JPS63146354A - Manufacture of hydrogen absorbing electrode - Google Patents

Manufacture of hydrogen absorbing electrode

Info

Publication number
JPS63146354A
JPS63146354A JP61291832A JP29183286A JPS63146354A JP S63146354 A JPS63146354 A JP S63146354A JP 61291832 A JP61291832 A JP 61291832A JP 29183286 A JP29183286 A JP 29183286A JP S63146354 A JPS63146354 A JP S63146354A
Authority
JP
Japan
Prior art keywords
aqueous solution
hydrogen absorbing
alkaline aqueous
battery
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61291832A
Other languages
Japanese (ja)
Other versions
JPH0756801B2 (en
Inventor
Munehisa Ikoma
宗久 生駒
Hiroshi Kawano
川野 博志
Isao Matsumoto
功 松本
Nobuyuki Yanagihara
伸行 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61291832A priority Critical patent/JPH0756801B2/en
Priority to DE8787118066T priority patent/DE3776300D1/en
Priority to EP87118066A priority patent/EP0271043B1/en
Priority to US07/132,647 priority patent/US4837119A/en
Publication of JPS63146354A publication Critical patent/JPS63146354A/en
Publication of JPH0756801B2 publication Critical patent/JPH0756801B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/808Foamed, spongy materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To realize improvement of a battery life by specifying a solution temperature and a soaking time in a process in which a hydrogen absorbing electrode is soaked into an alkaline aqueous solution. CONSTITUTION:In a process in which a hydrogen absorbing electrode is soaked in an alkaline aqueous solution of 1.10 or more in specific weight, a temperature of this solution is made to be 45 deg.C to 100 deg.C and a soaking time is made to be 0.2 to 24 hours. Part of a surface layer of hydrogen absorbing alloy powder in the hydrogen absorbing electrode is dissolved and precipitated again in this operation, and so a thin layer of oxide or hydroxide is formed on the powder surface layer. This thin layer suppresses corrosion of the hydrogen absorbing alloy itself so as to improve acid-proof performance. Subsequently, improvement of a battery life can be realized without raising an internal pressure of the battery in repetitive charge and discharge cycles.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電解液中で電気化学的に、水素を可逆的に吸
蔵・放出する水素吸蔵合金を電極材料として用いた水素
吸蔵電標の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a hydrogen storage electrode using a hydrogen storage alloy that reversibly stores and releases hydrogen electrochemically in an electrolytic solution as an electrode material. It is related to.

従来の技術 従来、この種の製造方法は、電気化学的に水素を吸蔵放
出可能な水素吸蔵合金粉末を結着剤とよく混練して、ペ
ースト状とし、電極支持体(金属多孔体あるいはパンチ
ングメタルなど)に加圧充填後、乾燥することにより水
素吸蔵電極を製造していた(実公昭57−34578号
公報)。
Conventional technology Conventionally, this type of production method involves thoroughly kneading a hydrogen-absorbing alloy powder capable of absorbing and desorbing hydrogen electrochemically with a binder to form a paste, and then forming an electrode support (porous metal or punched metal) into a paste. etc.) and then drying the hydrogen storage electrode (Utility Model Publication No. 57-34578).

発明が解決しようとする問題点 このような従来の構成では、水素吸蔵電極を負極とし、
セパレータを介して公知のニッケル正極と組み合わせて
、密閉形アルカリ蓄電池を構成した場合、過充電時に正
極から発生する酸素ガスにより、水素吸蔵電極中の水素
吸蔵合金が酸化され、水酸化物を形成するという問題が
あった。その結果、負極である水素吸蔵電極の充電効率
が低下し、密閉電池中で水素ガスが多量に発生し、電池
内圧が上昇して漏液や電池の内部抵抗の増大により、充
放電サイクル寿命が短くなるという欠点があった。
Problems to be Solved by the Invention In such a conventional configuration, the hydrogen storage electrode is used as a negative electrode,
When a sealed alkaline storage battery is constructed by combining a known nickel positive electrode through a separator, the hydrogen storage alloy in the hydrogen storage electrode is oxidized by the oxygen gas generated from the positive electrode during overcharging, forming a hydroxide. There was a problem. As a result, the charging efficiency of the hydrogen storage electrode, which is the negative electrode, decreases, and a large amount of hydrogen gas is generated in the sealed battery, which increases the internal pressure of the battery and causes leakage and an increase in the battery's internal resistance, which shortens the charge/discharge cycle life. It had the disadvantage of being short.

本発明は、このような問題点を解決するもので、水素吸
蔵電極の耐酸化性を向上させることにより、電池内圧の
安定性とサイクル寿命を向上することを目的とするもの
である。
The present invention is intended to solve these problems, and aims to improve the stability of battery internal pressure and cycle life by improving the oxidation resistance of the hydrogen storage electrode.

問題点を解決するための手段 この問題点を解決するために本発明は、水素吸蔵合金粉
末を結着剤と共に、金属多孔体に充填するか、あるいは
芯金の両面に塗着した後、比重1.10以上のアルカリ
水溶液中に浸漬する工程を採用して、そのアルカリ水溶
液の温度を45〜100℃とし、浸漬時間を0,2〜2
4時間として表面処理を施したものである。
Means for Solving the Problems In order to solve this problem, the present invention provides hydrogen storage alloy powder that is filled with a binder into a metal porous body or coated on both sides of a core metal, and then 1. Adopt the process of immersing in an aqueous alkali solution of 10 or more, the temperature of the aqueous alkali solution is 45 to 100 ° C, and the immersion time is 0.2 to 2.
The surface treatment was performed for 4 hours.

作用 この操作により、水素吸蔵電極中の水素吸蔵合金粉末の
表面層が一部溶解し、再び析出することにより粉末表面
層に酸化物薄層あるいは水酸化物薄層が形成され、この
薄層が水素吸蔵合金本体の腐食を抑制して耐酸化性を向
上させる。その結果、電池内圧が充放電サイクルの繰り
返しによって上昇せず、電池寿命の向上を可能にするこ
ととなる。
Effect: This operation partially dissolves the surface layer of the hydrogen storage alloy powder in the hydrogen storage electrode and precipitates again, forming a thin oxide layer or hydroxide layer on the powder surface layer. Suppresses corrosion of the hydrogen storage alloy body and improves oxidation resistance. As a result, the battery internal pressure does not increase due to repeated charge/discharge cycles, making it possible to improve battery life.

実施例 第1図は本発明の一実施例による充放電サイクル数と放
電容量との関係を示す図である。市販のミツシュメタル
Mu(希土類元素の混合物、例えばCe45wt%、L
IL30wt%、Nb5wt%他の希土類元素約20w
t%)とNi、ムl、Mn、Coの各試料をMm、Ni
、、、Mn0.4.ムlo、s l”0.5の組成比に
秤量して混合した。これらの試料をアーク溶解炉に入れ
て、10〜10  TOrrまで真空状態にした後、ア
ルゴンガス雰囲気中でアーク放電し、加熱溶解させた。
Embodiment FIG. 1 is a diagram showing the relationship between the number of charge/discharge cycles and discharge capacity according to an embodiment of the present invention. Commercially available Mitshu Metal Mu (mixture of rare earth elements, e.g. Ce45wt%, L
IL30wt%, Nb5wt% other rare earth elements about 20w
t%) and each sample of Ni, Mul, Mn, Co
, , Mn0.4. The samples were weighed and mixed to a composition ratio of 0.5 mmo, s l". These samples were placed in an arc melting furnace and evacuated to 10 to 10 Torr, and then arc discharged in an argon gas atmosphere. Dissolved by heating.

試料の均質化を図るために、数回反転させてアーク溶解
を行い水素吸蔵合金を得た。さらに、この合金の均質性
を良好にするために、アルゴンガス雰囲気中にて100
0℃で8時間熱処理を行い、次にこの合金を粗粉砕後、
ボールミルで38μl以下の粉末とし、負極に用いる合
金粉末を得た。この合金粉末をポリビニルアルコールの
5wt%水溶液でペースト状にし、発泡ニッケル多孔体
に充填して乾燥した。次に、この電極を比重1.30の
KOH水溶液中に、30″C145℃、6o℃、50℃
、80℃、1oO’Cの各温度で12時間浸漬した後、
水洗、乾燥、加圧して負極である水素吸蔵電極を得た。
In order to homogenize the sample, it was inverted several times and arc melted to obtain a hydrogen storage alloy. Furthermore, in order to improve the homogeneity of this alloy, 100% was added in an argon gas atmosphere.
Heat treatment was performed at 0°C for 8 hours, and then the alloy was coarsely pulverized.
This was milled into powder of 38 μl or less using a ball mill to obtain alloy powder used for the negative electrode. This alloy powder was made into a paste with a 5 wt % aqueous solution of polyvinyl alcohol, filled into a foamed nickel porous body, and dried. Next, this electrode was placed in a KOH aqueous solution with a specific gravity of 1.30 at 30"C, 145℃, 6o℃, and 50℃.
, 80℃, 1oO'C after immersion for 12 hours,
It was washed with water, dried, and pressurized to obtain a hydrogen storage electrode as a negative electrode.

次に、酸化ニッケル正極として、公知の方法で得られた
発泡式ニッケル極(理論充填電気量1050〜1100
11Ah )を用い、セパレータにはポリアミドの不織
布、電解液に水酸化リチウムf40’i/1溶解した比
重1.30LvKOH水溶液を使用し、前記負極と組み
合わせて公称容量100011Ahの拳3サイズ(ムム
サイズ)の密閉形ニッケルー水素蓄電池を構成した。実
施例で用いた電池における負極のアルカリ処理温度を第
1表に示す。
Next, as a nickel oxide positive electrode, a foamed nickel electrode obtained by a known method (theoretical charge amount of electricity 1050 to 1100) was used.
11Ah), a polyamide non-woven fabric was used as the separator, a KOH aqueous solution with a specific gravity of 1.30Lv in which lithium hydroxide f40'i/1 was dissolved in the electrolyte was used, and in combination with the negative electrode, a fist 3 size (mumu size) with a nominal capacity of 100011Ah was used. A sealed nickel-metal hydride storage battery was constructed. Table 1 shows the alkali treatment temperature of the negative electrode in the batteries used in the examples.

(以下余白) 第1表 これらの電池を20″Cの一定温度下で1サイクル目の
充電をQ、I Cmムで16時間、ゴサイクル目以後は
o、scmム で4.6時間行った。放電は、2サイク
ル目までを0.2 ONムで、3サイクル目以後は0.
50raムとじ、終止電圧は1.OVとした。
Table 1 These batteries were charged at a constant temperature of 20''C for 16 hours using a Q, I Cm system, and for 4.6 hours after the first cycle using an O, SCM system. The discharge is 0.2 ON until the second cycle, and 0.2 ON after the third cycle.
50 ram binding, final voltage is 1. It was set as OV.

第1図から明らかなように、従来例のアルカリ水溶液中
に浸漬していない電極を用いた電池Gは、3oサイクル
程度で放電容量が低下した。30’Cのアルカリ水溶液
中に浸漬した負極を用いて構成した電池ムは、従来例よ
りわずかに向上したが、50サイクル程度の充放電サイ
クルの繰り返しにより、放電容量は低下した。しかしな
がら、45”Q、50”C,eso’(::、80℃、
100℃ノアルカリ水溶液中に浸漬した負極を用いて構
成した電池B−F、とくにC,D、に、Fは、200サ
イクル程度の充放電サイクルを繰シ返しても、放電容量
は低下しない。次に、このC,D、IE、Fの150サ
イクル目の過充電時の電池内圧を測定した結果を第2表
に示す。
As is clear from FIG. 1, in the conventional battery G using electrodes not immersed in an alkaline aqueous solution, the discharge capacity decreased after about 3 cycles. A battery constructed using a negative electrode immersed in an alkaline aqueous solution at 30'C had a slight improvement over the conventional example, but the discharge capacity decreased after about 50 charge/discharge cycles. However, 45"Q, 50"C, eso'(::, 80℃,
The discharge capacity of batteries B-F, especially C, D, and F, constructed using a negative electrode immersed in a 100° C. alkaline aqueous solution does not decrease even after about 200 charge/discharge cycles. Next, Table 2 shows the results of measuring the battery internal pressures during the 150th cycle of overcharging for C, D, IE, and F.

第2表 第2表から明らかなように、100″Cのアルカリ水溶
液中に浸漬した負極を用いて構成した電池Fは、電池内
圧が9.5 kcl/C−と比較的高く、安全弁が作動
する危険性がある。したがって、アルカリ水溶液の温度
は、50〜80℃が適切である。
Table 2 As is clear from Table 2, battery F, which was constructed using a negative electrode immersed in an alkaline aqueous solution at 100"C, had a relatively high battery internal pressure of 9.5 kcl/C-, and the safety valve was activated. Therefore, the temperature of the alkaline aqueous solution is preferably 50 to 80°C.

第2図に、50′Cのアルカリ水溶液を用いた場合の浸
漬時間と充放電サイクル数との関係を示した。第2図か
ら明らかなように、200サイクル以上のサイクル寿命
特性を持つ電池を得るためには、0.2〜24時間アル
カリ水溶液中に浸漬すれば良い。0.2時間以下の浸漬
時間では、放電容量は200サイクル以下で低下する。
FIG. 2 shows the relationship between the immersion time and the number of charge/discharge cycles when using an aqueous alkaline solution at 50'C. As is clear from FIG. 2, in order to obtain a battery with cycle life characteristics of 200 cycles or more, it is sufficient to immerse the battery in an alkaline aqueous solution for 0.2 to 24 hours. For immersion times of 0.2 hours or less, the discharge capacity decreases after 200 cycles or less.

また、400サイクル以上の高信頼性の電池は、1時間
から12時間アルカリ水溶液中に浸漬することによシ得
ることができる。したがって、アルカリ水溶液中の浸漬
時間は1時間〜12時間が適切である。
Furthermore, a highly reliable battery that can last for 400 cycles or more can be obtained by immersing the battery in an alkaline aqueous solution for 1 to 12 hours. Therefore, the appropriate immersion time in the alkaline aqueous solution is 1 hour to 12 hours.

なお、本実施例ではアルカリ水溶液に比重1.30 K
OH水溶液を用いたが、比重1.10以上の[01水溶
液あるいはHaOH水溶液でも同様の効果が得られる。
In this example, the alkaline aqueous solution has a specific gravity of 1.30 K.
Although an OH aqueous solution was used, the same effect can be obtained with an [01 aqueous solution or a HaOH aqueous solution with a specific gravity of 1.10 or more.

発明の効果 以上のように、本発明によれば、水素吸蔵電極をアルカ
リ水溶液中に浸漬する工程において、その溶液の温度が
45℃〜10o″Cであり、浸漬時間を0.2〜24時
間とした工程を有する水素吸蔵電極の製造方法とするこ
とにより、電池内圧が充放電サイクル数の繰り返しによ
って上昇しない、すなわち充放電サイクル寿命の優れた
電池を提供できるという効果が得られる。
Effects of the Invention As described above, according to the present invention, in the step of immersing the hydrogen storage electrode in an alkaline aqueous solution, the temperature of the solution is 45°C to 10°C, and the immersion time is 0.2 to 24 hours. By using the method for producing a hydrogen storage electrode having the steps described above, it is possible to provide a battery in which the internal pressure of the battery does not increase due to repeated charge/discharge cycles, that is, a battery with an excellent charge/discharge cycle life can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による放電容量と充放電サイ
クル数との関係を示す図、第2図は充放電サイクル数と
極板の浸漬時間との関係を示す図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 充放電サイグA/枚
FIG. 1 is a diagram showing the relationship between the discharge capacity and the number of charging/discharging cycles according to an embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between the number of charging/discharging cycles and the immersion time of the electrode plate. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Charging and discharging Cyg A/sheet

Claims (3)

【特許請求の範囲】[Claims] (1)水素を可逆的に吸蔵・放出する水素吸蔵合金粉末
を結着剤と共に、金属多孔体に充填するか、あるいは芯
金の両面に塗着した後、アルカリ水溶液中に浸漬する工
程を有し、前記アルカリ水溶液中への浸漬工程における
アルカリ水溶液は、比重1.10以上、液温45〜10
0℃であり、浸漬時間が0.2〜24時間であることを
特徴とする水素吸蔵電極の製造方法。
(1) It has a process of filling a porous metal body with a hydrogen storage alloy powder that reversibly stores and releases hydrogen, or applying it to both sides of a core metal, and then immersing it in an alkaline aqueous solution. The alkaline aqueous solution in the immersion step in the alkaline aqueous solution has a specific gravity of 1.10 or more and a liquid temperature of 45 to 10.
A method for manufacturing a hydrogen storage electrode, characterized in that the temperature is 0°C and the immersion time is 0.2 to 24 hours.
(2)アルカリ水溶液の温度が50〜80℃であること
を特徴とする特許請求の範囲第1項記載の水素吸蔵電極
の製造方法。
(2) The method for manufacturing a hydrogen storage electrode according to claim 1, wherein the temperature of the alkaline aqueous solution is 50 to 80°C.
(3)アルカリ水溶液中の浸漬時間が1〜12時間であ
ることを特徴とする特許請求の範囲第1項記載の水素吸
蔵電極の製造方法。
(3) The method for manufacturing a hydrogen storage electrode according to claim 1, wherein the immersion time in the alkaline aqueous solution is 1 to 12 hours.
JP61291832A 1986-12-08 1986-12-08 Method for manufacturing hydrogen storage electrode Expired - Lifetime JPH0756801B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61291832A JPH0756801B2 (en) 1986-12-08 1986-12-08 Method for manufacturing hydrogen storage electrode
DE8787118066T DE3776300D1 (en) 1986-12-08 1987-12-07 GAS-TIGHT ACCUMULATOR AND METHOD FOR PRODUCING ITS ELECTRODE.
EP87118066A EP0271043B1 (en) 1986-12-08 1987-12-07 Sealed storage battery and method for making its electrode
US07/132,647 US4837119A (en) 1986-12-08 1987-12-08 Sealed storage battery and method for making its electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61291832A JPH0756801B2 (en) 1986-12-08 1986-12-08 Method for manufacturing hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPS63146354A true JPS63146354A (en) 1988-06-18
JPH0756801B2 JPH0756801B2 (en) 1995-06-14

Family

ID=17773995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61291832A Expired - Lifetime JPH0756801B2 (en) 1986-12-08 1986-12-08 Method for manufacturing hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH0756801B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176063A (en) * 1985-01-29 1986-08-07 Matsushita Electric Ind Co Ltd Manufacture of alkaline battery
JPS61233967A (en) * 1985-04-10 1986-10-18 Matsushita Electric Ind Co Ltd Manufacture of sealed nickel-hydrogen storage battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176063A (en) * 1985-01-29 1986-08-07 Matsushita Electric Ind Co Ltd Manufacture of alkaline battery
JPS61233967A (en) * 1985-04-10 1986-10-18 Matsushita Electric Ind Co Ltd Manufacture of sealed nickel-hydrogen storage battery

Also Published As

Publication number Publication date
JPH0756801B2 (en) 1995-06-14

Similar Documents

Publication Publication Date Title
JPH04137368A (en) Nickel-hydrogen storage battery and its manufacture
US3288643A (en) Process for making charged cadmium electrodes
JPS62139255A (en) Manufacture of hydrogen absorbing electrode
JPH10106550A (en) Hydrogen storage alloy electrode and its manufacture
JPS63146354A (en) Manufacture of hydrogen absorbing electrode
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP3639494B2 (en) Nickel-hydrogen storage battery
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JPS63146353A (en) Manufacture of hydrogen absorbing electrode
JPH1167264A (en) Manufacture of nickel-hydrogen storage battery
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JPH01132048A (en) Manufacture of hydrogen storage alloy electrode
JPH07153460A (en) Manufacture of metal hydride electrode
JPH028419B2 (en)
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH01204371A (en) Manufacture of alkaline secondary battery
JPH01161674A (en) Manufacture of alkaline secondary battery using hydrogen storage alloy
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JPH01130467A (en) Hydrogen occlusive alloy electrode
JPH09171837A (en) Nickel-hydrogen secondary battery
JPS6332856A (en) Closed nickel-hydrogen storage battery
JPH01267955A (en) Hydrogen absorption alloy electrode and its manufacture
JPS63175342A (en) Manufacture of hydrogen absorption electrode
JPH06150923A (en) Manufacture of hydrogen storage alloy electrode for sealed battery
JP2000285913A (en) Hydrogen storage alloy, and hydrogen storage alloy electrode using the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term