JPS63124368A - Manufacture of zinc electrode for alkaline storage battery - Google Patents

Manufacture of zinc electrode for alkaline storage battery

Info

Publication number
JPS63124368A
JPS63124368A JP61270866A JP27086686A JPS63124368A JP S63124368 A JPS63124368 A JP S63124368A JP 61270866 A JP61270866 A JP 61270866A JP 27086686 A JP27086686 A JP 27086686A JP S63124368 A JPS63124368 A JP S63124368A
Authority
JP
Japan
Prior art keywords
zinc
active material
electrode
pts
organic hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61270866A
Other languages
Japanese (ja)
Inventor
Yoshikazu Ishikura
石倉 良和
Sanehiro Furukawa
古川 修弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61270866A priority Critical patent/JPS63124368A/en
Publication of JPS63124368A publication Critical patent/JPS63124368A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a zinc electrode having good cycle performance by coating a conductive core with a kneaded material of active material, organic hollow spheres, and a binder, and heating them to break the organic hollow spheres and to remove low boiling point hydrocarbon. CONSTITUTION:5 pts.wt. mercuric oxide is added to an active material comprising 45 pts.wt. zinc oxide and 45 pts.wt. zinc powder, and 1 pts.wt. organic hollow sphere which contains low boiling point hydrocarbon inside the sphere and is thermally expansionalable based on the active material is added, and they are fully mixed. 5 pts.wt. polytetrafluoroethylene dispersion is added to the mixture and the mixture is diluted with water, then kneaded to form a paste-like active material. The active material is rolled with a calender to obtain a calendered sheet having a desired thickness. The calendered sheets are sticked on both sides of a punched metal core and pressed with a roller, and dried, then heated at 130 deg.C in the atmosphere for 10 minutes to break the organic hollow sphere and to remove the low boiling point hydrocarbon. Thereby, highly porous zinc electrode can be obtained.

Description

【発明の詳細な説明】 け)M業上の利用分野 本発明はニッケルー亜鉛蓄電池、銀−亜鉛蓄電池などに
用いられるアルカリ蓄電池用亜鉛極の製法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION K) Field of industrial application The present invention relates to a method for producing zinc electrodes for alkaline storage batteries used in nickel-zinc storage batteries, silver-zinc storage batteries, and the like.

(ロ)従来の技術 近年著しく普及してきたボータプル電子機器の駆動電源
として#電池の需要が急増している。
(b) Prior Art The demand for #batteries is rapidly increasing as a power source for driving electronic devices that have become extremely popular in recent years.

その中でもアルカリ亜鉛蓄電池に負極活物質として用い
る亜鉛が、単位重量当りのエネルギー密度が高く、卑な
電位を示すことから、成泡として作動させた特高1圧が
収り出せ、且つ経蒼性や安全性が優れているなどの利点
【有する。
Among them, zinc, which is used as a negative electrode active material in alkaline zinc storage batteries, has a high energy density per unit weight and exhibits a base potential. It has advantages such as excellent safety and safety.

ところが、アルカリ亜鉛蓄電池は光放t’i繰り返すと
負極活物質でるる亜鉛粒子が徐々に巨大化し、この粒子
の高密度化により活物質の作用有効面積が減少すると共
に粒子V3都の活物質が充放電に利用できなくなり亜鉛
極の容量が減少し、また負極活物質内に巨大な亜鉛粒子
が存在すると、この巨大粒子が核となり亜鉛のデンドラ
イトが生長し正負極間の短絡現象が生じる等の欠点があ
る。
However, in an alkaline zinc storage battery, when light is emitted repeatedly, the zinc particles forming the negative electrode active material gradually become larger, and due to the increased density of these particles, the active material's effective area decreases, and the active material of the particle V3 becomes larger. The capacity of the zinc electrode decreases because it cannot be used for charging and discharging, and if giant zinc particles are present in the negative electrode active material, these giant particles become nuclei and zinc dendrites grow, causing short-circuit phenomena between the positive and negative electrodes. There are drawbacks.

この原因は負極活物質である亜鉛がアルカリ電解液に溶
解することに起因する。特に亜鉛のプント2イトの生長
による正負極間の内部短絡は解消しなけルばならない問
題であり、この点を少しでも改善するために特公昭55
−29548号公報では電解液tt遊離のものが存在し
ない程度に規制し、亜鉛の溶解を極刀抑えることが提案
されている。また特開昭58−1s8867号公報では
亜鉛粒子の巨大化防止のために粒径の小さい亜鉛t負極
活物質として使用することが提案さnている。
This is due to the fact that zinc, which is a negative electrode active material, dissolves in the alkaline electrolyte. In particular, the internal short circuit between the positive and negative electrodes due to the growth of zinc punts is a problem that must be solved, and in order to improve this point even a little, the
Publication No. 29548 proposes that the dissolution of zinc be extremely suppressed by controlling the electrolyte solution tt to such an extent that no free material exists. Further, in Japanese Patent Application Laid-Open No. 58-1S8867, it is proposed to use zinc as a negative electrode active material having a small particle size in order to prevent zinc particles from becoming large.

しかしながら前記方法に工つても亜鉛活物質の緻密化を
阻止するのば十分ではない。これは光放電の繰り返しに
より亜鉛極表面の亜鉛活物質が緻密化することにエリ電
極表面の多孔度が低下し、電極表面が閉そくされ電解液
が電極同部迄拡散しにくくなる。その結果亜鉛極の内部
は表面部より亜鉛酸イオン濃度が低下し電極V3部の亜
鉛活物質の反応性が低下するので、亜鉛極の利用率が著
しく低下しサイクル特注が劣化することになる。
However, even with the above method, it is not sufficient to prevent the densification of the zinc active material. This is because the zinc active material on the surface of the zinc electrode becomes dense due to repeated photodischarges, which reduces the porosity of the surface of the electrode, and the electrode surface is closed, making it difficult for the electrolyte to diffuse to the same part of the electrode. As a result, the zincate ion concentration in the interior of the zinc electrode is lower than in the surface area, and the reactivity of the zinc active material in the electrode V3 portion is reduced, resulting in a significant decrease in the utilization rate of the zinc electrode and deterioration of the cycle customization.

(ハ)発明が解決しようとする問題点 本発明はアルカ!l’lF4池用亜鉛極の製法であって
亜鉛極表面部の亜鉛活物質の緻密化による閉そく【抑制
し、サイクル%注の丁ぐれた亜鉛極を提供するものであ
る。
(c) Problems to be solved by the invention The present invention is based on Arca! This is a method for producing a zinc electrode for l'lF4 ponds, which suppresses blockage by densification of the zinc active material on the surface of the zinc electrode, and provides a zinc electrode with a good cycle percentage.

に)問題点を解決するための手段 本発明のアルカリ蓄電池用亜鉛極の製法は、亜鉛もしく
は酸化亜鉛の少なくとも一櫨會主成分とする活物質と、
低沸点炭化水素?!−円包内包有機中空球体と、結着剤
とを混練し、該混練物を導電芯体に塗着した後、加熱処
理して前記有機中空球体を破壊し前記低沸点炭化水素を
除去することτ要旨とするものでるる。
B) Means for Solving the Problems The method for producing a zinc electrode for an alkaline storage battery of the present invention comprises an active material having at least one ton of zinc or zinc oxide as a main component;
Low-boiling hydrocarbons? ! - kneading the encapsulated organic hollow spheres and a binder, applying the kneaded mixture to a conductive core, and then heat-treating to destroy the organic hollow spheres and remove the low-boiling hydrocarbons; There will be a summary of τ.

(ホ)作 用 低沸点炭化水素を内包し7’C有機中空球体t115〜
140℃で数分間熱処理上行うと有機中空球体が膨張−
破壊し、内包した低沸点炭化ボ累が逸散除去されるので
、電極内にマイクロ〉!−ラスな空隙が形成され高多孔
度の亜鉛極が得られる。
(e) Function 7'C organic hollow sphere t115 containing low boiling point hydrocarbons
When heat treated at 140°C for several minutes, the organic hollow spheres expand.
The low-boiling point carbonized particles contained within the electrode are dissipated and removed, allowing micro particles to be contained within the electrode. - A zinc electrode with high porosity is obtained by forming rough voids.

し′fcがってサイクル数の進行により電極表面部が緻
密化して閉そくするということ【抑制できると共に、高
多孔度であるので電極内部への電解液の拡散性の同上が
計匹光放電効率が向上し、サイクル特性に優れた亜鉛極
が得られる。
Therefore, as the number of cycles progresses, the electrode surface becomes denser and becomes occluded.In addition, due to the high porosity, the diffusivity of the electrolyte into the interior of the electrode increases as well as the measured photodischarge efficiency. , and a zinc electrode with excellent cycle characteristics can be obtained.

(へ)実施例 活物質としての酸化亜鉛45重量部及び亜鉛粉末45重
量部と、添加剤としての酸化水銀5重量部と、活物質に
対して/重i′%の低沸点炭化水素?内包する熱膨張性
の有機中空球体(粒子径10〜20μm)7士分に混合
した後、ポリテトラフルオロエチレン(PTFE)ディ
スパージョン5]![置部を加え、水で希釈したのち混
練したペース。
(f) Example: 45 parts by weight of zinc oxide and 45 parts by weight of zinc powder as an active material, 5 parts by weight of mercury oxide as an additive, and a low boiling point hydrocarbon of /i'% by weight based on the active material? After mixing with 7 encapsulated thermally expandable organic hollow spheres (particle size 10-20 μm), polytetrafluoroethylene (PTFE) dispersion 5]! [Pace made by adding Okibe, diluting with water, and then kneading.

ト状活物質t8E延ローラで所定の厚さのカレンダーシ
ートとし、これをパンをングメタルの導を芯体の両面に
貼合せ圧着ローラで圧着する。これt乾燥後130℃の
温度で空気中にて10分間熱処理して、有機中空球休業
、膨張させて破壊し、内包せる低沸点炭化水素を除去し
℃高多孔度の亜鉛極を得る。この亜鉛極と公知の焼結式
ニッケル極と倉組合せ単二サイズのニッケルー亜鉛Ti
電池を作成し、本発明電池Aとした。
A calender sheet of a predetermined thickness of the active material T8E is formed into a calender sheet with a predetermined thickness, and a pan is laminated with metal conductors on both sides of the core body and pressed with a pressure roller. After drying, it is heat treated in air at a temperature of 130°C for 10 minutes to destroy the organic hollow spheres, expand and destroy them, and remove the low boiling point hydrocarbons that may be contained therein, thereby obtaining a zinc electrode with high porosity. This zinc electrode is combined with a known sintered nickel electrode and a AA size nickel-zinc Ti
A battery was prepared and designated as Invention Battery A.

第1図は本発明電池の縦断面図でるり、1はニッケル極
、2は本発明法により得た亜鉛極であり、これら電極r
多層セパV−夕5を介して渦晧状に巻回して渦巻電極体
を構成し、且つこれら両極およびセパレータに所足重の
電解ik保持せしめ遊離の電解液が殆んど存在しない構
成としている。
FIG. 1 is a longitudinal cross-sectional view of the battery of the present invention, 1 is a nickel electrode, 2 is a zinc electrode obtained by the method of the present invention, and these electrodes r
A spiral electrode body is formed by winding it in a spiral shape through a multilayer separator V-5, and these electrodes and the separator are made to hold the necessary amount of electrolyte, so that there is almost no free electrolyte. .

また4は負極端子兼用の電池缶、5は正極端子兼用の封
口体であり、大々亜鉛極ニッケル極に電気的に接続され
ており、絶縁バンキング6’frfして密閉さ扛ている
Further, 4 is a battery can that also serves as a negative electrode terminal, and 5 is a sealing body that also serves as a positive electrode terminal, which is electrically connected to the zinc electrode and nickel electrode, and is sealed by an insulating bank 6'frf.

尚、前述の有機中空球体としては松不油脂裂薬(株〕裂
の商品名「マツモトマイクロスフェア−」【使用した。
The organic hollow spheres used were "Matsumoto Microspheres", a trade name manufactured by Matsufu Yushiyaku Co., Ltd.

これはイソブタンガス會メチルメタアクリレート−アク
リルニトリルの乳化重合樹脂で内包してあり115〜1
40℃で数分間の熱処理で膨張・破壊しイソブタンガス
が逸散除去されるものであり、粒径に10〜20μ程度
のものである。また他に塩化ビニリデン−アクリルニト
リル樹脂でインブタンガスを内包したものなどが使用で
きる。
This is encapsulated in an emulsion polymerized resin of methyl methacrylate and acrylonitrile using isobutane gas.
It expands and ruptures by heat treatment at 40° C. for several minutes, and the isobutane gas is dissipated and removed, and the particle size is about 10 to 20 μm. In addition, vinylidene chloride-acrylonitrile resin containing inbutane gas can also be used.

比較例 有機中空球体七添加せず加熱処理しない以外は5!厖例
1と同様にして、比較S池87得た。
Comparative Example Organic Hollow Spheres 7 5 except no addition and no heat treatment! Comparative S pond 87 was obtained in the same manner as in Example 1.

第2図に本発明電池Aと比較電池Bのサイクル特性比較
図である。尚、サイクル条件は360mAで5時間光電
し、360mAで放電し放′#を終止電圧に1.0■と
するものである。
FIG. 2 is a comparison diagram of the cycle characteristics of the battery A of the present invention and the comparative battery B. The cycle conditions were to photoelectrically conduct at 360 mA for 5 hours, discharge at 360 mA, and set the discharge voltage to a final voltage of 1.0.

第2図より本発明電池Aのサイクル特性が優nているこ
とがわかる。これは比較′IC池Bの亜鉛極の表面部が
サイクル数の進行に伴りて緻密化し、tJL罵液が浸透
しにくくなって光放電効率が低下し、その結果電池特性
が低下するのに対し、本発明電fiAに亜鉛極が高多孔
にであるため表面の緻密化が抑制され電解液の亜鉛極F
F3部への拡散が優れることから、亜鉛極同部迄反応が
円滑に進むのでティクル特性が同上したものである。
It can be seen from FIG. 2 that the cycle characteristics of the battery A of the present invention are excellent. This is because the surface of the zinc electrode in Comparative IC Cell B becomes dense as the number of cycles progresses, making it difficult for the tJL solution to penetrate, reducing the photodischarge efficiency and, as a result, deteriorating the battery characteristics. On the other hand, since the zinc electrode in the electrolyte of the present invention is highly porous, the densification of the surface is suppressed, and the zinc electrode F of the electrolyte is suppressed.
Since the diffusion into the F3 part is excellent, the reaction proceeds smoothly up to the same part of the zinc electrode, so that the tickle properties are the same as above.

(トノ発明の効果 不発明法によれば高多孔度の亜鉛極が得られ亜鉛極表面
の緻密化を要因とする電極内部への電解液の浸透性の低
下を抑制でさ、活物買の利用率r改善しつるものである
。依って本発明法により得交亜鉛極【用いることにより
サイクル特性に優れたアルカリ蓄電池1i−得ることか
でさるものであり、その工業的価値にきわめて大きい。
(Effect of Tono Invention According to the non-invention method, a zinc electrode with high porosity can be obtained, and the decrease in the permeability of the electrolyte into the inside of the electrode caused by the densification of the surface of the zinc electrode can be suppressed. Therefore, by using the method of the present invention, it is possible to obtain an alkaline storage battery 1i with excellent cycle characteristics, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図に本発明1池の縦断面図、第2図は゛電池の伊イ
クル特性比較図である。
FIG. 1 is a longitudinal sectional view of a battery according to the present invention, and FIG. 2 is a comparison diagram of cycle characteristics of the battery.

Claims (1)

【特許請求の範囲】[Claims] (1)亜鉛もしくは酸化亜鉛の少なくとも一種を主成分
とする活物質と、低沸点炭化水素を内包した有機中空球
体と、結着剤とを混練し、該混練物を導電芯体に塗着し
た後、加熱処理して前記有機中空球体を破壊し前記低沸
点炭化水素を除去することを特徴とするアルカリ蓄電池
用亜鉛極の製法。
(1) An active material containing at least one type of zinc or zinc oxide as a main component, organic hollow spheres containing a low-boiling hydrocarbon, and a binder are kneaded, and the kneaded product is applied to a conductive core. A method for producing a zinc electrode for an alkaline storage battery, characterized in that the organic hollow spheres are then heat-treated to destroy the organic hollow spheres and the low-boiling hydrocarbons are removed.
JP61270866A 1986-11-12 1986-11-12 Manufacture of zinc electrode for alkaline storage battery Pending JPS63124368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61270866A JPS63124368A (en) 1986-11-12 1986-11-12 Manufacture of zinc electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61270866A JPS63124368A (en) 1986-11-12 1986-11-12 Manufacture of zinc electrode for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPS63124368A true JPS63124368A (en) 1988-05-27

Family

ID=17492061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61270866A Pending JPS63124368A (en) 1986-11-12 1986-11-12 Manufacture of zinc electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS63124368A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102509774A (en) * 2011-10-27 2012-06-20 北京中航长力能源科技有限公司 Preparation method of zinc electrode used for zinc-air battery
EP3989309A1 (en) * 2020-10-26 2022-04-27 Prime Planet Energy & Solutions, Inc. Method of producing electrode, method of producing battery, electrode, and battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102509774A (en) * 2011-10-27 2012-06-20 北京中航长力能源科技有限公司 Preparation method of zinc electrode used for zinc-air battery
EP3989309A1 (en) * 2020-10-26 2022-04-27 Prime Planet Energy & Solutions, Inc. Method of producing electrode, method of producing battery, electrode, and battery

Similar Documents

Publication Publication Date Title
US9225012B2 (en) Electrode of secondary cell including porous insulating layer, and manufacturing method thereof
CN103855358B (en) Cathode of lithium battery and preparation method thereof, lithium battery and application
JP2001514797A (en) Calcium zincate electrode for alkaline battery and method for producing the same
CN112993228A (en) Preparation process of zinc oxide coated silicon negative electrode material
US3877986A (en) Rechargeable cell having improved cadmium negative electrode and method of producing same
JPH10284076A (en) Alkaline storage battery and manufacture of its electrode
JPH05325978A (en) Nickel sintered substrate and manufacture thereof for alkaline storage battery
JPS63124368A (en) Manufacture of zinc electrode for alkaline storage battery
JPH04188560A (en) Manufacture of negative electrode for non-aqueous electrolyte secondary battery
KR102610290B1 (en) High specific surface area bohemite for lithium secondary battery separator coating agent and method of manufacturing thereof
JP2975701B2 (en) Method for manufacturing metal hydride storage battery
JP2629258B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP7128069B2 (en) Positive electrode for alkaline secondary battery and alkaline secondary battery provided with this positive electrode
JP3178815B2 (en) Lithium secondary battery
JPH10214628A (en) Lead acid-battery and its manufacture
JPS62139260A (en) Manufacture of positive active material for organic electrolyte battery
JP2562640B2 (en) Cadmium electrode for alkaline storage battery
JP4400113B2 (en) Nickel-hydrogen battery manufacturing method
JPH07235303A (en) Nickel pole for alkaline storage battery and its manufacture
JPS62287569A (en) Manufacture of zinc electrode for alkaline storage battery
JPH02112158A (en) Metal-hydrogen alkaline storage battery
JPH0785861A (en) Lithium secondary battery
JPS59165371A (en) Cathode plate for alkaline storage battery
JPS59196564A (en) Manufacture of non-sintered negative cadmium plate
JPH04282559A (en) Hydrogen storage alloy electrode and manufacture thereof