JPS58186161A - Negative electrode for alkaline battery - Google Patents

Negative electrode for alkaline battery

Info

Publication number
JPS58186161A
JPS58186161A JP57068356A JP6835682A JPS58186161A JP S58186161 A JPS58186161 A JP S58186161A JP 57068356 A JP57068356 A JP 57068356A JP 6835682 A JP6835682 A JP 6835682A JP S58186161 A JPS58186161 A JP S58186161A
Authority
JP
Japan
Prior art keywords
electrode
negative electrode
negative pole
paste
alkaline battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57068356A
Other languages
Japanese (ja)
Inventor
Yoshimasa Inaba
稲葉 吉尚
Shuichi Oyama
尾山 秀一
Kaichi Okami
岡見 加一
Junji Kuraki
椋木 淳二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57068356A priority Critical patent/JPS58186161A/en
Publication of JPS58186161A publication Critical patent/JPS58186161A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/742Meshes or woven material; Expanded metal perforated material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • H01M10/526Removing gases inside the secondary cell, e.g. by absorption by gas recombination on the electrode surface or by structuring the electrode surface to improve gas recombination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the gas absorbing capacity of a negative pole gas absorbing enclosed alkaline battery, by providing a resin layer composed of polytetra phloroethylene only on the electrode face or electrode face layer of a paste negative pole. CONSTITUTION:Fine powder of active substance and carbonickel powder or carbon powder as required is dissolved in solution where thickener or binder such as polybinyl alcohol is dissolved in ethylene glycol to produce paste, which is applied uniformly on both sides of porous metallic supporter such as punching metal and dried, then electrolyzed in alkali solution and activated to produce a paste negative pole for alkaline battery and a resin layer of polytetra phloroethylene is provided only on the face or the face layer of the electrode in such a manner that fine powder of resin is applied uniformly on the surface of the electrode then pressure molded. In an enclosed alkaline battery of negative pole gas absorbing type employing the negative pole in accordance to the invention will cause no increase of inner pressure even when charging with 1hr rate or 30min rate or the lowering of capacity when discharging large current.

Description

【発明の詳細な説明】 本発明は、負極ガス吸収式の密閉形アルカリ蓄電池に利
用されるペースト式負極の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a paste type negative electrode used in a negative electrode gas absorption type sealed alkaline storage battery.

負極ガス吸収式の密閉形アルカリ蓄電池に用いられるペ
ースト式負極は、焼結式負極に比べて製造法がni’j
lで、エネルギー密度が高いなどの特徴をも−1ている
反面、特性面での制約が多いなどの問題もある。その中
の一つにガス吸収電極としての機能がある。従来ペース
ト式負極は、活物質粉末を・結着剤、増粘剤、溶媒とと
もに混練してペースト状とし7、多孔性支持体の両側に
塗布、乾燥して得られるものであったが、この方法で得
”vtlる負極のガス吸収能力はそれほど高いものでな
く、特に大電流での短時間充電には不向きであった。
The paste type negative electrode used in negative electrode gas absorption type sealed alkaline storage batteries has a manufacturing method that is ni'j compared to the sintered type negative electrode.
Although it has characteristics such as high energy density -1, it also has problems such as many restrictions in terms of characteristics. One of these functions is as a gas absorption electrode. Conventionally, paste-type negative electrodes were obtained by kneading active material powder with binders, thickeners, and solvents to form a paste7, coating it on both sides of a porous support, and drying it. The gas absorption capacity of the negative electrode obtained by this method was not so high, and it was particularly unsuitable for short-time charging with a large current.

電極中にポリテトラフロロエチレン樹脂を含1せること
は、アルカリ蓄電池用ペースト式負極に限らず広く行な
われている。アルカリ蓄電池用ペースト式負極に対して
も、活物質粉末中にポリテトラフロロエチレン樹脂の粉
末を混入したり、ポリテトラフロロエチレン樹脂の水性
ディスパージョンに電+ijf浸漬し乾燥処理して用い
ているが、これは特に強度の確保を目的としたものであ
り、ガス吸収能力の同上に対しては十分とはいえなか、
Inclusion of polytetrafluoroethylene resin in an electrode is widely used not only in paste-type negative electrodes for alkaline storage batteries. Paste-type negative electrodes for alkaline storage batteries are also used by mixing polytetrafluoroethylene resin powder into the active material powder, or by immersing the material in an aqueous dispersion of polytetrafluoroethylene resin and drying it. This is especially aimed at ensuring strength, and it cannot be said to be sufficient for the same gas absorption capacity.
.

た。活物質粉末中にポリテトラフロロエチレン樹脂の粉
末を混入した場合、強度の向上は著しいが、ガス吸収能
力の向上はほとんど期待できない。またポリテトラフロ
ロエチレン樹脂の水性ディスパージョンに電極を浸漬し
乾燥処理する場合は、強度の向上は著しくはないが、ガ
ス吸収能力(1回1−する。しかし、反面電極の撥水性
が増加するために、放電特性の低下、内部抵抗の増加が
著しくなり問題かある。
Ta. When polytetrafluoroethylene resin powder is mixed into the active material powder, the strength is significantly improved, but hardly any improvement in gas absorption capacity can be expected. In addition, when electrodes are immersed in an aqueous dispersion of polytetrafluoroethylene resin and then dried, the strength is not significantly improved, but the gas absorption capacity (1 - 1 time per time) is increased.However, on the other hand, the water repellency of the electrodes increases. Therefore, there is a problem in that the discharge characteristics deteriorate and the internal resistance increases significantly.

本発明は、アルカリ蓄電池用ペースト式負極の電極ノ<
+(6−4だは電極表面層に限定してポリテトラフロロ
エチレンよりなる樹脂層を設けることにより、負極ガス
吸収式の密閉形アルカリ蓄電池のガス吸収能力を他の特
性、例えば放電特性を低下させず(6人幅に向上させる
ことを目的としている。
The present invention is directed to an electrode of a paste-type negative electrode for alkaline storage batteries.
+ (In 6-4, by providing a resin layer made of polytetrafluoroethylene only on the electrode surface layer, the gas absorption capacity of the negative electrode gas absorption type sealed alkaline storage battery is reduced, such as the discharge characteristics. (The aim is to improve the width to 6 people.

本発明(cl、活物質の微粉末と必要に応じてカーボ・
・ルエノケル粉末やカーボン粉末などの導電料ケ、ポリ
ビニルアルコールなどの増粘剤や結着剤をエチレングリ
コールなどの溶媒に溶かした溶液(こ?昆人し2てペー
スト状とし、パンチングメタルなどの全域の多(L性支
持体の両側に均一に塗布し乾脈しまた後、アルカリ溶液
中で電解等を行ない活性11′処F11(−てイjIら
れるアルカリ蓄電池用ペースト式1′↓伶のIL極衣面
捷たは電極表面層に限定してポリブトラン[]ロエチレ
ンの樹脂層を、例えば樹脂の做扮末ター電@I表面(で
均一に塗布した後加圧成型するlfど[2て設けた負極
である。本発明により得た1′↓徐と、−メタルなどを
活物質とする正極、及び正・負極間に介在するセパレー
タにより電+6シ群を構成し、金属容器に収納した後、
濃厚なアルカリ水溶液を遊離の液が生じない程に量的に
少なく規制して注入し、次いでフタをして密封した負極
ガス吸収式の密閉形アルカリ蓄電池は、1時間率ないし
0130分間率の大電流充電時においても「L池内部圧
力の上昇も少なく、また大電流充電時の容量低下も少な
いという特徴を有する。
The present invention (cl, fine powder of active material and carb.
・A solution prepared by dissolving conductive materials such as Lenokel powder and carbon powder, thickeners and binders such as polyvinyl alcohol in a solvent such as ethylene glycol (this solution is made into a paste and applied to all areas such as punched metal). After coating both sides of the L-type support uniformly and drying it, electrolysis etc. are performed in an alkaline solution to obtain an active 11'-treated F11 (-IL) for alkaline storage battery paste type 1'↓. A resin layer of polybutran[]roethylene is applied only to the electrode surface layer or the electrode surface layer, for example, by applying it uniformly with a resin layer and then press-molding it [2]. The 1'↓ group obtained according to the present invention, the positive electrode using a negative metal or the like as an active material, and the separator interposed between the positive and negative electrodes constitute an electrode group, and after being stored in a metal container. ,
A negative electrode gas absorption type sealed alkaline storage battery, in which a concentrated alkaline aqueous solution is injected in a controlled quantity so that no free liquid is produced, and then sealed with a lid, has a high rate of 1 hour to 0.130 minutes. Even during current charging, there is little increase in the internal pressure of the L battery, and there is also little capacity drop during high current charging.

以下、本発明G′こおける実施例を、円筒密閉形ニッケ
ル、カドミウムアルカリ蓄電池(Cサイス°。
Hereinafter, an embodiment of the present invention G' will be described as a sealed cylindrical nickel, cadmium alkaline storage battery (C size).

公称容量1650mA h )について、従来例と比較
し。
Compare the nominal capacity (1650 mAh) with the conventional example.

なから詳述する。酸化カドミウム粉末1001介部に対
してカーボニルニッケル粉末15重)、1部1合成樹脂
単繊維0.5重量部、エチレングリコール30重;、1
部(ζポリビニルアルコール0 、75 %(iHi部
をυ[1熱溶解した液を混練してペースト状とし−C1
こJlを100 t+の厚みの鉄にニッケルメッキを・
シフ1−開孔鉄板の両1tfll +で【E袷厚みが0
.6個となるよう(ζ塗面:、1−を調節して塗イ1]
シた後、約110℃にて乾燥する。次いてこの負極’f
3で38 >、260 rtanの・J“〃、に切断し
74−後、水酸化カリウム水溶液中で、3Aの通電rJ
i流で11寺間陰電解し、水洗によりアルカリ^除去し
てから乾燥する。こうして得た負極をB(f、’C来例
1)とする。次にこのBの負極の表面にポリテトラフロ
ロエチレンの微粉末全均一に薄く塗41i 1−、た後
、一定の圧力にて加圧成形する。このvt怜をA(本発
明における負極)とする。比較のfr−V)にBのi″
j極を、6重量%のポリテトラフロロエチレンの水性デ
ィスパージョンに3分間浸漬し/1−後乾燥して負極C
(従来例2)を得る。また前1、[2負極Bを得る過程
でペースト状とするときに、ポリテトラフロロエチレン
の微粉末5重量部を一緒に混入してイηられる負極をD
(従来例3)とする。
I will explain in detail. 15 parts carbonyl nickel powder per 100 parts cadmium oxide powder, 1 part 1 synthetic resin single fiber 0.5 parts by weight, 30 parts ethylene glycol;
part (ζ polyvinyl alcohol 0.75% (iHi part υ
This Jl is 100t+ thick iron plated with nickel.
Schiff 1 - Both 1tflll + of perforated iron plate [E liner thickness is 0
.. So that there are 6 pieces (ζ painting surface:, adjust 1- and paint 1]
After cooling, it is dried at about 110°C. Next, this negative electrode 'f
3 to 38>, 260 rtan ・J"
11 Terama negative electrolysis with i-stream, remove alkali^ by washing with water, and dry. The negative electrode thus obtained is designated as B(f, 'C Example 1). Next, a fine powder of polytetrafluoroethylene is coated uniformly and thinly on the surface of the negative electrode B, and then pressure molded at a constant pressure. This VT resistance is designated as A (negative electrode in the present invention). comparison fr-V) to B's i''
J electrode was immersed in an aqueous dispersion of 6% by weight polytetrafluoroethylene for 3 minutes/1- then dried to form negative electrode C.
(Conventional Example 2) is obtained. In addition, in the process of obtaining negative electrode B in the previous step 1, when making it into a paste, 5 parts by weight of polytetrafluoroethylene fine powder was mixed in with the negative electrode D.
(Conventional example 3).

こうしてイ!tた負極A、B、C,Dについて、焼結式
ニッケル極を正極、ナイロン不織布をセパレータと1−
て公称容量1660mA hの円筒密閉形ニラクル。カ
ドミウムアルカリ蓄電池を構成し、次のγ; f’l、
−tt枚電電試験行なった。
Like this! For the negative electrodes A, B, C, and D, the sintered nickel electrode was used as the positive electrode, and the nylon nonwoven fabric was used as the separator.
A sealed cylindrical Niracle with a nominal capacity of 1660mAh. A cadmium alkaline storage battery is constructed with the following γ; f'l,
-tt sheet electrical test was conducted.

+11flj’山試鹸 周囲温度を2部℃として、3.3Aの充電電流で急速充
電を行ない、この吉きの電池内部圧力の挙動を求めた。
The battery was rapidly charged at a charging current of 3.3 A at an ambient temperature of 2 parts Celsius, and the behavior of the battery's internal pressure was determined.

(2)放電試験 完全充電状態の電池を、周囲温度をo’cとして6Aの
放電電流で放電したときの放電曲線を求めた。
(2) Discharge test A discharge curve was obtained when a fully charged battery was discharged with a discharge current of 6 A at an ambient temperature of o'c.

以上の結果を図にまとめ、急速充電時の電池内部圧力の
挙動を第1図に、放電曲線を第2図に示す。
The above results are summarized in figures, and the behavior of the battery internal pressure during rapid charging is shown in Fig. 1, and the discharge curve is shown in Fig. 2.

この結果から明らかなように、本発明における負極Aを
用いた電池では、充電時も電池内部圧力が約2に9/−
までしか上昇せず、安定した急速充電特性を示している
とともに、放電−においても放電電圧が高く、持続時間
も長く優れた特性を示している。一方従来例における負
極B、C,Dは本発明における負極のように充放電特性
共に良好な結果を得るということはできなかった。
As is clear from this result, in the battery using the negative electrode A of the present invention, the internal pressure of the battery is approximately 2 to 9/- even during charging.
It shows stable rapid charging characteristics, with a high discharge voltage and long duration during discharging. On the other hand, negative electrodes B, C, and D in the conventional examples were not able to obtain good results in both charging and discharging characteristics like the negative electrodes in the present invention.

本発明における負極Aが充放電特性共に優れた特性が得
られるのは、概ね次のような理由によると思わノ]る。
The reason why the negative electrode A according to the present invention has excellent charging and discharging characteristics is believed to be mainly due to the following reasons.

すなわち、負極ガス吸収式のアルカリ蓄′「L池の充電
時のガス吸収能力を高めるためには、l、充電時に正極
から発生する酸素を迅速に負極−\拡散させることが必
要であるが、従来例の1少りえば、負極Bのような構成
では電極とセパレータとの境界而での電解液の保持量が
多くなり、酸素ガスの拡散が阻害されるためにガス吸収
能力に限界が生じるものと思われる。これに対して本発
明の1つに電極表面または電極表面層にポリテトラフロ
ロエチレンの樹脂層を設けると、ポリテトラフロロエチ
レン樹脂自体が撥水性を有し、かつガス透過例に優れて
いるので、電極とセパレータとの境界而での電解液の保
持量が少なくなり、酸素ガスの拡散が阻害されることも
なくなってガス吸収能力が向トするものと思われる。一
方従来例にJっ・ける負極Cもこの効果は同様であるが
、電極全体にポリテトラフロロエチレンの樹脂層が形成
さ71でいるために電極内に保持される電解液量が少な
くなり、放電特性に対して悪影響をあたえる。
In other words, in order to increase the gas absorption capacity of a negative electrode gas absorption type alkaline storage battery during charging, it is necessary to quickly diffuse oxygen generated from the positive electrode during charging into the negative electrode. If it is less than the conventional example, in a configuration like negative electrode B, the amount of electrolyte retained at the boundary between the electrode and the separator increases, and the diffusion of oxygen gas is inhibited, resulting in a limit to the gas absorption capacity. On the other hand, if one of the present inventions is to provide a polytetrafluoroethylene resin layer on the electrode surface or electrode surface layer, the polytetrafluoroethylene resin itself has water repellency and gas permeability. It is thought that the amount of electrolyte retained at the boundary between the electrode and separator will be reduced, and the diffusion of oxygen gas will no longer be inhibited, improving the gas absorption ability. For example, negative electrode C has the same effect, but since a polytetrafluoroethylene resin layer is formed over the entire electrode, the amount of electrolyte retained within the electrode is reduced, and the discharge characteristics have a negative impact on

土たDの負極はペースト中にポリテトラフロロエチレン
微粉末が均一分散し、負極表面の撥水性、ガス透過性を
高めないため、ガス吸収能力が乏しいと考えられる。本
発明における負極では電極捷たは電極表面層に限定して
ポリテトラフロロエチレンの樹脂層が形成されているた
めに、電極内部では電解液の保持量は適切であり、放電
特性に対して悪影響をあたえないものと思われる。
It is thought that the negative electrode of soil D has poor gas absorption ability because the polytetrafluoroethylene fine powder is uniformly dispersed in the paste and does not improve the water repellency and gas permeability of the negative electrode surface. In the negative electrode of the present invention, a polytetrafluoroethylene resin layer is formed only at the electrode edges or the electrode surface layer, so the amount of electrolyte retained inside the electrode is appropriate, and it has no negative effect on discharge characteristics. It seems that it does not give any.

このように本発明におけるアルカリ蓄電池用負極は、放
電特性を低下させずに大幅に急速充電特性を向上させた
ものである。
As described above, the negative electrode for alkaline storage batteries according to the present invention has significantly improved rapid charging characteristics without deteriorating discharge characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図1i本発明における負極を用いて構成した円筒密
閉形アルカリ蓄電池の急速充電時の電池内部圧力の挙動
を示す図、第2図1は低温での大電流放電時の放電曲線
を示す図である。 A・・・・・・本発明における負極、B・・・・・・従
来例1における負極、C・・・・・・従来例2における
負極、D・・・・・・従来例3における負極。
Fig. 1 1i A diagram showing the behavior of the battery internal pressure during rapid charging of a cylindrical sealed alkaline storage battery constructed using the negative electrode of the present invention. Fig. 2 1 is a diagram showing the discharge curve during large current discharge at low temperature. It is. A...Negative electrode in the present invention, B...Negative electrode in Conventional Example 1, C...Negative electrode in Conventional Example 2, D...Negative electrode in Conventional Example 3 .

Claims (1)

【特許請求の範囲】[Claims] ペースト状活物質を多孔性支持体の両側に塗着したペー
スト式負極の電極表面または電極表面層Oで限定してポ
リテトラフロロエチレンよりなる樹脂層を設けたことを
特徴とするアルカリ蓄電池用負極。
A negative electrode for an alkaline storage battery, characterized in that a resin layer made of polytetrafluoroethylene is provided on the electrode surface of a paste-type negative electrode in which a paste-like active material is applied on both sides of a porous support or on the electrode surface layer O. .
JP57068356A 1982-04-22 1982-04-22 Negative electrode for alkaline battery Pending JPS58186161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57068356A JPS58186161A (en) 1982-04-22 1982-04-22 Negative electrode for alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57068356A JPS58186161A (en) 1982-04-22 1982-04-22 Negative electrode for alkaline battery

Publications (1)

Publication Number Publication Date
JPS58186161A true JPS58186161A (en) 1983-10-31

Family

ID=13371444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57068356A Pending JPS58186161A (en) 1982-04-22 1982-04-22 Negative electrode for alkaline battery

Country Status (1)

Country Link
JP (1) JPS58186161A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63202857A (en) * 1987-02-17 1988-08-22 Sanyo Electric Co Ltd Cadmium electrode for alkaline storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63202857A (en) * 1987-02-17 1988-08-22 Sanyo Electric Co Ltd Cadmium electrode for alkaline storage battery
JPH0640489B2 (en) * 1987-02-17 1994-05-25 三洋電機株式会社 Cadmium electrode for alkaline storage battery

Similar Documents

Publication Publication Date Title
US3804674A (en) Oxygen electrode material
JPS58186161A (en) Negative electrode for alkaline battery
JPS61138458A (en) Alkaline battery
JPS58186164A (en) Manufacture of negative electrode for alkaline battery
JPH0429189B2 (en)
JPS58198856A (en) Manufacture of negative cadmium plate for alkaline storage battery
US3600226A (en) Method for making cadmium electrodes for nickel-cadmium cells
JP3249398B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPS58201271A (en) Sealed type alkaline storage battery
JPH04162353A (en) Seal alkaline secondary battery
JPS59165371A (en) Cathode plate for alkaline storage battery
JPS60158552A (en) Manufacture of paste type cadmium anode
JP2562640B2 (en) Cadmium electrode for alkaline storage battery
JPS5832745B2 (en) Manufacturing method of cadmium negative electrode plate for alkaline storage batteries
JPS63170851A (en) Cadmium electrode for alkaline storage battery
JPS59112571A (en) Manufacturing method of negative pole for alkaline battery
JPH06275278A (en) Hydrogen storage electrode for alkaline storage battery
JPH10334898A (en) Alkaline storage battery, its electrode and manufacture thereof
JPS61124060A (en) Paste type positive pole plate for alkaline storage battery
JPH0620717A (en) Manufacture of sealed nickel-cadmium storage battery
JPH06196163A (en) Alkaline storage battery
JPH01189862A (en) Manufacture of negative electrode plate for sealed type alkaline lead-acid battery
JPS60211770A (en) Positive electrode plate for alkaline battery
JPS60264049A (en) Alkali zinc battery
JPH0799052A (en) Alkaline storage battery