JPH05325978A - Nickel sintered substrate and manufacture thereof for alkaline storage battery - Google Patents

Nickel sintered substrate and manufacture thereof for alkaline storage battery

Info

Publication number
JPH05325978A
JPH05325978A JP4127559A JP12755992A JPH05325978A JP H05325978 A JPH05325978 A JP H05325978A JP 4127559 A JP4127559 A JP 4127559A JP 12755992 A JP12755992 A JP 12755992A JP H05325978 A JPH05325978 A JP H05325978A
Authority
JP
Japan
Prior art keywords
nickel powder
nickel
sintered substrate
mixed
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4127559A
Other languages
Japanese (ja)
Inventor
Takayuki Kitano
隆之 北野
Makoto Konishi
真 小西
Mitsunori Oda
光徳 織田
Seiji Tsunoda
誠司 角田
Mitsuru Koseki
満 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP4127559A priority Critical patent/JPH05325978A/en
Publication of JPH05325978A publication Critical patent/JPH05325978A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a sintered substrate for an alkaline storage battery wherein peeling strength can be highly maintained even when porosity is improved by increasing mixing ratio of nickel powder of large mean grain size. CONSTITUTION:A sintered substrate is manufactured by using nickel slurry contained with mixed nickel powder of mixing the first nickel powder of 0.5 to 1.5mum Fischer grain size and o.4o to 0.65g/cm<3> bulk density with the second nickel powder of 2.5 to 4.0mum Fischer grain size and 0.30 to 0.52g/cm<3> bulk density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルカリ蓄電池用ニッ
ケル焼結基板及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel sintered substrate for an alkaline storage battery and a method for manufacturing the same.

【0002】[0002]

【従来の技術】一般にアルカリ蓄電池用ニッケル焼結基
板を製造する場合には、ニッケル粉末と粘結剤と水とを
混合してニッケルスラリーを作り、ニッケルまたはニッ
ケルメッキ鉄穿孔板の芯材にニッケルスラリーを塗着し
た後、乾燥及び焼結の工程を経て芯材に焼結体を形成し
ている。従来の製造方法では、嵩密度が0.50〜0.
65g/cm3 でフィッシャー粒子径が2.2〜2.8μm
の粉末からなるニッケル粉末を用いていた。このニッケ
ル粉末を用いて、還元雰囲気中で800〜900℃の温
度でニッケルスラリーを焼結した場合の焼結板の多孔度
は、79〜81%であった。電極活物質は、焼結基板の
空隙(多孔部)に充填されるため、焼結基板の多孔度が
高いほど電池の容量を大きくできる。そこで、従来より
焼結基板の多孔度を増加させる方法が種々提案されてい
る。例えば、焼結基板の多孔度を増加させる方法とし
て、焼結温度を低くし、焼結時間を短くして焼結する方
法が提案されている。しかしながら、この方法で得た焼
結基板は強度が極端に低いという問題がある。またニッ
ケルスラリーに造孔剤を混合する方法が提案されている
(特開昭58−66267号公報等)。この方法で用い
る造孔剤としては、セルロース、ポリスチレン等の可燃
焼失性の有機物を材料として形成されたものを用いてお
り、造孔剤は焼結の際に分解して焼失する。その結果、
造孔剤が焼失した部分が空孔となり基板の多孔度が増大
する。しかしながら、この造孔剤を用いる方法では、焼
結前の乾燥段階で造孔剤が膨脹して分解してしまい、多
孔度にばらつきが生じたり、多孔度が十分に高くならな
いという問題がある。
2. Description of the Related Art Generally, when manufacturing a nickel sintered substrate for an alkaline storage battery, a nickel slurry is prepared by mixing nickel powder, a binder and water, and nickel is used as a core material of nickel or a nickel-plated iron perforated plate. After applying the slurry, a sintered body is formed on the core material through the steps of drying and sintering. In the conventional manufacturing method, the bulk density is 0.50 to 0.
Fisher particle size is 2.2-2.8 μm at 65 g / cm 3.
The nickel powder which consisted of the above powder was used. When this nickel powder was used to sinter nickel slurry at a temperature of 800 to 900 ° C. in a reducing atmosphere, the porosity of the sintered plate was 79 to 81%. Since the electrode active material is filled in the voids (porous portions) of the sintered substrate, the higher the porosity of the sintered substrate, the larger the capacity of the battery. Therefore, various methods for increasing the porosity of the sintered substrate have been conventionally proposed. For example, as a method of increasing the porosity of a sintered substrate, a method of lowering the sintering temperature and shortening the sintering time has been proposed. However, the sintered substrate obtained by this method has a problem of extremely low strength. In addition, a method of mixing a pore-forming agent with nickel slurry has been proposed (Japanese Patent Laid-Open No. 58-66267). As the pore-forming agent used in this method, a material made of a combustible and decomposable organic material such as cellulose or polystyrene is used, and the pore-forming agent decomposes and burns out during sintering. as a result,
The portion where the pore-forming agent is burnt out becomes pores, and the porosity of the substrate increases. However, in the method using this pore forming agent, there is a problem that the pore forming agent expands and decomposes in the drying stage before sintering, resulting in uneven porosity or insufficient increase in porosity.

【0003】そこで、造孔剤を用いずに、多孔度を高く
する方法として、特開平2−139864号公報に示さ
れるように、平均粒子径2.2〜2.8μm のニッケル
粉末と平均粒子径3.0〜4.0μm のニッケル粉末と
を混合した混合ニッケル粉末を用いて焼結基板を製造す
ることが提案された。この公報に示された発明では、次
のような理由から粒子径の異なるニッケル粉末を用いて
いる。まず平均粒子径の大きいニッケル粉末(3.0〜
4.0μm )のみを用いて焼結基板を製造すると、焼結
基板の多孔度を高めることができる。しかしながら、焼
結体の幹が太くなって焼結基板のフレキシブル性が減少
し、焼結体の芯材に対する引き剥がし強度が低下すると
いう問題が生じる。これとは逆に平均粒子径の小さいニ
ッケル粉末(2.2〜2.8μm )のみを用いて焼結基
板を製造すると、焼結基板のフレキシブル性が増加し、
焼結体の芯材に対する引き剥がし強度を高く維持するこ
とができる。しかしながら、焼結体の幹が細くなるの
で、焼結時に収縮が進行し易く、多孔度の低下を招きや
すい。そこで、この公報に示された発明では両者のニッ
ケル粉末を混合した混合ニッケル粉末を用いることによ
り、各ニッケル粉末だけを用いた場合に生じる問題点を
補い、多孔度が高く、芯材に対する引き剥がし強度の高
い焼結基板を得ようとしている。具体的には、両ニッケ
ル粉末の配合比を1:1としている。そして、このよう
な配合比率の混合ニッケル粉末を用いて焼結基板を製造
すると、平均粒子径2.2〜2.8μm のニッケル粉末
によって形成された多孔度約80%の焼結部分と、平均
粒子径3.0〜4.0μm のニッケル粉末によって形成
された多孔度約88%の焼結部分とがそれぞれ分散して
形成されて、全体として平均約85%の多孔度の焼結体
を得ることができる。
Therefore, as a method for increasing the porosity without using a pore-forming agent, as disclosed in JP-A-2-139864, nickel powder having an average particle diameter of 2.2 to 2.8 μm and average particles are used. It has been proposed to manufacture a sintered substrate using mixed nickel powder mixed with nickel powder having a diameter of 3.0 to 4.0 μm. In the invention disclosed in this publication, nickel powders having different particle diameters are used for the following reasons. First, nickel powder with a large average particle size (3.0 to
If the sintered substrate is manufactured using only 4.0 μm), the porosity of the sintered substrate can be increased. However, there is a problem that the trunk of the sintered body becomes thick and the flexibility of the sintered substrate decreases, and the peeling strength of the sintered body from the core material decreases. On the contrary, when a sintered substrate is manufactured using only nickel powder (2.2 to 2.8 μm) having a small average particle size, the flexibility of the sintered substrate increases,
The peeling strength of the sintered body from the core material can be maintained high. However, since the trunk of the sintered body becomes thin, shrinkage easily progresses during sintering, and the porosity is likely to decrease. Therefore, in the invention disclosed in this publication, by using a mixed nickel powder in which both nickel powders are mixed, a problem that occurs when only each nickel powder is used is compensated for, the porosity is high, and the core material is peeled off. We are trying to obtain a sintered substrate with high strength. Specifically, the mixing ratio of both nickel powders is 1: 1. When a sintered substrate is manufactured using the mixed nickel powder having such a mixing ratio, a sintered portion having a porosity of about 80% formed by the nickel powder having an average particle diameter of 2.2 to 2.8 μm and an average A sintered portion having a porosity of about 88% formed of nickel powder having a particle diameter of 3.0 to 4.0 μm is dispersed and formed, and a sintered body having an average porosity of about 85% is obtained. be able to.

【0004】[0004]

【発明が解決しようとする課題】しかしながら従来の方
法で、多孔度が85%以上の焼結基板を製造するため
に、平均粒子径3.0〜4.0μm のニッケル粉末の量
を平均粒子径2.2〜2.8μm のニッケル粉末の量よ
り増加させると、焼結基板の引き剥がし強度が低下し
て、活物質の含浸・化成及び組立の工程で、芯材から焼
結体が剥がれたり、活物質が脱落するという問題が生じ
ることが判った。
However, in order to produce a sintered substrate having a porosity of 85% or more by the conventional method, the amount of nickel powder having an average particle size of 3.0 to 4.0 μm is changed to the average particle size. If the amount of nickel powder of 2.2 to 2.8 μm is increased, the peeling strength of the sintered substrate will decrease, and the sintered body will peel off from the core during the process of impregnation / formation and assembly of the active material. It was found that there is a problem that the active material falls off.

【0005】本発明の目的は、平均粒子径の大きいニッ
ケル粉末の混合比率を高くして多孔度を高めても、引き
剥がし強度を高く維持できるアルカリ蓄電池用焼結基板
及びその製造方法を提供することである。
An object of the present invention is to provide a sintered substrate for an alkaline storage battery which can maintain high peeling strength and a method for producing the same even if the porosity is increased by increasing the mixing ratio of nickel powder having a large average particle size. That is.

【0006】[0006]

【課題を解決するための手段】請求項1の発明では、ニ
ッケルスラリーを焼結してなるアルカリ蓄電池用ニッケ
ル焼結基板を対象として、嵩密度が0.40〜0.65
g/cm3 でフィッシャー粒子径が0.5〜1.5μm の第
1のニッケル粉末と、嵩密度が0.30〜0.52g/cm
3 でフィッシャー粒子径が2.5〜4.0μm の第2の
ニッケル粉末とを混合した混合ニッケル粉末を含有する
ニッケルスラリーを用いている。尚、フィッシャー粒子
径とは、周知の通りフィッシャー社のサブシーブサイザ
ー(商標)により測定した粒子径である。
According to a first aspect of the invention, a bulk density of 0.40 to 0.65 is intended for a nickel sintered substrate for an alkaline storage battery obtained by sintering a nickel slurry.
First nickel powder with g / cm 3 and Fisher particle size of 0.5-1.5 μm, and bulk density of 0.30-0.52 g / cm
In No. 3 , a nickel slurry containing a mixed nickel powder mixed with a second nickel powder having a Fisher particle size of 2.5 to 4.0 μm is used. The Fischer particle size is a particle size measured by Subsieve Sizer (trademark) manufactured by Fischer Co., as is well known.

【0007】請求項2の発明では、混合ニッケル粉末に
おける第1のニッケル粉末の含有量を5〜20重量%と
する。
According to the second aspect of the invention, the content of the first nickel powder in the mixed nickel powder is 5 to 20% by weight.

【0008】請求項3の発明では、ニッケル粉末と粘結
剤と水とを混合してニッケルスラリーを製造するスラリ
ー製造工程と、ニッケルスラリーを芯材に塗着して乾燥
した後、ニッケルスラリーを焼結する焼結工程とからな
るアルカリ蓄電池用ニッケル焼結基板を製造する方法を
対象として、嵩密度が0.40〜0.65g/cm3 でフィ
ッシャー粒子径が0.5〜1.5μm で凝集防止処理が
施された第1のニッケル粉末と、嵩密度が0.30〜
0.52g/cm3 でフィッシャー粒子径が2.5〜4.0
μm の第2のニッケル粉末とを混合した混合ニッケル粉
末をニッケル粉末として用いる。
According to the third aspect of the present invention, a slurry producing step of producing a nickel slurry by mixing nickel powder, a binder and water, and a step of applying the nickel slurry to a core material and drying the nickel slurry are performed. A method for producing a nickel sintered substrate for an alkaline storage battery, which comprises a sintering step of sintering, with a bulk density of 0.40 to 0.65 g / cm 3 and a Fisher particle size of 0.5 to 1.5 μm. The first nickel powder subjected to the agglomeration prevention treatment and the bulk density of 0.30
Fisher particle size is 0.5-4.0 at 0.52 g / cm 3.
A mixed nickel powder mixed with a second nickel powder of μm is used as the nickel powder.

【0009】[0009]

【作用】嵩密度が0.40〜0.65g/cm3 でフィッシ
ャー粒子径が0.5〜1.5μm の第1のニッケル粉末
と、嵩密度が0.30〜0.52g/cm3 でフィッシャー
粒子径が2.5〜4.0μm の第2のニッケル粉末とを
混合すると、第1のニッケル粉末と第2のニッケル粉末
とが繋がりあった2次粒子が形成される。しかもこの2
次粒子は前述の要件の範囲であれば、第1のニッケル粉
末の量を少なくして第2のニッケル粉末の量を多くして
も形成することができる。そのため請求項1の発明によ
れば、第2のニッケル粉末の混合比率を高くして、従来
よりも多孔度を高くしても、引き剥がし強度を高く維持
できる焼結基板を得ることができる。また、第1のニッ
ケル粉末は低い温度で、しかも短い時間で焼結すること
ができるので、本発明によれば焼結性が向上するという
利点もある。
The first nickel powder having a bulk density of 0.40 to 0.65 g / cm 3 and a Fischer particle size of 0.5 to 1.5 μm, and a bulk density of 0.30 to 0.52 g / cm 3 When mixed with a second nickel powder having a Fischer particle diameter of 2.5 to 4.0 μm, secondary particles are formed in which the first nickel powder and the second nickel powder are connected to each other. And this 2
The secondary particles can be formed even if the amount of the first nickel powder is decreased and the amount of the second nickel powder is increased within the range of the above requirements. Therefore, according to the first aspect of the present invention, it is possible to obtain a sintered substrate in which the peeling strength can be maintained high even if the mixing ratio of the second nickel powder is increased and the porosity is increased as compared with the prior art. Further, since the first nickel powder can be sintered at a low temperature and in a short time, the present invention also has an advantage of improving sinterability.

【0010】請求項2の発明のように、第1のニッケル
粉末の含有量を5〜20重量%とすると、引き剥がし強
度を十分に高く維持できる範囲内で85%以上の多孔度
を得ることができる。
When the content of the first nickel powder is 5 to 20% by weight as in the second aspect of the present invention, a porosity of 85% or more is obtained within a range in which the peel strength can be maintained sufficiently high. You can

【0011】請求項3の発明によれば、第1のニッケル
粉末として凝集防止処理が施されたものを用いるので、
第1のニッケル粉末を第2のニッケル粉末にほぼ均一に
混ぜ合わせることができる。そのため、多孔度が高く、
引き剥がし強度の高い焼結基板を得ることができる。ま
た、第1のニッケル粉末が第2のニッケル粉末にほぼ均
一に混るので、本発明によれば焼結性が向上するという
利点がある。
According to the third aspect of the present invention, since the first nickel powder subjected to the agglomeration prevention treatment is used,
The first nickel powder can be mixed with the second nickel powder almost uniformly. Therefore, the porosity is high,
A sintered substrate with high peel strength can be obtained. Moreover, since the first nickel powder is mixed almost uniformly with the second nickel powder, the present invention has an advantage that the sinterability is improved.

【0012】[0012]

【実施例】本発明の実施例を図面を参照して詳細に説明
する。実施例では、焼結基板を次のようにして製造し
た。まず図1のAの分布範囲にある嵩密度が0.40〜
0.65g/cm3 でフィッシャー粒子径が0.5〜1.5
μm の第1のニッケル粉末と、図1のBの分布範囲にあ
る嵩密度が0.30〜0.52g/cm3 でフィッシャー粒
子径が2.5〜4.0μm の第2のニッケル粉末とを第
1のニッケル粉末の含有量が5〜20重量%になるよう
に混合して混合ニッケル粉末を作った。図2(A)及び
(B)に示した第1のニッケル粉末及び第2のニッケル
粉末の状態から判るように、それぞれの粉末は、1次粒
子A1,B1が凝集して2次粒子A2,B2を形成して
いる。本実施例で用いる第1のニッケル粉末はできるだ
け凝集率が少ないものが好ましい。そこで本実施例で
は、第1のニッケル粉末として、凝集防止処理を施した
ものを用いた。凝集防止処理は次のようにして行った。
まずポリテトラフロロエチレン(PTFE)ディスバー
ジョン(商品名:D−1)の水溶液(PTFE固形分で
0.1wt%)に所定量の第1のニッケル粉末を加えた混
合溶液を作り、この混合溶液を30分間超音波により振
動させた。次に、この混合溶液をろ過して第1のニッケ
ル粉末を抽出し、この第1のニッケル粉末から十分に水
分を取り除いた後に、100℃の温度で十分に乾燥して
凝集防止処理を完了した。凝集防止処理を施した第1の
ニッケル粉末を第2のニッケル粉末と混合する場合に
は、第1のニッケル粉末を篩に通して第2のニッケル粉
末上に振り掛けて混合する。篩にかけるのは、第1のニ
ッケル粉末をできるだけ分散させて、第2のニッケル粉
末と混合するためである。第1のニッケル粉末に付着し
たPTFEは量が極めて少なく、しかも焼結時に分解し
て消失する。尚、凝集防止処理を施していない第1のニ
ッケル粉末を篩を用いてよいのは勿論である。その場合
には、前述と同様に第1のニッケル粉末を篩を通して第
2のニッケル粉末上に振り掛けて、第1のニッケル粉末
と第2のニッケル粉末とを混合する。篩を通すことによ
って凝集して径の大きくなった粒子を排除しながら、第
1のニッケル粉末を分散させれば、第1のニッケル粉末
と第2のニッケル粉末とが混合する際に第1のニッケル
粉末の一部が凝集する虞があるものの実用に供すること
ができる。図3はこのようにして混合した第1のニッケ
ル粉末と第2のニッケル粉末との混合ニッケル粉末の粒
子を示す模式図である。この図に示すように、第1のニ
ッケル粉末の1次粒子A1と第2のニッケル粉末の1次
粒子B1とが繋がりあった2次粒子Cにより混合ニッケ
ル粉末が形成されている。
Embodiments of the present invention will be described in detail with reference to the drawings. In the example, the sintered substrate was manufactured as follows. First, the bulk density in the distribution range of A in FIG.
Fisher particle size is 0.5 to 1.5 at 0.65 g / cm 3.
1 μm of the first nickel powder and a second nickel powder having a bulk density of 0.30 to 0.52 g / cm 3 and a Fischer particle diameter of 2.5 to 4.0 μm in the distribution range of FIG. 1B. Was mixed so that the content of the first nickel powder was 5 to 20% by weight to prepare a mixed nickel powder. As can be seen from the states of the first nickel powder and the second nickel powder shown in FIGS. 2 (A) and 2 (B), the primary particles A1 and B1 are aggregated to form the secondary particles A2. B2 is formed. It is preferable that the first nickel powder used in this example has a minimum agglomeration rate. Therefore, in the present embodiment, as the first nickel powder, one subjected to a coagulation prevention treatment was used. The aggregation prevention treatment was performed as follows.
First, a mixed solution is prepared by adding a predetermined amount of the first nickel powder to an aqueous solution of polytetrafluoroethylene (PTFE) disversion (trade name: D-1) (0.1 wt% in PTFE solid content), and the mixed solution Was sonicated for 30 minutes. Next, this mixed solution was filtered to extract the first nickel powder, and after sufficiently removing water from the first nickel powder, it was sufficiently dried at a temperature of 100 ° C. to complete the aggregation prevention treatment. .. When mixing the first nickel powder subjected to the agglomeration prevention treatment with the second nickel powder, the first nickel powder is passed through a sieve and sprinkled on the second nickel powder to mix. The reason for sieving is that the first nickel powder is dispersed as much as possible and mixed with the second nickel powder. The amount of PTFE attached to the first nickel powder is extremely small, and it decomposes and disappears during sintering. Needless to say, a sieve may be used for the first nickel powder that has not been subjected to the aggregation prevention treatment. In that case, the first nickel powder is sprinkled on the second nickel powder through the sieve in the same manner as described above to mix the first nickel powder and the second nickel powder. If the first nickel powder is dispersed while eliminating particles that have agglomerated and increased in size by passing through a sieve, the first nickel powder and the second nickel powder can be mixed when the first nickel powder is mixed. Although the nickel powder may partly aggregate, it can be put to practical use. FIG. 3 is a schematic diagram showing particles of the mixed nickel powder of the first nickel powder and the second nickel powder thus mixed. As shown in this figure, the mixed nickel powder is formed by the secondary particles C in which the primary particles A1 of the first nickel powder and the primary particles B1 of the second nickel powder are connected to each other.

【0013】このようにして作った混合ニッケル粉末
を、粘結剤と水とを混合した適宜のバインダ水溶液と混
練してニッケルスラリーを作り、図4に概略的に示した
構成の製造ラインにより焼結基板を製造した。具体的に
説明すると、まずシート状の穿孔板1をニッケルスラリ
ーを入れた槽2に浸漬した。次に穿孔板1を槽2から引
き上げながら、スリット3により余分なニッケルスラリ
ーを欠き落とし、穿孔板1の両面のスラリーの厚さを調
節した。その後乾燥機4を通してスラリーを乾燥させた
後、還元雰囲気中で炉内温度が700〜1000℃の焼
結炉5で乾燥したスラリーを焼結して焼結基板を製造し
た。
The thus-prepared mixed nickel powder is kneaded with an appropriate binder aqueous solution in which a binder and water are mixed to prepare a nickel slurry, which is burned by a production line having a configuration schematically shown in FIG. A bonded substrate was manufactured. More specifically, first, the sheet-shaped perforated plate 1 was immersed in a tank 2 containing nickel slurry. Next, while pulling up the perforated plate 1 from the tank 2, the excess nickel slurry was cut off by the slits 3 to adjust the thickness of the slurry on both surfaces of the perforated plate 1. After that, the slurry was dried through a drier 4, and then the dried slurry was sintered in a sintering furnace 5 having a furnace temperature of 700 to 1000 ° C. in a reducing atmosphere to manufacture a sintered substrate.

【0014】次にこのように製造した本実施例の焼結基
板の特性を調べるためにSC型の2種類の電池D,Eを
作った。電池Dは第1のニッケル粉末の含有量が20重
量%になるように第1のニッケル粉末と第2のニッケル
粉末とを混合した混合ニッケル粉末を用いて製造した多
孔度86%の本実施例の焼結基板を用いて作った電池で
ある。電池Eは平均粒子径2.2〜2.8μm のニッケ
ル粉末と平均粒子径3.0〜4.0μm のニッケル粉末
とを1:1の重量比率で混合した混合ニッケル粉末を用
いて製造した従来の焼結基板を用いて作った電池であ
る。各電池D,Eに充放電を繰り返し200サイクル目
の放電特性(放電電流5C)を調べた。図5はその測定
結果を示している。本図より、本実施例の焼結基板を用
いた電池Dは、従来の焼結基板を用いた電池Eに比べて
放電容量及び放電電圧が高いのが判る。
Next, two types of SC type batteries D and E were made in order to investigate the characteristics of the sintered substrate of this example manufactured as described above. Battery D was manufactured by using a mixed nickel powder in which the first nickel powder and the second nickel powder were mixed so that the content of the first nickel powder was 20% by weight. It is a battery made using the sintered substrate of. Battery E was manufactured using a mixed nickel powder prepared by mixing nickel powder having an average particle diameter of 2.2 to 2.8 μm and nickel powder having an average particle diameter of 3.0 to 4.0 μm in a weight ratio of 1: 1. It is a battery made using the sintered substrate of. The batteries D and E were repeatedly charged and discharged, and the discharge characteristics (discharge current 5C) at the 200th cycle were examined. FIG. 5 shows the measurement result. From this figure, it is understood that the battery D using the sintered substrate of this example has higher discharge capacity and discharge voltage than the battery E using the conventional sintered substrate.

【0015】次に、混合ニッケル粉末における第1のニ
ッケル粉末の含有量と、焼結基板の多孔度及び強度との
関係を調べた。図6はその測定結果を示している。図に
おいて、曲線F1 及びF2 は、混合ニッケル粉末におけ
る第1のニッケル粉末の含有量を変えて製造した焼結基
板の多孔度の変化及び焼結体の芯材からの引き剥がし強
度の変化をそれぞれ示している。曲線G1 及びG2 は、
混合ニッケル粉末における、凝集防止処理を施さない第
1のニッケル粉末の含有量を変えて製造した焼結基板の
多孔度の変化及び焼結体の芯材からの引き剥がし強度の
変化をそれぞれ示している。尚、本試験に用いた焼結基
板は、第1のニッケル粉末に凝集防止処理を施こす点及
び混合ニッケル粉末における第1のニッケル粉末の含有
量を変えた点以外は、本実施例の焼結基板と同じように
して製造した。また、多孔度Pは細孔部を水で置換する
方法により求め、次式により算出した。
Next, the relationship between the content of the first nickel powder in the mixed nickel powder and the porosity and strength of the sintered substrate was investigated. FIG. 6 shows the measurement result. In the figure, curves F1 and F2 represent changes in porosity of the sintered substrate and changes in peel strength of the sintered body from the core material, respectively, produced by changing the content of the first nickel powder in the mixed nickel powder. Shows. The curves G1 and G2 are
The changes in the porosity of the sintered substrate and the changes in the peeling strength from the core material of the sintered body produced by changing the content of the first nickel powder not subjected to the agglomeration prevention treatment in the mixed nickel powder are respectively shown. There is. The sintered substrate used in this test was burned in this example except that the first nickel powder was subjected to a coagulation prevention treatment and the content of the first nickel powder in the mixed nickel powder was changed. It was manufactured in the same manner as the bonded substrate. Further, the porosity P was obtained by the method of substituting the pores with water and calculated by the following formula.

【0016】 P=(I−H)/{(H−J)/K+(I−H)} 上式において、Hは乾燥した焼結基板の重量であり、I
は細孔を水で置換した焼結基板の重量である。Jは穿孔
板の重量であり、Kは金属ニッケルの真密度である。ま
た、引き剥がし強度の測定は、米国Quad Grou
p社製のセバスチャンI型テスタにより測定した。
P = (I−H) / {(H−J) / K + (I−H)} In the above formula, H is the weight of the dried sintered substrate, and I
Is the weight of the sintered substrate with pores replaced with water. J is the weight of the perforated plate and K is the true density of metallic nickel. In addition, the peel strength is measured by Quad Group in the United States.
It was measured by a Sebastian type I tester manufactured by p.

【0017】本図から、混合ニッケル粉末における第1
のニッケル粉末の含有量を5〜20重量%とすると、引
き剥がし強度を十分に高く維持できる範囲内で多孔度の
高い焼結基板を得ることができるのが判る。ちなみに混
合ニッケル粉末における第1のニッケル粉末の含有量を
20重量%とすると曲線G1 及びG2 に示す焼結基板で
は多孔度が86.8%になり、引き剥がし強度が1.5
MPaになる。この引き剥がし強度は、捲回に十分耐え
得る引き剥がし強度である。そしてこの引き剥がし強度
は、従来の単体ニッケル粉末を用いた同多孔度(86.
8%)の焼結基板の5倍以上の引き剥がし強度であり、
従来の混合ニッケル粉末を用いた同多孔度(86.8
%)の焼結基板の2倍の引き剥がし強度である。
From this figure, the first in the mixed nickel powder
It can be seen that when the content of the nickel powder is 5 to 20% by weight, a sintered substrate having high porosity can be obtained within a range in which the peeling strength can be maintained sufficiently high. By the way, when the content of the first nickel powder in the mixed nickel powder is 20% by weight, the sintered substrate shown by the curves G1 and G2 has a porosity of 86.8% and a peel strength of 1.5.
It becomes MPa. The peeling strength is a peeling strength that can sufficiently endure winding. The peeling strength is the same as the porosity (86.
8%) has a peel strength of 5 times or more that of a sintered substrate,
Same porosity (86.8) using conventional mixed nickel powder
%), Which is twice the peel strength of the sintered substrate.

【0018】[0018]

【発明の効果】請求項1の発明によれば、第2のニッケ
ル粉末の混合比率を高くして従来よりも多孔度を高くし
ても、引き剥がし強度を高く維持できる焼結基板を得る
ことができる。そのため、本発明の焼結基板を用いると
放電容量が大きく、電池電圧の高い電池を得ることがで
きる。また、第1のニッケル粉末は低い温度で、しかも
短い時間で焼結することができるので、本発明によれば
焼結性が向上するという利点もある。
According to the first aspect of the present invention, it is possible to obtain a sintered substrate capable of maintaining high peeling strength even when the second nickel powder is mixed at a high mixing ratio to increase the porosity as compared with the prior art. You can Therefore, when the sintered substrate of the present invention is used, a battery having a large discharge capacity and a high battery voltage can be obtained. Further, since the first nickel powder can be sintered at a low temperature and in a short time, the present invention also has an advantage of improving sinterability.

【0019】請求項2の発明によれば、第1のニッケル
粉末の含有量を5〜20重量%とするので、引き剥がし
強度を十分に高く維持できる範囲内で85%以上の多孔
度を得ることができる。
According to the invention of claim 2, since the content of the first nickel powder is 5 to 20% by weight, a porosity of 85% or more is obtained within a range in which the peel strength can be maintained sufficiently high. be able to.

【0020】請求項3の発明によれば、第1のニッケル
粉末は凝集防止処理が施されているので、第1のニッケ
ル粉末を第2のニッケル粉末にほぼ均一に混ぜ合わせる
ことができる。そのため、多孔度が高く、引き剥がし強
度の高い焼結基板を得ることができる。また、第1のニ
ッケル粉末が第2のニッケル粉末にほぼ均一に混るの
で、本発明によれば焼結性が向上するという利点があ
る。
According to the third aspect of the present invention, the first nickel powder is subjected to the coagulation preventing treatment, so that the first nickel powder can be mixed with the second nickel powder almost uniformly. Therefore, a sintered substrate having high porosity and high peel strength can be obtained. Moreover, since the first nickel powder is mixed almost uniformly with the second nickel powder, the present invention has an advantage that the sinterability is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の焼結基板に用いる各ニッケル粉末の
粒子のフィッシャー粒子径と嵩密度の分布範囲を示す図
である。
FIG. 1 is a diagram showing distribution ranges of Fischer particle size and bulk density of particles of each nickel powder used for a sintered substrate of the present invention.

【図2】 (A)は第1のニッケル粉末の粒子を示す模
式図であり、(B)は第2のニッケル粉末の粒子を示す
模式図である。
FIG. 2A is a schematic diagram showing particles of a first nickel powder, and FIG. 2B is a schematic diagram showing particles of a second nickel powder.

【図3】 本発明の焼結基板に用いる混合ニッケル粉末
の粒子を示す模式図である。
FIG. 3 is a schematic diagram showing particles of a mixed nickel powder used for the sintered substrate of the present invention.

【図4】 本発明の焼結基板を製造する工程のラインの
一部を表した概略図である。
FIG. 4 is a schematic view showing a part of a process line for producing a sintered substrate of the present invention.

【図5】 充放電を繰り返した試験に用いた電池の放電
特性を示す図である。
FIG. 5 is a diagram showing discharge characteristics of a battery used in a test in which charging and discharging are repeated.

【図6】 混合ニッケル粉末における第1のニッケル粉
末の含有量と、焼結基板の多孔度及び強度との関係を示
す図である。
FIG. 6 is a diagram showing the relationship between the content of the first nickel powder in the mixed nickel powder and the porosity and strength of the sintered substrate.

【符号の説明】[Explanation of symbols]

1 穿孔板 2 槽 3 スリット 4 乾燥機 5 焼結炉 1 Perforated Plate 2 Tank 3 Slit 4 Dryer 5 Sintering Furnace

───────────────────────────────────────────────────── フロントページの続き (72)発明者 角田 誠司 東京都新宿区西新宿二丁目1番1号 新神 戸電機株式会社内 (72)発明者 小関 満 東京都新宿区西新宿二丁目1番1号 新神 戸電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Seiji Tsunoda 1-1-1, Nishishinjuku, Shinjuku-ku, Tokyo Inside Shin-Kindo Electric Co., Ltd. (72) Mitsuru Koseki 1-2-1, Nishishinjuku, Shinjuku-ku, Tokyo No. 1 Shinjin To Denki Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ニッケルスラリーを焼結してなるアルカ
リ蓄電池用ニッケル焼結基板であって、前記ニッケルス
ラリーは、嵩密度が0.40〜0.65g/cm3でフィッ
シャー粒子径が0.5〜1.5μm の第1のニッケル粉
末と、嵩密度が0.30〜0.52g/cm3 でフィッシャ
ー粒子径が2.5〜4.0μm の第2のニッケル粉末と
を混合した混合ニッケル粉末を含有していることを特徴
とするアルカリ蓄電池用ニッケル焼結基板。
1. A nickel sintered substrate for an alkaline storage battery, which is obtained by sintering a nickel slurry, wherein the nickel slurry has a bulk density of 0.40 to 0.65 g / cm 3 and a Fisher particle size of 0.5. Mixed nickel powder in which a first nickel powder having a particle size of ˜1.5 μm and a second nickel powder having a bulk density of 0.30 to 0.52 g / cm 3 and a Fischer particle size of 2.5 to 4.0 μm are mixed. A nickel sintered substrate for an alkaline storage battery, which comprises:
【請求項2】 前記混合ニッケル粉末における前記第1
のニッケル粉末の含有量は5〜20重量%であることを
特徴とする請求項1に記載のアルカリ蓄電池用ニッケル
焼結基板。
2. The first in the mixed nickel powder
The nickel sintered substrate for alkaline storage batteries according to claim 1, wherein the content of said nickel powder is 5 to 20% by weight.
【請求項3】 ニッケル粉末と粘結剤と水とを混合して
ニッケルスラリーを製造するスラリー製造工程と、前記
ニッケルスラリーを芯材に塗着して乾燥した後、前記ニ
ッケルスラリーを焼結する焼結工程とからなるアルカリ
蓄電池用ニッケル焼結基板の製造方法であって、 前記ニッケル粉末として、嵩密度が0.40〜0.65
g/cm3 でフィッシャー粒子径が0.5〜1.5μm で凝
集防止処理が施された第1のニッケル粉末と、嵩密度が
0.30〜0.52g/cm3 でフィッシャー粒子径が2.
5〜4.0μmの第2のニッケル粉末とを混合した混合
ニッケル粉末を用いることを特徴とするアルカリ蓄電池
用ニッケル焼結基板の製造方法。
3. A slurry manufacturing step of manufacturing a nickel slurry by mixing nickel powder, a binder and water, and applying the nickel slurry to a core material and drying it, and then sintering the nickel slurry. A method for producing a nickel sintered substrate for an alkaline storage battery, comprising a sintering step, wherein the nickel powder has a bulk density of 0.40 to 0.65.
The first nickel powder having a Fischer particle size of 0.5 to 1.5 μm at g / cm 3 and an anti-agglomeration treatment, and a bulk density of 0.30 to 0.52 g / cm 3 at a Fisher particle size of 2 .
A method for manufacturing a nickel sintered substrate for an alkaline storage battery, which comprises using a mixed nickel powder mixed with a second nickel powder having a size of 5 to 4.0 μm.
JP4127559A 1992-05-20 1992-05-20 Nickel sintered substrate and manufacture thereof for alkaline storage battery Withdrawn JPH05325978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4127559A JPH05325978A (en) 1992-05-20 1992-05-20 Nickel sintered substrate and manufacture thereof for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4127559A JPH05325978A (en) 1992-05-20 1992-05-20 Nickel sintered substrate and manufacture thereof for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH05325978A true JPH05325978A (en) 1993-12-10

Family

ID=14963021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4127559A Withdrawn JPH05325978A (en) 1992-05-20 1992-05-20 Nickel sintered substrate and manufacture thereof for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH05325978A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273293A (en) * 2006-03-31 2007-10-18 Sanyo Electric Co Ltd Method of manufacturing alkaline storage battery sintered substrate, and method of manufacturing alkaline storage battery
WO2012116156A2 (en) * 2011-02-23 2012-08-30 Sion Power Corporation Porous structures for energy storage devices
US8936870B2 (en) 2011-10-13 2015-01-20 Sion Power Corporation Electrode structure and method for making the same
US9005809B2 (en) 2009-08-28 2015-04-14 Sion Power Corporation Electrochemical cells comprising porous structures comprising sulfur
US9034421B2 (en) 2008-01-08 2015-05-19 Sion Power Corporation Method of forming electrodes comprising sulfur and porous material comprising carbon
US9077041B2 (en) 2012-02-14 2015-07-07 Sion Power Corporation Electrode structure for electrochemical cell
US9548492B2 (en) 2011-06-17 2017-01-17 Sion Power Corporation Plating technique for electrode
US9577267B2 (en) 2012-12-19 2017-02-21 Sion Power Corporation Electrode structure and method for making same
US10319988B2 (en) 2014-05-01 2019-06-11 Sion Power Corporation Electrode fabrication methods and associated systems and articles
US10629947B2 (en) 2008-08-05 2020-04-21 Sion Power Corporation Electrochemical cell
US11819919B2 (en) * 2019-09-20 2023-11-21 Rtx Corporation Oxidation resistant nickel braze putty

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273293A (en) * 2006-03-31 2007-10-18 Sanyo Electric Co Ltd Method of manufacturing alkaline storage battery sintered substrate, and method of manufacturing alkaline storage battery
US9034421B2 (en) 2008-01-08 2015-05-19 Sion Power Corporation Method of forming electrodes comprising sulfur and porous material comprising carbon
US10629947B2 (en) 2008-08-05 2020-04-21 Sion Power Corporation Electrochemical cell
US9005809B2 (en) 2009-08-28 2015-04-14 Sion Power Corporation Electrochemical cells comprising porous structures comprising sulfur
US9419274B2 (en) 2009-08-28 2016-08-16 Sion Power Corporation Electrochemical cells comprising porous structures comprising sulfur
WO2012116156A2 (en) * 2011-02-23 2012-08-30 Sion Power Corporation Porous structures for energy storage devices
WO2012116156A3 (en) * 2011-02-23 2012-11-22 Sion Power Corporation Porous structures for energy storage devices
US9548492B2 (en) 2011-06-17 2017-01-17 Sion Power Corporation Plating technique for electrode
US11456459B2 (en) 2011-06-17 2022-09-27 Sion Power Corporation Plating technique for electrode
US8936870B2 (en) 2011-10-13 2015-01-20 Sion Power Corporation Electrode structure and method for making the same
US9040197B2 (en) 2011-10-13 2015-05-26 Sion Power Corporation Electrode structure and method for making the same
US9077041B2 (en) 2012-02-14 2015-07-07 Sion Power Corporation Electrode structure for electrochemical cell
US9577267B2 (en) 2012-12-19 2017-02-21 Sion Power Corporation Electrode structure and method for making same
US10319988B2 (en) 2014-05-01 2019-06-11 Sion Power Corporation Electrode fabrication methods and associated systems and articles
US11819919B2 (en) * 2019-09-20 2023-11-21 Rtx Corporation Oxidation resistant nickel braze putty

Similar Documents

Publication Publication Date Title
JPH05325978A (en) Nickel sintered substrate and manufacture thereof for alkaline storage battery
JPS6250524B2 (en)
US3877986A (en) Rechargeable cell having improved cadmium negative electrode and method of producing same
US3158510A (en) Catalytic fuel cell electrode and method of making same
US5681673A (en) Alkaline secondary battery
US3108910A (en) Process for making electrodes or electrode elements for alkaline storage batteries an articles thus obtained
JP2962957B2 (en) Method for producing paste-type nickel plate for storage battery, storage battery and conductive material
US4430294A (en) Process for producing porous nickel bodies
US4975035A (en) Method of making a nickel hydroxide-containing cathode for alkaline batteries
JP3515251B2 (en) Method for producing positive electrode active material for alkaline storage battery
JPS6329450A (en) Manufacture of electrode for cell
JPH04296453A (en) Nickel sintered substrate for alkaline secondary battery
JPH01241755A (en) Manufacture of hydrogen storage alloy electrode
JPS5866267A (en) Manufacture of substrate for alkaline storage battery
JPH04359864A (en) Non-sintering nickel positive electrode and its manufacture
JP2918560B2 (en) Manufacturing method of hydrogen storage electrode
JPS61281461A (en) Alkaline zinc storage battery
JPS63105469A (en) Manufacture of nickel substrate for alkaline battery
JP4212129B2 (en) Nickel electrode for alkaline storage battery and method for producing the same
JPH09320583A (en) Nickel electrode
JP3369783B2 (en) Method for producing nickel hydroxide electrode for alkaline storage battery and alkaline storage battery
JPS6215994B2 (en)
JPH05205732A (en) Manufacture of anode plate for lead-acid battery
JPH05314988A (en) Sintered substrate for square alkaline storage battery and manufacture thereof
JPH0745277A (en) Alkaline storage battery use sintered cadmium negative plate and manufacture thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803