JP2975701B2 - Method for manufacturing metal hydride storage battery - Google Patents

Method for manufacturing metal hydride storage battery

Info

Publication number
JP2975701B2
JP2975701B2 JP3045108A JP4510891A JP2975701B2 JP 2975701 B2 JP2975701 B2 JP 2975701B2 JP 3045108 A JP3045108 A JP 3045108A JP 4510891 A JP4510891 A JP 4510891A JP 2975701 B2 JP2975701 B2 JP 2975701B2
Authority
JP
Japan
Prior art keywords
battery
metal hydride
batteries
electrolyte
hydride storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3045108A
Other languages
Japanese (ja)
Other versions
JPH04282569A (en
Inventor
育生 金川
良和 石倉
孝直 松本
基弘 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP3045108A priority Critical patent/JP2975701B2/en
Publication of JPH04282569A publication Critical patent/JPH04282569A/en
Application granted granted Critical
Publication of JP2975701B2 publication Critical patent/JP2975701B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水素を可逆的に吸蔵及
び放出することのできる水素吸蔵合金を負極に備えた金
属水素化物蓄電池の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a metal hydride battery having a negative electrode comprising a hydrogen storage alloy capable of reversibly storing and releasing hydrogen.

【0002】[0002]

【従来の技術】従来、ニッケル−カドミウム蓄電池の如
きアルカリ蓄電池あるいは鉛蓄電池などが各種電気機器
の電源として広く使われている。近年、これらの電池よ
り軽量でかつ高容量、高エネルギー密度である水素吸蔵
合金を負極に用いた金属水素化物蓄電池が注目されてい
る。水素を可逆的に吸蔵及び放出する水素吸蔵合金から
なる負極と、金属酸化物を活物質とする正極とを備えた
この種金属水素化物蓄電池は初期容量が低く、容量のバ
ラツキも大きいといった問題がある。
2. Description of the Related Art Conventionally, an alkaline storage battery such as a nickel-cadmium storage battery or a lead storage battery has been widely used as a power source for various electric appliances. In recent years, attention has been focused on metal hydride storage batteries using a hydrogen storage alloy, which is lighter, has higher capacity, and has a higher energy density than these batteries, as a negative electrode. This kind of metal hydride storage battery, which has a negative electrode made of a hydrogen storage alloy that reversibly stores and releases hydrogen and a positive electrode that uses a metal oxide as an active material, has a problem that the initial capacity is low and the capacity variation is large. is there.

【0003】また、水素吸蔵合金はアルカリ電解液中で
充放電を行うと活物質である水素を吸蔵放出し、この水
素の吸蔵及び放出によって合金格子が変形して水素吸蔵
合金は微粉化を起こし電極から脱落して容量低下を招く
と共に電極の機械的強度及び導電性の低下が著しくなる
といった問題があった。
[0003] When charged and discharged in an alkaline electrolyte, the hydrogen storage alloy absorbs and releases hydrogen as an active material, and the absorption and release of hydrogen deforms the alloy lattice, causing the hydrogen storage alloy to be pulverized. There has been a problem that the electrode drops off from the electrode to cause a reduction in capacity, and the mechanical strength and conductivity of the electrode are significantly reduced.

【0004】この対策として、特開昭61−99277
号公報では、電解液量を規制して水素吸蔵合金の微粉化
による脱落や容量劣化を抑制することを提案している。
As a countermeasure against this, Japanese Patent Laid-Open Publication No. 61-99277
Japanese Patent Application Laid-Open Publication No. H11-15083 proposes that the amount of the electrolyte solution be regulated to prevent the hydrogen storage alloy from falling off due to pulverization and deterioration in capacity.

【0005】しかしながら、電解液量を規制しても水素
吸蔵合金電極は、電解液の浸透性が悪く、電解液が電池
内に均一に拡散するのが非常に遅い。したがって、水素
吸蔵合金電極の表面に電解液が浸透しない個所が生じ、
電池内部抵抗が増大したりするといった問題があった。
[0005] However, even if the amount of the electrolyte is regulated, the hydrogen storage alloy electrode has poor electrolyte permeability, and the electrolyte is very slowly diffused uniformly in the battery. Therefore, there are places where the electrolyte does not penetrate into the surface of the hydrogen storage alloy electrode,
There was a problem that the internal resistance of the battery increased.

【0006】[0006]

【発明が解決しようとする課題】本発明によれば、上述
の如き問題点を解決し、電解液を電池内部に均一に拡散
することにより、電池のサイクル初期から十分な電池容
量を得ようとするものである。
SUMMARY OF THE INVENTION According to the present invention, an attempt is made to solve the above-mentioned problems and to obtain a sufficient battery capacity from the beginning of a battery cycle by uniformly diffusing an electrolytic solution inside the battery. Is what you do.

【0007】[0007]

【課題を解決するための手段】本発明による製造方法で
は、水素吸蔵合金からなる負極と、正極と、電解液とを
備えた金属水素化物蓄電池の製造方法において、電解液
注液後、電池缶の封口を行い密閉して電池を組立てた
後、前記電解液を電池内部で拡散させる方法として超音
波振動、加温、回転の少なくとも一つによる拡散工程を
有することを特徴とするものである。
In the manufacturing method according to the present invention, in order to solve the problems], a negative electrode comprising a hydrogen absorbing alloy, a positive electrode, method of manufacturing a metal hydride storage battery comprising an electrolytic solution, an electrolytic solution
After injection, the battery can was sealed and sealed to assemble the battery.
Thereafter, a method of diffusing the electrolyte inside the battery includes a diffusion step by at least one of ultrasonic vibration, heating, and rotation.

【0008】ここで、前記拡散工程において、超音波に
よる振動の波長が30kHz以上、電池を加温する温度
が60℃以上100℃以下、電池を回転させる回転数が
100r.p.m.以上でかつ1000回転以上にする
ことが好ましい。
In the diffusion step, the wavelength of the vibration by the ultrasonic wave is 30 kHz or more, the temperature for heating the battery is 60 ° C. or more and 100 ° C. or less, and the number of rotations for rotating the battery is 100 rpm. p. m. It is preferable that the rotation speed is not less than 1000 rotations.

【0009】[0009]

【作用】本発明によれば、完成電池に超音波による振
動、加温処理、回転処理等の電解液を拡散する工程を行
うことで、電池内部の電解液を均一に拡散することがで
きる。これにより、電解液の不均一によって生じる電池
内部抵抗の増大や水素吸蔵合金電極の局部的な反応によ
る合金の劣化、すなわち水素吸蔵合金電極特性の低下を
防止することができる。そのためにサイクルの初期充放
電から公称容量の100%の放電が可能となる。
According to the present invention, the electrolytic solution in the battery can be uniformly diffused by performing a process of diffusing the electrolytic solution such as vibration by ultrasonic waves, heating treatment, and rotation treatment on the completed battery. As a result, it is possible to prevent an increase in the internal resistance of the battery caused by the non-uniformity of the electrolyte and the deterioration of the alloy due to the local reaction of the hydrogen storage alloy electrode, that is, the deterioration of the hydrogen storage alloy electrode characteristics. Therefore, 100% of the nominal capacity can be discharged from the initial charge and discharge of the cycle.

【0010】[0010]

【実施例】(実験1)市販のミッシュメタルMm(L
a、Ce、Nd、Prなどの希土類元素の混合物)、N
i、Co及びAlを一定の元素比、Mm:Ni:Co:
Alが1:3:1.5:0.5になるように秤量して混
合する。
EXAMPLES (Experiment 1) Commercially available misch metal Mm (L
a, a mixture of rare earth elements such as Ce, Nd and Pr), N
i, Co and Al have a constant element ratio, Mm: Ni: Co:
Weigh and mix so that Al becomes 1: 3: 1.5: 0.5.

【0011】次に、この混合物をアルゴンアーク溶解炉
により加熱溶解させ、MmNi3Co1.5Al0.5 の組成
を有する合金を製造した。
Next, this mixture was heated and melted in an argon arc melting furnace to produce an alloy having a composition of MmNi 3 Co 1.5 Al 0.5 .

【0012】次いで、この合金を通常の機械的な粉砕に
よって、50μm以下の微粉末とした。この微粉末に結
着剤としてのポリテトラフルオロエチレン(PTFE)
ディスパージョンを添加し、均一に混合し、水を加えて
ペースト状にする。
Next, the alloy was reduced to a fine powder of 50 μm or less by ordinary mechanical pulverization. Polytetrafluoroethylene (PTFE) as a binder is added to this fine powder.
Add the dispersion, mix uniformly and add water to make a paste.

【0013】このペーストを、ニッケルメッキを施した
パンチングメタル集電体の両面に圧着して水素吸蔵合金
負極を作製した。
The paste was pressed onto both surfaces of a nickel-plated punched metal current collector to produce a hydrogen storage alloy negative electrode.

【0014】この水素吸蔵合金からなる負極と、公知の
焼結式ニッケル正極とを、不織布から成るセパレータを
介して渦巻状に巻取って電極体を作製し、電池缶に挿入
し、30wt%の水酸化カリウム水溶液による電解液
3.0gを注液した。電解液注液後、電池缶の封口を行
い完全に密閉して金属水素化物蓄電池を作製した。
The negative electrode made of this hydrogen storage alloy and a well-known sintered nickel positive electrode are spirally wound through a nonwoven fabric separator to form an electrode body, which is inserted into a battery can. 3.0 g of an electrolytic solution with an aqueous potassium hydroxide solution was injected. After the injection of the electrolyte, the battery can was sealed and completely sealed to produce a metal hydride storage battery.

【0015】(実施例1)実験1で得た金属水素化物蓄
電池に波長30kHz、50kHz及び100kHzの
超音波による衝撃を10分間与えて、それぞれ本発明電
池A、B及びCとする。
(Example 1) The metal hydride storage batteries obtained in Experiment 1 were subjected to shocks of ultrasonic waves of 30 kHz, 50 kHz and 100 kHz for 10 minutes to obtain batteries A, B and C of the present invention, respectively.

【0016】(比較例1)実験1で得た金属水素化物蓄
電池に波長10kHz及び20kHzの超音波による衝
撃を10分間与えて、それぞれ比較電池O及びPとす
る。また、衝撃を全く与えないものを比較電池Qとす
る。
(Comparative Example 1) The metal hydride storage batteries obtained in Experiment 1 were subjected to an ultrasonic shock of 10 kHz and 20 kHz for 10 minutes to obtain comparative batteries O and P, respectively. A battery that does not give any impact is referred to as a comparative battery Q.

【0017】これらの本発明電池A、B及びCと比較電
池O、P及びQの充放電による初期の電池容量を測定す
る。測定条件としては、25℃の雰囲気下で0.1Cの
電流で12時間充電した後、0.5Cの電流で電池電圧
が1.0Vに達するまで放電するものである。以上の結
果を図1に示す。
The initial battery capacities of the batteries A, B and C of the present invention and the comparative batteries O, P and Q are measured. As measurement conditions, the battery is charged at a current of 0.1 C for 12 hours in an atmosphere of 25 ° C., and then discharged at a current of 0.5 C until the battery voltage reaches 1.0 V. The above results are shown in FIG.

【0018】図1より、明らかなように、比較電池Qは
初期容量が公称容量の60%であるが、本発明電池A、
B及びCは初期から公称容量の100%の容量を発揮す
ることができる。
As is apparent from FIG. 1, the initial capacity of the comparative battery Q is 60% of the nominal capacity.
B and C can exhibit 100% of the nominal capacity from the beginning.

【0019】また、図2に本発明電池A、B及びCと比
較電池O、P及びQのサイクル数と放電容量の関係を示
す。
FIG. 2 shows the relationship between the number of cycles and the discharge capacity of batteries A, B and C of the present invention and comparative batteries O, P and Q.

【0020】尚、測定条件は、上記条件と同様に行っ
た。図1及び図2から、本発明電池A、B及びCは、初
期サイクルから100%の放電容量を持ち、サイクル数
が進んでも放電容量は安定している。
The measuring conditions were the same as those described above. 1 and 2, the batteries A, B and C of the present invention have a discharge capacity of 100% from the initial cycle, and the discharge capacity is stable even if the number of cycles is advanced.

【0021】これは、電池作製後に、30kHz以上の
波長による超音波振動を与えることによって、電池内の
電解液を均一に拡散することができ、また、水素吸蔵合
金への電解液の浸透も速くなるため、電解液の濡れてい
ない部分がなくなり、その部分による電池の内部抵抗の
増加等を防止することができ、水素吸蔵合金電極の特性
を十分に発揮することができる。
This is because the electrolyte in the battery can be uniformly diffused by applying ultrasonic vibration having a wavelength of 30 kHz or more after the fabrication of the battery, and the penetration of the electrolyte into the hydrogen storage alloy can be accelerated. As a result, there is no portion where the electrolyte is not wetted, and an increase in the internal resistance of the battery due to the portion can be prevented, and the characteristics of the hydrogen storage alloy electrode can be sufficiently exhibited.

【0022】また、図3に本発明電池A、B及びCと比
較電池O、P及びQの正極、負極及びセパレータにおけ
る液量分布の結果を示す。
FIG. 3 shows the results of the liquid volume distribution in the positive electrodes, negative electrodes and separators of the batteries A, B and C of the present invention and the comparative batteries O, P and Q.

【0023】図3より、本発明電池A、B及びCは電解
液が均一に分散していることが判る。
From FIG. 3, it can be seen that the batteries A, B and C of the present invention have the electrolyte dispersed uniformly.

【0024】(実験2) (実施例2)実験1で得た金属水素化物蓄電池を60
℃、80℃及び100℃の恒温槽内で1時間加温して、
それぞれ本発明電池D、E及びFとした。
(Experiment 2) (Example 2) The metal hydride storage battery obtained in Experiment 1
C, 80 ° C and 100 ° C in a thermostat for 1 hour,
Inventive batteries D, E and F, respectively.

【0025】(比較例2)実験1で得た金属水素化物蓄
電池を40℃、120℃及び140℃の恒温槽内で1時
間加温して、それぞれ比較電池R、S及びTとし、また
全く加温しないものを比較電池Uとする。
(Comparative Example 2) The metal hydride storage batteries obtained in Experiment 1 were heated in constant temperature baths at 40 ° C, 120 ° C and 140 ° C for 1 hour to obtain comparative batteries R, S and T, respectively. A battery not heated is referred to as a comparative battery U.

【0026】これらの本発明電池D、E及びFと比較電
池R、S、T及びUの充放電による初期の電池容量を測
定する。測定条件としては、25℃の雰囲気下で0.1
Cの電流で12時間充電した後、0.5Cの電流で電池
電圧が1.0Vに達するまで放電するものである。以上
の結果を図4に示す。
The initial battery capacities of the batteries D, E, and F of the present invention and the comparative batteries R, S, T, and U by charging and discharging are measured. The measurement conditions are as follows.
After charging for 12 hours with a current of C, the battery is discharged at a current of 0.5 C until the battery voltage reaches 1.0 V. The results are shown in FIG.

【0027】図4より、明らかなように、比較電池Uは
初期容量が公称容量の60%であるが、本発明電池D、
E及びFにおいては初期から公称容量の100%の容量
を発揮することができる。
As is apparent from FIG. 4, the comparative battery U has an initial capacity of 60% of the nominal capacity.
In E and F, 100% of the nominal capacity can be exhibited from the beginning.

【0028】また、図5に本発明電池D、E及びFと比
較電池R及びUのサイクル数と放電容量の関係を示す。
尚、測定条件は、実験1と同様である。
FIG. 5 shows the relationship between the number of cycles and the discharge capacity of the batteries D, E and F of the present invention and the comparative batteries R and U.
The measurement conditions are the same as in Experiment 1.

【0029】さらに、図6に、本発明電池D、E及びF
と比較電池R及びUの正極、負極及びセパレータにおけ
る液量分布の結果を示す。
FIG. 6 shows the batteries D, E and F of the present invention.
5 shows the results of the liquid amount distribution in the positive electrode, the negative electrode, and the separator of Comparative Batteries R and U.

【0030】図4、図5、図6より、本発明電池D、E
及びFは実験1と同様な効果を示す。これは、加温によ
る電解液の電池内における拡散と水素吸蔵合金への濡れ
やすさが、超音波の振動による方法と同様な拡散効果が
あることを示している。
From FIGS. 4, 5 and 6, the batteries D and E of the present invention are shown.
And F show the same effect as Experiment 1. This indicates that the diffusion of the electrolytic solution in the battery due to the heating and the wettability to the hydrogen storage alloy have the same diffusion effect as that of the method using the ultrasonic vibration.

【0031】また、120℃以上の加温について、これ
以上の温度では電極結着剤、セパレータに使用されてい
る界面活性剤の分解による電極の劣化が生じるためにサ
イクル初期の容量低下を生じる。
With respect to the heating at 120 ° C. or higher, if the temperature is higher than 120 ° C., the electrode is deteriorated due to the decomposition of the electrode binder and the surfactant used for the separator, so that the capacity is reduced at the beginning of the cycle.

【0032】(実験3)実験1で得た金属水素化物蓄電
池を50r.p.m.、100r.p.m、500r.
p.m.及び1000r.p.m.でそれぞれ回転させ
ることにより電池内の電解液を拡散させた。
(Experiment 3) The metal hydride storage battery obtained in Experiment 1 was used for 50 r. p. m. , 100r. p. m, 500r.
p. m. And 1000r. p. m. And the electrolyte solution in the battery was diffused.

【0033】図7にそれぞれの回転数による総回転数と
初期放電容量についての関係を示す。
FIG. 7 shows the relationship between the total number of rotations at each rotation speed and the initial discharge capacity.

【0034】図7より、100r.p.m.以上で10
00回転以上させることにより、初期放電容量は100
%の放電が可能となることが判る。
As shown in FIG. p. m. Above 10
By performing the rotation over 00 rotations, the initial discharge capacity becomes 100
% Discharge becomes possible.

【0035】次に、500r.p.m.で2000回転
させた本発明電池Gと500r.p.m.で500回転
させた比較電池Vと50r.p.m.で2000回転さ
せた比較電池Wのサイクル数と放電容量の関係及び正
極、負極及びセパレータにおける液量分布の関係を図8
及び図9に示す。
Next, at 500r. p. m. Battery G of the present invention rotated 2000 times at 500 r. p. m. At 500 r. p. m. FIG. 8 shows the relationship between the number of cycles and the discharge capacity of the comparative battery W rotated 2000 times in FIG.
And FIG.

【0036】図7、図8及び図9より、100r.p.
m.以上で1000回転以上させた電池は実験1及び実
験2と同様な拡散効果を生じているものと考えられる。
From FIGS. 7, 8 and 9, 100 r. p.
m. Thus, it is considered that the battery that has been rotated 1000 times or more has the same diffusion effect as in Experiments 1 and 2.

【0037】[0037]

【発明の効果】本発明は、金属水素化物蓄電池の製造方
法において、金属水素化物蓄電池内の電解液を均一に拡
散させることができ、電池の初期充放電において、公称
容量の100%の放電が可能となるものであり、その工
業的価値は極めて大である。
According to the present invention, in the method for manufacturing a metal hydride storage battery, the electrolyte in the metal hydride storage battery can be uniformly diffused, and a discharge of 100% of the nominal capacity is performed in the initial charge and discharge of the battery. It is possible, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】超音波振動の波長の変化による電池の初期放電
容量の関係を示す図である。
FIG. 1 is a diagram showing the relationship between the initial discharge capacity of a battery and the change in the wavelength of ultrasonic vibration.

【図2】超音波振動による拡散工程を行った電池のサイ
クル数と放電容量の関係を示す図である。
FIG. 2 is a diagram showing the relationship between the number of cycles and the discharge capacity of a battery that has undergone a diffusion step by ultrasonic vibration.

【図3】超音波振動による拡散工程を行った電池の液量
分布を示す図である。
FIG. 3 is a diagram showing a liquid amount distribution of a battery that has been subjected to a diffusion step by ultrasonic vibration.

【図4】電池に与えた温度変化による電池の初期放電容
量の関係を示す図である。
FIG. 4 is a diagram showing a relationship between an initial discharge capacity of a battery and a temperature change given to the battery.

【図5】温度による拡散工程を行った電池のサイクル数
と放電容量の関係を示す図である。
FIG. 5 is a diagram showing the relationship between the number of cycles and the discharge capacity of a battery that has undergone a temperature diffusion step.

【図6】温度による拡散工程を行った電池の液量分布を
示す図である。
FIG. 6 is a diagram showing a liquid amount distribution of a battery that has undergone a temperature-based diffusion step.

【図7】各回転数による総回転数と電池の初期放電容量
の関係を示す図である。
FIG. 7 is a diagram showing the relationship between the total number of rotations at each rotation number and the initial discharge capacity of the battery.

【図8】回転による拡散工程を行った電池のサイクル数
と放電容量の関係を示す図である。
FIG. 8 is a diagram showing the relationship between the number of cycles and the discharge capacity of a battery that has undergone a diffusion process by rotation.

【図9】回転による拡散工程を行った電池の液量分布を
示す図である。
FIG. 9 is a diagram showing a liquid amount distribution of a battery that has been subjected to a diffusion process by rotation.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三木 基弘 守口市京阪本通2丁目18番地 三洋電機 株式会社内 (56)参考文献 特開 平3−53448(JP,A) 特開 昭59−134558(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 2/36 - 2/38 H01M 10/04,10/28,10/34 ──────────────────────────────────────────────────続 き Continued on the front page (72) Motohiro Miki 2-18-18 Keihanhondori, Moriguchi City Sanyo Electric Co., Ltd. (56) References JP-A-3-53448 (JP, A) JP-A-59-134558 (JP, A) (58) Fields surveyed (Int. Cl. 6 , DB name) H01M 2/36-2/38 H01M 10 / 04,10 / 28,10 / 34

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素吸蔵合金からなる負極と、正極と、
電解液とを備えた金属水素化物蓄電池の製造方法におい
て、電解液注液後、電池缶の封口を行い密閉して電池を
組立てた後、前記電解液を電池内部で拡散させる方法と
して超音波振動、加温、回転の少なくとも一つによる拡
散工程を有することを特徴とする金属水素化物蓄電池の
製造方法。
1. A negative electrode comprising a hydrogen storage alloy, a positive electrode,
In a method for producing a metal hydride storage battery comprising an electrolyte, after injecting the electrolyte, the battery can is sealed and sealed to close the battery.
A method of manufacturing a metal hydride storage battery, comprising a diffusion step by at least one of ultrasonic vibration, heating and rotation as a method of diffusing the electrolyte solution inside the battery after assembling .
【請求項2】 前記拡散工程において、超音波による振
動の波長が30kHz以上であり、電池を加温する温度
が60℃以上100℃以下であり、電池を回転させる回
転数が100r.p.m.以上でかつ1000回転以上
であることを特徴とする請求項1記載の金属水素化物蓄
電池の製造方法。
2. In the diffusion step, the wavelength of vibration by ultrasonic waves is 30 kHz or more, the temperature for heating the battery is 60 ° C. or more and 100 ° C. or less, and the number of rotations for rotating the battery is 100 rpm. p. m. The method for producing a metal hydride storage battery according to claim 1, wherein the rotation speed is not less than 1000 rotations.
JP3045108A 1991-03-11 1991-03-11 Method for manufacturing metal hydride storage battery Expired - Lifetime JP2975701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3045108A JP2975701B2 (en) 1991-03-11 1991-03-11 Method for manufacturing metal hydride storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3045108A JP2975701B2 (en) 1991-03-11 1991-03-11 Method for manufacturing metal hydride storage battery

Publications (2)

Publication Number Publication Date
JPH04282569A JPH04282569A (en) 1992-10-07
JP2975701B2 true JP2975701B2 (en) 1999-11-10

Family

ID=12710077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3045108A Expired - Lifetime JP2975701B2 (en) 1991-03-11 1991-03-11 Method for manufacturing metal hydride storage battery

Country Status (1)

Country Link
JP (1) JP2975701B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102340034A (en) * 2011-09-29 2012-02-01 深圳市创明电池技术有限公司 Method and equipment for activating lithium ion battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101300591B1 (en) * 2010-09-30 2013-08-27 주식회사 엘지화학 Method and apparatus for improving permeation of electroly for secondary battery
CN106960981B (en) * 2017-04-06 2019-06-21 珠海光宇电池有限公司 The aging method of battery core

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102340034A (en) * 2011-09-29 2012-02-01 深圳市创明电池技术有限公司 Method and equipment for activating lithium ion battery

Also Published As

Publication number Publication date
JPH04282569A (en) 1992-10-07

Similar Documents

Publication Publication Date Title
JP2730121B2 (en) Alkaline secondary battery and manufacturing method thereof
KR100224464B1 (en) Alkaline secondary battery manufacturing method, alkaline secondary battery positive electrode, alkaline secondary battery, and a method of manufacturing an initially charged alkaline secondary battery
JP2975701B2 (en) Method for manufacturing metal hydride storage battery
JPH10162811A (en) Electrode material for battery and secondary battery
JPH0582024B2 (en)
JP3113345B2 (en) Hydrogen storage alloy electrode
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2877493B2 (en) Activation treatment device
JP2989877B2 (en) Nickel hydride rechargeable battery
JP3071003B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2629807B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JPH05283071A (en) Activation of metal hydride storage battery
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2857148B2 (en) Construction method of sealed nickel-hydrogen storage battery
JPH1167264A (en) Manufacture of nickel-hydrogen storage battery
JPH11191410A (en) Sealed alkaline storage battery
JPH0815078B2 (en) Method for manufacturing hydrogen storage electrode
JP3222902B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3827023B2 (en) Hydrogen storage electrode and method for manufacturing the same
JP3118812B2 (en) Alkaline storage battery
JP2854109B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH10199565A (en) Manufacture of alkaline secondary battery and alkaline secondary battery manufactured thereby
JP3018879B2 (en) Chemical formation method of paste-type cadmium anode
JP2823303B2 (en) Hydrogen storage alloy electrode

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 12