of the active material was improved, and the electric resistance was reduced.

【0044】チタン基体に凹凸を形成したバイポーラ極
板を用いた電池(No.2,3,4,6)の25℃,
0.2CA放電容量は、凹凸を形成していない鉛合金基
体バイポーラ極板を用いた電池(No.8)とほぼ同等
であった。また5CA放電容量や5秒目電圧は、やや向
上した。これは、チタンを用いたことによる電気抵抗の
増加が凹凸を形成することで相殺されたためである。
25 ° C. of a battery (No. 2, 3, 4, 6) using a bipolar electrode plate having a titanium substrate with irregularities,
The 0.2 CA discharge capacity was almost the same as that of the battery (No. 8) using the lead alloy base bipolar electrode plate having no unevenness. Further, the discharge capacity at 5 CA and the voltage at the 5th second were slightly improved. This is because the increase in electric resistance due to the use of titanium was offset by the formation of the unevenness.

【0045】これらの電池について寿命試験を次の条件
で行い、試験結果をNo.8(従来品)を100として
比較したものを表3に示す。
A life test was conducted on these batteries under the following conditions, and the test results are shown as No. Table 3 shows a comparison between 8 (conventional product) and 100.

【0046】放電:0.75A×3時間 充電:0.54A×5時間 温度:40℃ 寿命判定:0.2CA(0.6A)容量が初期の80%
となった時点で寿命
Discharge: 0.75 A × 3 hours Charge: 0.54 A × 5 hours Temperature: 40 ° C. Life judgment: 0.2 CA (0.6 A) Capacity is 80% of the initial value
Life when

【0047】[0047]

【表3】 [Table 3]

【0048】本発明品の寿命性能は非常に優れていた。
チタン基体に凹凸を形成したバイポーラ極板を用いた電
池(No.2,3,4,6)のサイクル数は、凹凸を形
成していない鉛合金基体バイポーラ極板を用いた電池
(No.8)の7.8−9.5倍であった。凹凸を形成
していないチタン基体を用いた電池(No.5)でも4
倍の寿命性能を有していた。
The life performance of the product of the present invention was very excellent.
The number of cycles of the batteries (No. 2, 3, 4, 6) using the bipolar electrode plate in which the titanium base material is formed with irregularities is the same as that of the battery using the lead alloy base bipolar plate in which the unevenness is not formed (No. 8). ) Was 7.8-9.5 times. 4 even for a battery (No. 5) that uses a titanium substrate with no irregularities
It had double the life performance.

【0049】一方、鉛合金基体に凹凸を形成したもの
(No.7)は、その凹凸により活物質の脱落や剥離を
抑えることができるため、多少寿命性能を向上すること
ができるが、基体自体が腐食してしまったためにセル間
のリークがおこり寿命となった。
On the other hand, in the lead alloy substrate having irregularities (No. 7), the irregularities can prevent the active material from falling off or peeling off, so that the life performance can be improved to some extent, but the substrate itself. Has corroded and leaked between cells, resulting in the end of life.

【0050】本発明のバイポーラ極板を用いた電池が長
寿命であったのは、基体の腐食が抑えられたことが最大
の理由であるものと考えられる。
It is considered that the reason why the battery using the bipolar electrode plate of the present invention has a long life is that the corrosion of the substrate is suppressed.

【0051】[0051]

【発明の効果】以上詳述したように、耐食性金属からな
る基体を用いこの片面に正極活物質、他の面に負極活物
質を形成してなる鉛蓄電池用バイポーラ極板において、
該基体の正極活物質側には導電性酸化物層および緻密な
PbO2 層が形成され、該基体の負極活物質側には鉛層
または鉛合金層が形成されている鉛蓄電池用バイポーラ
極板を用いることで、寿命性能の優れたバイポーラ鉛蓄
電池を得ることができるため、その工業的価値は甚だ大
なるものである。
As described in detail above, in a bipolar electrode plate for a lead storage battery in which a positive electrode active material is formed on one surface and a negative electrode active material is formed on the other surface using a substrate made of a corrosion resistant metal,
A bipolar electrode plate for a lead storage battery in which a conductive oxide layer and a dense PbO 2 layer are formed on the positive electrode active material side of the substrate, and a lead layer or a lead alloy layer is formed on the negative electrode active material side of the substrate. Since a bipolar lead acid battery having excellent life performance can be obtained by using, the industrial value thereof is extremely great.

【図面の簡単な説明】[Brief description of drawings]

【図1】PbO2 層の多孔度と反応性との関係を示した
FIG. 1 is a diagram showing the relationship between the porosity and the reactivity of a PbO 2 layer.

【図2】本発明によるバイポーラ極板の一例を示す断面
構造図
FIG. 2 is a sectional structural view showing an example of a bipolar electrode plate according to the present invention.

【図3】半球状の凹凸をつけた基体を示す図FIG. 3 is a view showing a substrate having hemispherical irregularities.

【図4】直方体状の凹凸をつけた基体を示す図FIG. 4 is a view showing a base body having a rectangular parallelepiped unevenness.

【図5】波状の凹凸をつけた基体を示す図FIG. 5 is a view showing a base body having wavy unevenness.

【図6】バイポーラ極板の例を示す図FIG. 6 is a diagram showing an example of a bipolar electrode plate.

【図7】バイポーラ極板を用いた電池を示す図FIG. 7 is a diagram showing a battery using a bipolar electrode plate.

【図8】バイポーラ極板を用いた電池を示す図FIG. 8 is a diagram showing a battery using a bipolar electrode plate.

【符号の説明】[Explanation of symbols]

1 耐食性金属基体 2 導電性酸化物層 3 α−PbO2 4 β−PbO2 5 正極活物質 6 鉛または鉛合金層 7 負極活物質 8 凹凸部 9 セル間隔離部 10 正極活物質充填面 11 負極活物質充填面 12 バイポーラ極板 13 セパレータ 14 正極端子 15 負極端子 16 樹脂枠 17 注液口 18.排気弁1 Corrosion-Resistant Metal Base 2 Conductive Oxide Layer 3 α-PbO 2 4 β-PbO 2 5 Positive Electrode Active Material 6 Lead or Lead Alloy Layer 7 Negative Electrode Active Material 8 Irregularities 9 Cell Separation Area 10 Positive Electrode Active Material Filled Surface 11 Negative Electrode Active material filled surface 12 Bipolar electrode plate 13 Separator 14 Positive electrode terminal 15 Negative electrode terminal 16 Resin frame 17 Liquid injection port 18. Exhaust valve

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 耐食性金属からなる基体を用い、この片
面に正極活物質、他の面に負極活物質を形成してなる鉛
蓄電池用バイポーラ極板において、該基体の正極活物質
側には導電性酸化物層および緻密なPbO2 層が形成さ
れ、該基体の負極活物質側には鉛層または鉛合金層が形
成されていることを特徴とする鉛蓄電池用バイポーラ極
板。
1. A bipolar electrode plate for a lead storage battery, comprising a substrate made of a corrosion-resistant metal and having a positive electrode active material formed on one surface and a negative electrode active material formed on the other surface, wherein the positive electrode active material side of the substrate is electrically conductive. A bipolar electrode plate for a lead storage battery, characterized in that a conductive oxide layer and a dense PbO 2 layer are formed, and a lead layer or a lead alloy layer is formed on the negative electrode active material side of the substrate.
【請求項2】 耐食性金属からなる基体が、チタン、ジ
ルコニウム、ニオブ、タンタル、タングステンまたはこ
れらの基合金である請求項1に記載の鉛蓄電池用バイポ
ーラ極板。
2. The bipolar electrode plate for a lead storage battery according to claim 1, wherein the substrate made of a corrosion resistant metal is titanium, zirconium, niobium, tantalum, tungsten or a base alloy thereof.
【請求項3】 緻密なPbO2 層がα−PbO2 若しく
はβ−PbO2 、叉はα−PbO2 およびβ−PbO2
が交互に積層されたものである請求項1に記載の鉛蓄電
池用バイポーラ極板。
3. The dense PbO 2 layer is α-PbO 2 or β-PbO 2 , or α-PbO 2 and β-PbO 2
The bipolar electrode plate for a lead storage battery according to claim 1, wherein the bipolar plates are alternately laminated.
【請求項4】 緻密なPbO2 層は、その体積に占める
直径10μm以下の細孔の割合が10%以下である請求
項1に記載の鉛蓄電池用バイポーラ極板。
4. The lead-acid battery bipolar plate according to claim 1, wherein the dense PbO 2 layer has 10% or less of pores having a diameter of 10 μm or less in a volume thereof.
【請求項5】 該基体の活物質層形成面には、凹凸が形
成されていることを特徴とする請求項1に記載の鉛蓄電
池用バイポーラ極板。
5. The lead-acid battery bipolar plate according to claim 1, wherein the active material layer-forming surface of the substrate is provided with irregularities.
JP5240746A 1993-08-31 1993-08-31 Bipolar plate for lead-acid battery Pending JPH0773871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5240746A JPH0773871A (en) 1993-08-31 1993-08-31 Bipolar plate for lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5240746A JPH0773871A (en) 1993-08-31 1993-08-31 Bipolar plate for lead-acid battery

Publications (1)

Publication Number Publication Date
JPH0773871A true JPH0773871A (en) 1995-03-17

Family

ID=17064095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5240746A Pending JPH0773871A (en) 1993-08-31 1993-08-31 Bipolar plate for lead-acid battery

Country Status (1)

Country Link
JP (1) JPH0773871A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2788377A1 (en) * 1999-01-11 2000-07-13 Europ Accumulateurs Bipolar element for lead battery comprises a protective layer between a support plate and positive active material, and a negative material
EP1684371A1 (en) * 2005-01-20 2006-07-26 Delphi Technologies, Inc. Metal alloys for forming conductive oxide coatings for electrical contacts
WO2007037382A1 (en) * 2005-09-29 2007-04-05 Gs Yuasa Corporation Positive electrode current collector for lead accumulator
JP2007329004A (en) * 2006-06-07 2007-12-20 Nissan Motor Co Ltd Electrode for bipolar battery
JP2008098159A (en) * 2006-09-14 2008-04-24 Gs Yuasa Corporation:Kk Cathode collector, manufacturing method of cathode collector and lead storage battery using the same
JP2008539538A (en) * 2005-04-27 2008-11-13 アトラバーダ リミテッド Electrode and manufacturing method
US7575826B2 (en) 2002-08-21 2009-08-18 Delphi Technologies, Inc. Fuel cell with metal alloy contacts that form passivating conductive oxide surfaces
US7575827B2 (en) 2002-08-21 2009-08-18 Delphi Technologies, Inc. Conductive coatings for PEM fuel cell electrodes
CN102169997A (en) * 2010-12-10 2011-08-31 张天任 Storage battery provided with bipolar polar plate
CN105449200A (en) * 2015-11-26 2016-03-30 超威电源有限公司 100% negative lead paste prepared from alpha-PbO lead powder
CN105633399A (en) * 2016-01-12 2016-06-01 超威电源有限公司 High-specific-energy lead-acid battery easy for formation
CN113394408A (en) * 2021-06-17 2021-09-14 昆明高聚科技有限公司 Long-life light composite positive grid and preparation method thereof, and positive electrode plate and preparation method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2788377A1 (en) * 1999-01-11 2000-07-13 Europ Accumulateurs Bipolar element for lead battery comprises a protective layer between a support plate and positive active material, and a negative material
US7575826B2 (en) 2002-08-21 2009-08-18 Delphi Technologies, Inc. Fuel cell with metal alloy contacts that form passivating conductive oxide surfaces
US7575827B2 (en) 2002-08-21 2009-08-18 Delphi Technologies, Inc. Conductive coatings for PEM fuel cell electrodes
EP1684371A1 (en) * 2005-01-20 2006-07-26 Delphi Technologies, Inc. Metal alloys for forming conductive oxide coatings for electrical contacts
US8119290B2 (en) 2005-04-27 2012-02-21 Atraverda Limited Electrode and manufacturing methods
JP2008539538A (en) * 2005-04-27 2008-11-13 アトラバーダ リミテッド Electrode and manufacturing method
WO2007037382A1 (en) * 2005-09-29 2007-04-05 Gs Yuasa Corporation Positive electrode current collector for lead accumulator
US8402620B2 (en) 2005-09-29 2013-03-26 Gs Yuasa International Ltd. Positive electrode current collector for lead accumulator
JP2007329004A (en) * 2006-06-07 2007-12-20 Nissan Motor Co Ltd Electrode for bipolar battery
JP2008098159A (en) * 2006-09-14 2008-04-24 Gs Yuasa Corporation:Kk Cathode collector, manufacturing method of cathode collector and lead storage battery using the same
CN102169997A (en) * 2010-12-10 2011-08-31 张天任 Storage battery provided with bipolar polar plate
CN105449200A (en) * 2015-11-26 2016-03-30 超威电源有限公司 100% negative lead paste prepared from alpha-PbO lead powder
CN105633399A (en) * 2016-01-12 2016-06-01 超威电源有限公司 High-specific-energy lead-acid battery easy for formation
CN113394408A (en) * 2021-06-17 2021-09-14 昆明高聚科技有限公司 Long-life light composite positive grid and preparation method thereof, and positive electrode plate and preparation method thereof

Similar Documents

Publication Publication Date Title
US5047300A (en) Ultra-thin plate electrochemical cell
JP4288621B2 (en) Negative electrode, battery using the same, and method for manufacturing negative electrode
WO2009150485A1 (en) Electrode for lead-acid battery and method for producing such an electrode
JPH0773871A (en) Bipolar plate for lead-acid battery
WO2007037382A1 (en) Positive electrode current collector for lead accumulator
EP0494147A1 (en) Ultra-thin plate electrochemical cell and method of manufacture
JP2000243403A (en) Lead-acid battery
JP3482605B2 (en) Lead storage battery
US4140589A (en) Method for lead crystal storage cells and storage devices made therefrom
JP4320536B2 (en) Positive electrode plate for lead acid battery and lead acid battery
US3759746A (en) Porous electrode comprising a bonded stack of pieces of corrugated metal foil
JPH02158057A (en) Electrode substrate for bipolar lead-storage battery
JP2743416B2 (en) Zinc plate for rechargeable batteries
JP2003338310A (en) Lead storage battery
JPH0837001A (en) Positive electrode plate for lead-acid battery and manufacture of the electrode plate
JP4145061B2 (en) Method for producing electrode for lithium secondary battery
US20240105914A1 (en) Bipolar battery plate and fabrication thereof
JPH0410177B2 (en)
CS214885B2 (en) Lead accumulator cell and method of making the said
JP2004193097A (en) Method for formation of lead storage battery
JP2639916B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JP3111475B2 (en) Manufacturing method of sealed lead-acid battery
KR20160071303A (en) Manufacturing method of electrode using of third dimension electrode base material for electro-chemical applied product
JP2556056B2 (en) Manufacturing method of sealed lead-acid battery
JPH07282838A (en) Sealed lead-acid battery