JPH04162353A - Seal alkaline secondary battery - Google Patents

Seal alkaline secondary battery

Info

Publication number
JPH04162353A
JPH04162353A JP2286221A JP28622190A JPH04162353A JP H04162353 A JPH04162353 A JP H04162353A JP 2286221 A JP2286221 A JP 2286221A JP 28622190 A JP28622190 A JP 28622190A JP H04162353 A JPH04162353 A JP H04162353A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
negative electrode
hydrogen
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2286221A
Other languages
Japanese (ja)
Other versions
JP2979624B2 (en
Inventor
Yoichi Nomura
洋一 野村
Toshiaki Konuki
利明 小貫
Takeshi Tsuda
武 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2286221A priority Critical patent/JP2979624B2/en
Publication of JPH04162353A publication Critical patent/JPH04162353A/en
Application granted granted Critical
Publication of JP2979624B2 publication Critical patent/JP2979624B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To prevent a rise of pressure in a battery at suddenly charging time with no deterioration of charging characteristic by using two kinds mixed as a hydrogen storage alloy of constituting a negative electrode, and applying a water repellent finish only to a part related to absorbing hydrogen gas at the suddenly charging time. CONSTITUTION:A negative electrode, having its capacity larger than capacity of a positive electrode and consisting of two kinds of hydrogen storage alloys of the first hydrogen storage alloy with a water repellent process applied to the surface and the second hydrogen storage alloy, is provided. The first hydrogen storage alloy, formed so as to come into no contact with an electrolyte by applying the water repellent finish to the surface, is used for a part of contributing to overcharge and rapid charge time and corresponding to so-called charge reserve, and the second hydrogen storage alloy is used for a part of contributing to normal charge/discharge. In this way, a rise of pressure in a battery by generating hydrogen gas at the time of sudden charge can be prevented with no deterioration of charge characteristic.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、水素吸蔵合金負極を用いた密閉形アルカリ二
次電池の、急速充電時における内部圧力の上昇防止に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to prevention of an increase in internal pressure during rapid charging of a sealed alkaline secondary battery using a hydrogen storage alloy negative electrode.

従来の技術 水素吸蔵合金負極を用いた密閉形アルカリ二次電池にお
けや充電時の内部圧力の上昇は、(イ)正極において発
生した酸素ガスに起因するものと(ロ)負極において充
電反応の副反応によって発生する水素ガスに起因fるも
のの二種類がある。
Conventional technology In a sealed alkaline secondary battery using a hydrogen storage alloy negative electrode, the increase in internal pressure during charging is due to (a) oxygen gas generated at the positive electrode and (b) charging reaction at the negative electrode. There are two types of reactions caused by hydrogen gas generated by side reactions.

1イ)に対する対策としては、正極から発生した酸素ガ
スを充電不十分の負極の表面で局部電池反応により消費
する方法が一般的であり、このために、負極の容量を正
極の容量よりも大きくするいわゆる充電リザーブを設け
ることが普通である。(ロ)に対する対策としては、水
素の吸蔵・放出平衡圧力が低い水素吸蔵合金を使用する
ことが一般的であり、基本となる水素吸蔵合金に種々の
元素を添加するのが普通である。たとえば、希土類系の
AB5型水素吸蔵合金の場合、アルミニウムやマンガン
、コバルト、ジルコニウムなどを添加する。
As a countermeasure against 1), a common method is to consume the oxygen gas generated from the positive electrode through a local battery reaction on the surface of the insufficiently charged negative electrode. It is common to provide a so-called charge reserve. As a countermeasure against (b), it is common to use a hydrogen storage alloy with a low equilibrium pressure for absorbing and releasing hydrogen, and it is common to add various elements to the basic hydrogen storage alloy. For example, in the case of a rare earth AB5 type hydrogen storage alloy, aluminum, manganese, cobalt, zirconium, etc. are added.

しかしながら、数分ないし数十分で完了する急速充電時
には、局部電池反応による酸素ガスの吸収が間に合わな
いばかりでなく、負極の充電反応の副反応である水素ガ
ス発生反応がおこり、主として水素ガスによる電池内圧
力の上昇がおこる。
However, during rapid charging, which can be completed in several minutes to tens of minutes, not only is the absorption of oxygen gas due to local cell reactions insufficient, but also a hydrogen gas generation reaction, which is a side reaction of the negative electrode charging reaction, occurs, and the hydrogen gas is mainly used. Pressure inside the battery increases.

この内部圧力の上昇を防止3”るためには、上述のよう
に水素吸蔵合金に種々の元素を添加するだけではなく、
水素吸蔵合金負極中のガスの拡散速度を大きくして、水
素吸蔵合金への水素ガスの吸蔵を促進する必要がある。
In order to prevent this increase in internal pressure, it is necessary not only to add various elements to the hydrogen storage alloy as described above, but also to
It is necessary to increase the diffusion rate of gas in the hydrogen storage alloy negative electrode to promote storage of hydrogen gas in the hydrogen storage alloy.

水素吸蔵合金負極中のガスの拡散を阻害する大きな要因
として、電解液による液膜が水素吸蔵合金表面を被うと
いう点がある。この点を改善するため、主として局部電
池反応による酸素ガス吸収の促進を目的として、(a)
水素吸蔵合金負極をフッ素樹脂ディスバージョンに浸漬
して表面に撥水性をもたせる方法(特開昭62−139
255号公報)および(bl水素吸蔵合金粉末を)′ツ
素樹脂により撥水処理したのち、親水性のバインダーを
もちいてペースト状とし、基体に充填して水素吸蔵合金
負極とする方法(特開平1−267960号公報)が提
案されている。すなわち、水素吸蔵合金表面が電解液に
よる液膜iこ覆われて水素ガスの拡散が阻害されること
を防ぎ、抗水性と親水性のバランスのもとに三相界面を
形成して主として酸素ガスの吸収を促進しようとするも
のである。
A major factor that inhibits the diffusion of gas in the hydrogen storage alloy negative electrode is that the surface of the hydrogen storage alloy is covered with a liquid film formed by the electrolyte. In order to improve this point, (a)
Method of imparting water repellency to the surface by immersing a hydrogen storage alloy negative electrode in fluororesin dispersion (Japanese Unexamined Patent Publication No. 62-139
No. 255) and (Japanese Patent Application Laid-Open No. 255-255), a method in which (bl hydrogen storage alloy powder) is treated with a water-repellent resin, made into a paste using a hydrophilic binder, and filled into a substrate to form a hydrogen storage alloy negative electrode. 1-267960) has been proposed. In other words, the surface of the hydrogen storage alloy is prevented from being covered with a liquid film by the electrolytic solution, which inhibits the diffusion of hydrogen gas, and a three-phase interface is formed with a balance between water resistance and hydrophilicity, which mainly absorbs oxygen gas. The aim is to promote the absorption of

発明が解決しようとする課題 しかしながら、(alの方法では、水素合金負極表面の
全体に撥水性が付与されるため、また、(blの方法で
は、水素合金負極を構成している全ての水素吸蔵合金粉
末の表面撥水性が付与されるため、電解液と接触する部
分すなわち充放電の電気化学反応に寄与する部分の実効
的な面積が小さくなる結果となり、電池の充放電特性、
特に放電性を損なう結果となる。
Problems to be Solved by the Invention However, in the method (al), water repellency is imparted to the entire surface of the hydrogen alloy negative electrode; Since the surface of the alloy powder is imparted with water repellency, the effective area of the part that comes into contact with the electrolyte, that is, the part that contributes to the electrochemical reaction of charging and discharging, becomes smaller, which reduces the charging and discharging characteristics of the battery.
In particular, this results in impaired discharge performance.

課題を解決するだめの手段 このような問題を解決するため、本発明においては、負
極を構成Tる水素吸蔵合金として二種類のものを混合し
てもちい、急速充電時における水素ガス吸収に係わる部
分にのみ撥水処理することにより、電解液による液膜の
形成を阻害し水素ガスの拡散を促進するものである。す
なわち、過充電および急速充電時に寄与する、いわゆる
充電リザーブに相当する部分には表面に撥水処理を施し
て電解液に接触しないようにした第一の水素吸蔵合金を
もちい、通常の充放電に寄与する部分には水素吸蔵合金
負極に普通に用いられる第二の水素吸蔵合金をもちいる
ものである。また、これらの組合わせの効果をより実用
的なものにするために−ζ− 上記第一の水素吸蔵合金として、水素の吸蔵・放出平衡
圧力が上記第二の水素吸蔵合金のそれよりも大きなもの
を用いるものである。
Means to Solve the Problems In order to solve these problems, in the present invention, two types of hydrogen storage alloys are used as the hydrogen storage alloy constituting the negative electrode, and the portion involved in hydrogen gas absorption during rapid charging is mixed. By applying water-repellent treatment only to the electrolyte, the formation of a liquid film by the electrolyte is inhibited and the diffusion of hydrogen gas is promoted. In other words, the part corresponding to the so-called charge reserve that contributes to overcharging and rapid charging uses the first hydrogen storage alloy whose surface is treated with water repellent treatment to prevent it from coming into contact with the electrolyte, and is used for normal charging and discharging. The contributing portion uses a second hydrogen storage alloy that is commonly used in hydrogen storage alloy negative electrodes. In addition, in order to make the effect of these combinations more practical -ζ- As the first hydrogen storage alloy, the hydrogen storage/release equilibrium pressure is higher than that of the second hydrogen storage alloy. It is something that uses things.

作用 これにより、水素吸蔵合金を負極に用いる密閉形アルカ
リ二次電池において、放電特性を損なうことなく急速充
電時の水素ガスの発生Cζよる電池内圧力の上昇を防止
することができる。
As a result, in a sealed alkaline secondary battery using a hydrogen storage alloy for the negative electrode, it is possible to prevent an increase in the internal pressure of the battery due to the generation of hydrogen gas Cζ during rapid charging without impairing the discharge characteristics.

実施例 本発明の一実施例を説明する。Example An embodiment of the present invention will be described.

水素吸蔵合金として、以下の[A]と〔B〕の合金を用
意した。
The following alloys [A] and [B] were prepared as hydrogen storage alloys.

(A)  Mm−N i −A を系合金。組成比(モ
ル比)   ′はMm:Ni:At=1:4.5:O−
5゜ただし、Mmはミツシュメタルである。
(A) Mm-N i -A based alloy. Composition ratio (molar ratio) ' is Mm:Ni:At=1:4.5:O-
5゜However, Mm is Mitsushi metal.

[B]  Mm−N i −Co −M n−A l系
合金。組3.6:0.6’:0.5:0.3である。こ
れらの合金のPTC線図を第4図に示す。第3図から、
水素の吸蔵・放出平衡圧力は[B]よりも(A)の方6
一 が大きいことがわかる。これらの合金を用いて、AA型
の密閉形アルカリ二次電池を組立てた。それぞれの水素
吸蔵合金は、50初/−の高圧水素雰囲気と真空雰囲気
を交互に繰返すいわゆる水素化粉砕により粉末とした。
[B] Mm-Ni-Co-Mn-A1 alloy. The set is 3.6:0.6':0.5:0.3. The PTC diagrams of these alloys are shown in FIG. From Figure 3,
The hydrogen absorption and release equilibrium pressure is higher in (A) than in [B]6
It turns out that one is larger. Using these alloys, an AA type sealed alkaline secondary battery was assembled. Each hydrogen storage alloy was made into powder by so-called hydrogen pulverization in which a high-pressure hydrogen atmosphere and a vacuum atmosphere of 50 mm/- were alternately repeated.

次に第一の水素吸蔵合金の撥水処理の方法を記す。水素
化粉砕した水素吸蔵合金粉末を、15%のポリテトラフ
ルオロエチレン(以下、FTFBと記す)を含むPTF
’Eディスバージョンとともに混練し、乾燥させたのち
アルゴン雰囲気中で350℃で焼成した。これをさらに
アルゴン雰囲気中で粉砕した粉末を用いた。第二の水素
吸蔵合金粉末としては、水素化粉砕しただけのものを用
いた。これらの水素吸蔵合金粉末を、PVA水溶液とと
もに混練してペースト状とし、発泡ニッケル基体に充填
して乾燥後6トン/cIIiでプレスしたものを水素吸
蔵合金負極とした。これらの水素負極と通常のニッケル
・カドミウム電池に用いられているニッケル正極と組合
わせて以下に示す6種類のAA型の密閉形アルカリ二次
電池を組立てた。
Next, a method for water-repellent treatment of the first hydrogen storage alloy will be described. PTF containing 15% polytetrafluoroethylene (hereinafter referred to as FTFB)
The mixture was kneaded with E-disversion, dried, and then fired at 350°C in an argon atmosphere. A powder obtained by further pulverizing this in an argon atmosphere was used. As the second hydrogen storage alloy powder, one that had just been hydrogenated and ground was used. These hydrogen storage alloy powders were kneaded with a PVA aqueous solution to form a paste, filled into a foamed nickel substrate, dried, and pressed at 6 tons/cIIi to obtain a hydrogen storage alloy negative electrode. Six types of AA type sealed alkaline secondary batteries shown below were assembled by combining these hydrogen negative electrodes with a nickel positive electrode used in ordinary nickel-cadmium batteries.

■ 第一の水素吸蔵合金として(A)を3Qwt%使用
し、第二の水素吸蔵合金として(B)を79wt%使用
した。
(2) 3Qwt% of (A) was used as the first hydrogen storage alloy, and 79wt% of (B) was used as the second hydrogen storage alloy.

■ 第一の水素吸蔵合金として(A)を5Qwt%使用
し、第二の水素吸蔵合金として(H)を50wt%使用
した。
(2) 5Qwt% of (A) was used as the first hydrogen storage alloy, and 50wt% of (H) was used as the second hydrogen storage alloy.

■ 第一の水素吸蔵合金として〔」3〕を3Qwt%使
用し、第二の水素吸蔵合金として〔B〕を70wt%使
用した。
(3) 3Qwt% of [3] was used as the first hydrogen storage alloy, and 70wt% of [B] was used as the second hydrogen storage alloy.

■ 撥水処理をしていないCB)のみを使用した。■ Only CB (without water repellent treatment) was used.

■ ■と同じ電極を、引例(alに従ってP ’1’ 
P Eディスバージョンに浸漬して撥水処理した。
■ The same electrode as ■ is used as P '1' according to the reference (al).
It was soaked in PE dispersion to make it water repellent.

■ 水素吸蔵合金としてCB)を用い、引例(blに従
って水素吸蔵合金負極を作製した。
(2) Using CB as the hydrogen storage alloy, a hydrogen storage alloy negative electrode was prepared according to the reference example (bl).

なお、いずれの電池も、負極の容量(低率放電容量)は
正極の容量に対して1.5倍となるようにした。
In addition, in each battery, the capacity of the negative electrode (low rate discharge capacity) was set to be 1.5 times the capacity of the positive electrode.

これらの電池を5CmAで15分間充電する急未形の電
池である■にくらべ、■〜■および■、■はいずれも内
部圧力の上昇が少なく、その効果は■が最も大きく、つ
いで■、■、■、■の順であることがわかった。一方、
第2図は■〜■および■、■の電池を50mA・15分
間の充電と3CmAの完全放電を繰返丁急速充電−高率
放電の繰返し試験を実施したときの充電終期における電
池内圧力の変化を示したものである。第2図の結果から
、この様な充放電の条件では、■の電池の充電終期にお
ける電池内圧力はほとんど変化しないが、■、■および
■、■の電池では、サイクル数とともに上昇し、とくに
■、■の電池の圧力上昇が大きいことがわかる。
Compared to ■, which is a rapidly unformed battery in which these batteries are charged at 5CmA for 15 minutes, ■~■, ■, and ■ all have a smaller increase in internal pressure, and the effect is greatest in ■, followed by ■, ■. , ■, ■. on the other hand,
Figure 2 shows the internal pressure of the battery at the end of charging when the batteries ■~■, ■, and ■ were repeatedly charged at 50 mA for 15 minutes and completely discharged at 3 CmA. It shows the change. From the results shown in Figure 2, under these charging and discharging conditions, the internal pressure of the battery (■) at the end of charging hardly changes, but for the batteries (■, ■, and ■, ■), it increases with the number of cycles, especially It can be seen that the pressure increase in the batteries ① and ② is large.

つぎに、第3図は、■〜■の電池の、初期における1c
mA電流による放電曲線を示したものである。第3図の
結果から、放電開始直後の電圧低下および放電容量にお
いて比較すると、いかなる撥水処理も施していない従来
形の電池である■にくらべ、■および■はほとんど差が
なく、■は第二の水素吸蔵合金が少ない分、容量が小さ
い。これに対し、■は放電開始直後の電圧低下がやや大
きく、■は放電開始直後の電圧低下および放電容量の両
方において特性が劣ることがわかった。
Next, Figure 3 shows the initial 1c
It shows a discharge curve according to mA current. From the results in Figure 3, when comparing the voltage drop and discharge capacity immediately after the start of discharge, there is almost no difference between ■ and ■ compared to ■, which is a conventional battery without any water repellent treatment, and ■ Since there is less hydrogen storage alloy in the second example, the capacity is smaller. On the other hand, it was found that the voltage drop immediately after the start of discharge was slightly large in the case ①, and the characteristics of the case ① were inferior in both the voltage drop immediately after the start of discharge and the discharge capacity.

発明の効果 以上述べてきたように、本発明においては、水素吸蔵合
金を負極にもちいた密閉形アルカリ二次電池において、
電池特性、特に放電特性を損なうことなく、急速充電時
の電池内圧力の上昇を防止することができる点、工業的
価値甚大である。
Effects of the Invention As described above, in the present invention, in a sealed alkaline secondary battery using a hydrogen storage alloy for the negative electrode,
The present invention has great industrial value in that it is possible to prevent the internal pressure of the battery from increasing during rapid charging without impairing the battery characteristics, especially the discharge characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は急速充電中の電池内圧力の変化の図、第2図は
急速充電−高率放電サイクル宙の電池内圧力の変化の図
、第3図は1cmA放電特性を示した図、第4図は、実
施例に示した合金[A)、(B)のPCT線図である。
Figure 1 is a diagram of changes in battery internal pressure during rapid charging, Figure 2 is a diagram of changes in battery internal pressure during a rapid charge-high rate discharge cycle, Figure 3 is a diagram showing 1 cmA discharge characteristics, FIG. 4 is a PCT diagram of alloys [A] and (B) shown in Examples.

Claims (1)

【特許請求の範囲】 1)負極の容量が正極の容量よりも大きな密閉形アルカ
リ二次電池であって、表面が撥水処理された第一の水素
吸蔵合金と第二の水素吸蔵合金との二種類の水素吸蔵合
金からなる負極を有し、負極容量の上記第一の水素吸蔵
合金に起因する部分が、正極の容量に対する負極容量の
過剰分すなわちいわゆる充電リザーブ量を越えないこと
を特徴とする密閉形アルカリ二次電池。 2)上記第一の水素吸蔵合金と第二の水素吸蔵合金の組
成が異なっており、上記第一の水素吸蔵合金の水素の吸
蔵・放出平衡圧力が、上記第二の水素吸蔵合金よりも大
きい請求項第1項に記載の密閉形アルカリ二次電池。 3)上記第一の水素吸蔵合金の表面を撥水処理する方法
が、上記第一の水素吸蔵合金の粉末とフッ素樹脂とを混
合して焼成することである請求項第1項または第2項に
記載の密 閉形アルカリ二次電池。 4)上記フッ素樹脂が、フッ素樹脂の微粉末を溶媒中に
分散・懸濁させたフッ素樹脂ディスパージョンであり、
上記混合の方法が、上記第一の水素吸蔵合金の粉末に上
記フッ素樹脂ディスパージョンを添加して混練すること
である請求項第4項に記載の密閉形アルカリ二次電池。
[Scope of Claims] 1) A sealed alkaline secondary battery in which the capacity of the negative electrode is larger than that of the positive electrode, comprising a first hydrogen storage alloy and a second hydrogen storage alloy whose surfaces are treated to be water repellent. It has a negative electrode made of two types of hydrogen storage alloys, and is characterized in that the portion of the negative electrode capacity attributable to the first hydrogen storage alloy does not exceed the excess of the negative electrode capacity relative to the positive electrode capacity, that is, the so-called charge reserve amount. Sealed alkaline secondary battery. 2) The compositions of the first hydrogen storage alloy and the second hydrogen storage alloy are different, and the hydrogen storage/release equilibrium pressure of the first hydrogen storage alloy is higher than that of the second hydrogen storage alloy. The sealed alkaline secondary battery according to claim 1. 3) Claim 1 or 2, wherein the method for water-repelling the surface of the first hydrogen-absorbing alloy is to mix the powder of the first hydrogen-absorbing alloy and a fluororesin and then sintering the mixture. The sealed alkaline secondary battery described in . 4) The fluororesin is a fluororesin dispersion in which fine powder of fluororesin is dispersed and suspended in a solvent,
5. The sealed alkaline secondary battery according to claim 4, wherein the mixing method is to add the fluororesin dispersion to the powder of the first hydrogen storage alloy and knead it.
JP2286221A 1990-10-24 1990-10-24 Sealed alkaline secondary battery Expired - Fee Related JP2979624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2286221A JP2979624B2 (en) 1990-10-24 1990-10-24 Sealed alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2286221A JP2979624B2 (en) 1990-10-24 1990-10-24 Sealed alkaline secondary battery

Publications (2)

Publication Number Publication Date
JPH04162353A true JPH04162353A (en) 1992-06-05
JP2979624B2 JP2979624B2 (en) 1999-11-15

Family

ID=17701539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2286221A Expired - Fee Related JP2979624B2 (en) 1990-10-24 1990-10-24 Sealed alkaline secondary battery

Country Status (1)

Country Link
JP (1) JP2979624B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329100B1 (en) 1998-12-22 2001-12-11 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy electrode and process for producing same
JP2004281195A (en) * 2003-03-14 2004-10-07 Yuasa Corp Hydrogen storage alloy electrode and nickel-hydrogen storage battery using this
JP2018056113A (en) * 2016-09-26 2018-04-05 プライムアースEvエナジー株式会社 Nickel hydrogen storage battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329100B1 (en) 1998-12-22 2001-12-11 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy electrode and process for producing same
JP2004281195A (en) * 2003-03-14 2004-10-07 Yuasa Corp Hydrogen storage alloy electrode and nickel-hydrogen storage battery using this
JP2018056113A (en) * 2016-09-26 2018-04-05 プライムアースEvエナジー株式会社 Nickel hydrogen storage battery

Also Published As

Publication number Publication date
JP2979624B2 (en) 1999-11-15

Similar Documents

Publication Publication Date Title
JPH117948A (en) Nickel-hydrogen battery anode and manufacture thereof
JPS62139255A (en) Manufacture of hydrogen absorbing electrode
JPH04162353A (en) Seal alkaline secondary battery
JPH11260361A (en) Hydrogen storage alloy electrode
JPH05159798A (en) Hydrogen storage alloy electrode and alkaline secondary cell using it
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JPS6139453A (en) Enclosed metallic oxide-hydrogen battery
JP3185374B2 (en) Paste cadmium cathode plate for alkaline storage batteries
JPH08321302A (en) Hydrogen storage electrode
JPS62119864A (en) Enclosed-type alkaline storage battery
JPS63195960A (en) Sealed alkaline storage battery
JPS5968168A (en) Manufacture of positive plate for alkaline battery
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPH02227958A (en) Hydrogen storage alloy electrode for alkaline storage battery
JPH01267960A (en) Hydrogen absorption alloy electrode and its manufacture
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JPH01132049A (en) Hydrogen storage electrode
JPH06243850A (en) Retainer type sealed lead-acid battery
JPH0298047A (en) Cadmium negative electrode for alkaline storage battery
JPS63221558A (en) Cadmium negative electrode for alkaline storage battery
JP2005158533A (en) Hydrogen storage alloy electrode for alkaline storage battery, and alkaline storage battery using the same
JPH0645002A (en) Sealed alkaline storage battery
JPH01286254A (en) Cadmium negative electrode for alkaline storage battery
JPS617565A (en) Paste type cadmium negative electrode
JPS61176066A (en) Hydrogen occlusion electrode

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees