JPH01267955A - Hydrogen absorption alloy electrode and its manufacture - Google Patents

Hydrogen absorption alloy electrode and its manufacture

Info

Publication number
JPH01267955A
JPH01267955A JP63096009A JP9600988A JPH01267955A JP H01267955 A JPH01267955 A JP H01267955A JP 63096009 A JP63096009 A JP 63096009A JP 9600988 A JP9600988 A JP 9600988A JP H01267955 A JPH01267955 A JP H01267955A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
hydrogen
alloy powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63096009A
Other languages
Japanese (ja)
Other versions
JP2629807B2 (en
Inventor
Munehisa Ikoma
宗久 生駒
Koji Yuasa
浩次 湯浅
Yasuko Ito
康子 伊藤
Shoichi Ikeyama
正一 池山
Hiroshi Kawano
川野 博志
Isao Matsumoto
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63096009A priority Critical patent/JP2629807B2/en
Publication of JPH01267955A publication Critical patent/JPH01267955A/en
Application granted granted Critical
Publication of JP2629807B2 publication Critical patent/JP2629807B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To assure excellent discharging characteristics even though discharge with large current takes place in a low-temp. atmosphere by fixing transfer metal particles to the surface of hydrogen absorption alloy powder, which occludes and emits hydrogen as active substance electrochemically. CONSTITUTION:Transfer metal particles 2 are fixed onto the surface of hydrogen absorption alloy powder 1 to constitute an electrode of hydrogen absorption alloy. This suppresses overvoltage at the time of discharging. That is, in discharging reaction in which hydrogen atoms occluded in the powder 1 are ionized, the overvoltage is dropped by electrochemical catalyzer effect of the transfer metal 2 fixed to the surface of the alloy, and thus the discharging characteristics are enhanced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ蓄電池の負極に用いる水素吸蔵合金
電極の改良に関するものである。さらに詳しくは、活物
質である水素を電気化学的に吸蔵・放出可能な水素吸蔵
合金からなる高エネルギー密度の電極に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to improvements in hydrogen storage alloy electrodes used as negative electrodes of alkaline storage batteries. More specifically, the present invention relates to a high energy density electrode made of a hydrogen storage alloy that can electrochemically absorb and release hydrogen as an active material.

従来の技術 現在、実用化されている密閉形蓄電池としては鉛酸蓄電
池、ニッケルーカドミウム蓄電池がほとんどを占めてい
る。前者は安価であるが、重量効率wh*Ky−’、サ
イクル寿命などの点から、長期間使用するポータプル機
器などの電泳としては不都合な面がある。一方、後者の
電池は比較的高価であるが、前者の欠点を改良すること
が可能で、近年、その需要の伸びは著しく、特に高信頼
性を要求される用途に広く使用されるようになった。
BACKGROUND OF THE INVENTION Currently, most sealed storage batteries in practical use are lead-acid storage batteries and nickel-cadmium storage batteries. Although the former is inexpensive, it is disadvantageous in terms of weight efficiency wh*Ky-', cycle life, etc. for electrophoresis in portable devices that are used for a long period of time. On the other hand, although the latter type of battery is relatively expensive, it is possible to improve the shortcomings of the former type, and the demand for it has increased significantly in recent years, and it has become widely used in applications that require particularly high reliability. Ta.

このような特徴を生かしつつ、ポータプル機器などの電
源としては、さらに高エネルギー密度化が切望されてい
る。最近カドミウム負極に代わって、電気化学的に活物
質である水素の吸蔵・放出が可能な水素吸蔵合金を電極
材料に用いた電極(以下J水素吸蔵合金電極と称す)が
注目を集めている。この負極は、単位体積当りのエネル
ギー密度はカドミウム負極をはるかに凌ぐことが可能で
ある。したがって、この負極を用いることにより、カド
ミウム負極よりも小さい体積で電池構成が可能となる。
While taking advantage of these characteristics, there is an urgent need for higher energy density as a power source for portable devices and the like. Recently, instead of a cadmium negative electrode, an electrode using a hydrogen storage alloy (hereinafter referred to as a J hydrogen storage alloy electrode) as an electrode material that can electrochemically absorb and release hydrogen, which is an active material, has been attracting attention. The energy density per unit volume of this negative electrode can far exceed that of a cadmium negative electrode. Therefore, by using this negative electrode, a battery can be constructed with a smaller volume than a cadmium negative electrode.

すなわち、余った電池内体積にさらに多くの正極活物質
を使用できるため、高エネルギー密度化が期待できる。
In other words, since more positive electrode active material can be used in the remaining battery internal volume, higher energy density can be expected.

しかし、水素吸蔵合金電極は、カドミウム電極に比べ初
期の電気化学反応における活性が著しく劣るため、電池
構成後、数サイクルは放電容量が小さく、十数サイクル
の充放電を繰り返した後に十分な放電容量を得ることが
可能になる。とくに、この傾向は、低温(0℃)で高率
放電を行った場合に著しい。この原因は、水素吸蔵合金
電極の初期の放電過電圧が非常に大きいことに起因する
However, hydrogen-absorbing alloy electrodes have significantly lower activity in the initial electrochemical reaction than cadmium electrodes, so their discharge capacity is small for several cycles after battery construction, and sufficient discharge capacity is not achieved after a dozen or more cycles of charging and discharging. It becomes possible to obtain. In particular, this tendency is remarkable when high rate discharge is performed at a low temperature (0° C.). This is due to the fact that the initial discharge overvoltage of the hydrogen storage alloy electrode is very large.

したがって、従来、この種の電極は、一般に以下の方法
により初期の電気化学反応の活性を高めていた。
Therefore, conventionally, this type of electrode generally increases the activity of the initial electrochemical reaction by the following method.

(1)電池封目前に、水素吸蔵合金電極を高圧の水素雰
囲気下で、化学的な水素の吸蔵・放出を行い、活性化す
る方法。
(1) A method of activating a hydrogen storage alloy electrode by chemically storing and releasing hydrogen in a high-pressure hydrogen atmosphere before sealing the battery.

(2)正・負極をセパレータを介して群構成し、ケース
に挿入後、高圧の水素雰囲気下で、化学的な水素の吸蔵
放出を行い、水素吸蔵合金電極を活性化する方法。
(2) A method in which positive and negative electrodes are assembled into a group with a separator interposed between them, and after being inserted into a case, hydrogen is chemically absorbed and released in a high-pressure hydrogen atmosphere to activate the hydrogen-absorbing alloy electrode.

(3)水素吸蔵合金電極を電解液中で充放電を行い活性
化する方法。
(3) A method of activating a hydrogen storage alloy electrode by charging and discharging it in an electrolytic solution.

しかし、前記(1) 、 (2)の方法は、高圧の水素
雰囲気下で化学的な水素の吸蔵・放出の操作を必要とす
る。また、活性化された水素吸蔵合金電極が、大気中の
酸素に触れた場合、合金表面が酸化され活性が失われる
。したがって、高圧の水素ガス雰囲気下での吸蔵・放出
操作や、電池を構成し密閉化するまでの工程を不活性ガ
ス雰囲気下に保つ必要があり製造工程が非常に煩雑にな
る。
However, the methods (1) and (2) above require chemical hydrogen storage and release operations in a high-pressure hydrogen atmosphere. Furthermore, when an activated hydrogen storage alloy electrode comes into contact with oxygen in the atmosphere, the alloy surface is oxidized and activity is lost. Therefore, it is necessary to carry out storage and desorption operations in a high-pressure hydrogen gas atmosphere, and to maintain the steps from constructing the battery to sealing it under an inert gas atmosphere, making the manufacturing process extremely complicated.

(3)の場合、(1)、(2)の同様な問題点以外に、
電解液中での充放電や、充放電を行った電極を水洗、乾
燥するなどの煩雑な工程が必要となる。
In the case of (3), in addition to the same problems as (1) and (2),
Complicated steps are required, such as charging and discharging in an electrolytic solution, and washing and drying the charged and discharged electrodes.

本発明は、上記課題を解決するもので、簡単な構成と製
造法で、放電特性の優れた水素吸蔵合金電極とその製造
法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a hydrogen storage alloy electrode with a simple configuration and manufacturing method, and excellent discharge characteristics, and a manufacturing method thereof.

課題を解決するための手段 この課題を解決するために本発明は、水素吸蔵合金粉末
の表面に遷移金属粒子を固定化した粉末を用いて水素吸
蔵合金電極を構成したものである。
Means for Solving the Problem In order to solve this problem, the present invention constitutes a hydrogen storage alloy electrode using a powder in which transition metal particles are immobilized on the surface of hydrogen storage alloy powder.

また、前記粉末を得るために、水素吸蔵合金粉末と遷移
金属粒子との混合物を、不活性ガス雰囲気中で焼成する
ものである。
Further, in order to obtain the powder, a mixture of hydrogen storage alloy powder and transition metal particles is fired in an inert gas atmosphere.

作用 この構成により本発明は、水素吸蔵合金粉末の表面に遷
移金属粒子が固定化されることにより、放電時の過電圧
が低下する。すなわち、放電時に、水素吸蔵合金粉末に
吸蔵された水素原子がイオン化される放電反応において
、合金表面に固定イレされた遷移金属の電気化学的な触
媒作用により過電圧が低下し、放電特性が向上する。
Effect: With this configuration, the present invention reduces overvoltage during discharge by immobilizing transition metal particles on the surface of the hydrogen storage alloy powder. In other words, during the discharge reaction, the hydrogen atoms stored in the hydrogen storage alloy powder are ionized, and the electrochemical catalytic action of the transition metal fixed on the alloy surface reduces the overvoltage and improves the discharge characteristics. .

実施例 以下、実施例により本発明の効果について第1〜第3図
を参照して説明する。
EXAMPLES Hereinafter, the effects of the present invention will be explained using examples with reference to FIGS. 1 to 3.

〈実施例1〉 活物質である水素を電気化学的に吸蔵・放出する水素吸
蔵合金とその電極は以下の方法で作成した。
<Example 1> A hydrogen storage alloy that electrochemically absorbs and releases hydrogen as an active material and its electrode were prepared in the following manner.

セリウム約40wt%、ランタン約sowt%。Approximately 40 wt% cerium, approximately sowt% lanthanum.

ネオジウム約13wt%を生成分とするミツシュメタル
(以下Mmと称す)、ニッケル、コバルト。
Mitshu metal (hereinafter referred to as Mm) containing about 13 wt% neodymium, nickel, and cobalt.

アルミニウムおよびマンガンをそれぞれ原子比で1 :
 3.66 :0.75 : 0,3 :0,4  と
なるように坪量し、高周波溶解炉で溶解し、caau 
5型の結晶構造を有するMmNi、55Mno、4Ad
、、Goo、、、の水素吸蔵合金を作成した。次に、こ
の合金をムrガス雰囲気中で、1000℃の温度で熱処
理を施し、試料の均質性を向上した。その後、この合金
を機械的に粉砕し、平均粒子径が16μm、20μm。
Aluminum and manganese each in an atomic ratio of 1:
The basis weight is adjusted to 3.66:0.75:0.3:0.4, melted in a high-frequency melting furnace, and caau
MmNi, 55Mno, 4Ad with type 5 crystal structure
, ,Goo, , hydrogen storage alloys were created. Next, this alloy was heat-treated at a temperature of 1000° C. in a murky gas atmosphere to improve the homogeneity of the sample. Thereafter, this alloy was mechanically pulverized to have an average particle size of 16 μm and 20 μm.

30μmおよび36μmの種々の合金粉末1を得た。Various alloy powders 1 of 30 μm and 36 μm were obtained.

ついで、これらの粉末100重量部に対し、平均粒子径
6μmのニッケル粒子6重量部を混合し、真空中、80
0℃の温度で1時間焼成し、水素吸蔵合金粉末1の表面
にニッケル粒子2を固定化した種々の粉末を得た。第1
図にこの粉末の概略断面図を示す。第1図中の3は、合
金とニッケル粒子が一部溶は合って固定化された部分を
示す。
Next, 6 parts by weight of nickel particles having an average particle diameter of 6 μm were mixed with 100 parts by weight of these powders, and the mixture was heated at 80 parts by weight in vacuum.
By firing at a temperature of 0° C. for 1 hour, various powders in which nickel particles 2 were immobilized on the surface of hydrogen storage alloy powder 1 were obtained. 1st
The figure shows a schematic cross-sectional view of this powder. 3 in FIG. 1 indicates a portion where the alloy and nickel particles are partially melted together and fixed.

ニッケル粒子が水素吸蔵合金の表面に固定化された種々
の平均粒子径を有する粉末を、ポリビニルアルコールの
1.5wt%水溶液でペースト状にし、厚さ0.9wn
にした多孔度約96%の支持体であるスポンジ状ニッケ
ル多孔体内に充填した。これを100℃で乾燥後加圧し
て、平均厚さ0.5yLrlnの極板にした。ついで幅
39 rran 、長さBOrranに切断し、充放電
可能容量が1600!0AIIkの種々の平均粒子径を
有する水素吸蔵合金電極を得た。
Powders with various average particle diameters in which nickel particles are immobilized on the surface of a hydrogen storage alloy are made into a paste form with a 1.5 wt% aqueous solution of polyvinyl alcohol to a thickness of 0.9 wn.
The material was filled into a sponge-like porous nickel support having a porosity of about 96%. This was dried at 100° C. and then pressed to form an electrode plate with an average thickness of 0.5yLrln. Then, it was cut into a width of 39 rran and a length of BOrran to obtain hydrogen storage alloy electrodes having various average particle diameters and a charge/discharge capacity of 1600!0 AIIk.

このようにして得られた水素吸蔵合金電極を負極とし、
容量が100100Oの公知の発泡メタル式ニノクル正
極とを汎用のポリアミド製不織布のセパレータを介して
、渦巻状に捲回してムムサイズのケースに挿入し、つい
で7,1規定のKOH水溶液を2.2湖に注液した後封
口した。種々の平均粒子径を有する水素吸蔵合金電極を
用いた電池の番号と合金の平均粒子径を表1に示す。な
お、比較例として平均粒子径20μmの前記水素吸蔵合
金の表面に前記ニッケルを固定化していない粉末を備え
た水素吸蔵合金電極を用いた電極Eを上記と同様なプロ
セスで作成した。
The hydrogen storage alloy electrode obtained in this way was used as a negative electrode,
A well-known foamed metal Ninocle positive electrode with a capacity of 100,100 O was wound spirally through a general-purpose polyamide nonwoven fabric separator and inserted into a Mumu-sized case, and then a 7.1 N KOH aqueous solution was poured into a 2.2-liter case. After injecting the liquid into the tube, the tube was sealed. Table 1 shows the numbers of batteries using hydrogen storage alloy electrodes having various average particle diameters and the average particle diameters of the alloys. As a comparative example, an electrode E using a hydrogen storage alloy electrode having an average particle diameter of 20 μm and having powder on the surface of which the nickel was not immobilized was prepared using a process similar to the above.

(以 下余白) 表     1 これらの電池を、20℃の雰囲気で、初充電を1001
nAで15時間行った後、200m人で1 、OYまで
放電した。この後、これらの電池を前記と同様な条件で
充電を行い、0℃の雰囲気中に2時間放置し、この温度
雰囲気中で、3000m人の定電流で放電した。第2図
に、3000m人の定電流放電を行った場合の放電カー
ブを示す。
(Leaving space below) Table 1 These batteries were charged for the first time at 100°C in an atmosphere of 20°C.
After 15 hours at nA, discharge was performed at 200 m to 1 OY. Thereafter, these batteries were charged under the same conditions as above, left in an atmosphere at 0° C. for 2 hours, and discharged at a constant current of 3000 m in this temperature atmosphere. Figure 2 shows the discharge curve when constant current discharge was performed for 3000m people.

その結果、本発明による人、B 、Cの電池は、””3
.55”o、4”#、5C00,75合金粉末の表面に
ニッケル粉末を焼成により固定化しているため、0℃の
雰囲気中で3000m人の大電流で放電を行っても負極
の過電圧が増大せず、端子電圧が1.0マまでの放電容
量は700 mAh以上であり、優れた放電特性を示し
た。一方、比較例Eの電池は、端子電圧が1.0マまで
の放電容量は100nA  程度である。この原因は、
0℃の雰囲気下で3000Ilムの大電流放電を行った
場合、負極のMmNi、、、5Mno、4ム’0.5c
o0.75合金粉末表面での水素のイオン化が律速とな
り、放電時の過電圧が増大することに起因する。まだ、
前記水素吸蔵合金の粒子径が36μmである電池りは、
端子電圧が1.0マまでの放電容量は170mAh程度
である。電池りが、ニッケル粒子を前記合金表面に固定
化しているにもかかわらず負極の放電過電圧が増大し、
放電容量が低下する原因は、水素原子が合金の表面でイ
オン化される反応が律速ではなく、合金粉末中の拡散過
程が律速になることに起因する。したがって、合金の表
面にニッケル粒子を固定化しても、放電反応の過電圧を
低下させる効果はない。以上のことから、水素吸蔵合金
粉末の平均粒子径は30μm以下が適切である。
As a result, the batteries for humans, B, and C according to the present invention are
.. Since nickel powder is fixed on the surface of 55"o, 4"#, 5C00, 75 alloy powder by firing, the overvoltage of the negative electrode will not increase even if discharge is performed with a large current of 3000m in an atmosphere of 0℃. First, the discharge capacity was 700 mAh or more when the terminal voltage reached 1.0 mAh, demonstrating excellent discharge characteristics. On the other hand, the battery of Comparative Example E has a discharge capacity of about 100 nA up to a terminal voltage of 1.0 mA. The cause of this is
When a large current discharge of 3000 Ilm is performed in an atmosphere of 0°C, the negative electrode MmNi, 5Mno, 4m'0.5c
This is because hydrogen ionization on the surface of the o0.75 alloy powder becomes rate-determining, increasing the overvoltage during discharge. still,
A battery in which the hydrogen storage alloy has a particle size of 36 μm,
The discharge capacity when the terminal voltage reaches 1.0 mAh is about 170 mAh. Despite the fact that nickel particles are immobilized on the surface of the alloy, the discharge overvoltage of the negative electrode increases,
The reason why the discharge capacity decreases is that the reaction in which hydrogen atoms are ionized on the surface of the alloy is not rate-determining, but the rate-determining process is the diffusion process in the alloy powder. Therefore, even if nickel particles are immobilized on the surface of the alloy, there is no effect of reducing the overvoltage of the discharge reaction. From the above, it is appropriate that the average particle diameter of the hydrogen storage alloy powder is 30 μm or less.

なお、本実施例では遷移金属粒子としてニッケルを用い
たが、コバルト、銀、白金等の遷移金属を用いた場合も
同様の結果が得られた。
Although nickel was used as the transition metal particles in this example, similar results were obtained when transition metals such as cobalt, silver, and platinum were used.

また、本実施例では焼成温度を800℃としたが、焼成
温度が900℃以上になると、ニッケルが溶融し水素吸
蔵合金の表面を被覆する結果、逆に放電時の過電圧が大
になる。また、7oo℃以下では、ニッケル粒子が固定
化されない。したがって、焼成温度は700〜900℃
の範囲が好ましい。
Further, in this example, the firing temperature was 800° C., but if the firing temperature exceeds 900° C., nickel melts and covers the surface of the hydrogen storage alloy, resulting in an increase in overvoltage during discharge. Furthermore, at temperatures below 70° C., nickel particles are not immobilized. Therefore, the firing temperature is 700-900℃
A range of is preferred.

〈実施例2〉 実施例1における水素吸蔵含金粉末の平均粒子径を20
μm とし、また、ニッケル粒子の混合割合を6重量部
と一定にし、この粒子の平均粒子径を3〜15μmの範
囲で種々変化させ、実施例1と同様な方法で前記水素吸
蔵合金の表面にニッケル粒子を固定化した。これらの種
々の平均粒子径を有するニッケル粒子を固定化した粉末
を用いて、実施例1と同様な方法で負極と電池を作成し
た。
<Example 2> The average particle diameter of the hydrogen-absorbing metal-containing powder in Example 1 was set to 20
μm, and the mixing ratio of nickel particles was kept constant at 6 parts by weight, and the average particle size of these particles was varied in the range of 3 to 15 μm, and the surface of the hydrogen storage alloy was coated in the same manner as in Example 1. The nickel particles were immobilized. Negative electrodes and batteries were produced in the same manner as in Example 1 using these powders in which nickel particles having various average particle diameters were immobilized.

用いたニッケル粒子の平均粒子径と試作した電池番号を
表2に示す。
Table 2 shows the average particle diameter of the nickel particles used and the trial battery numbers.

(以下余 白) 表     2 こらの電池を、実施例1で示したパターンと同じ充放電
条件で放電カーブを調べた結果を第3図に示す。
(The following is a blank space) Table 2 The discharge curves of these batteries were examined under the same charging and discharging conditions as the pattern shown in Example 1. The results are shown in FIG.

その結果、本発明によるF 、G 、Hと工のそれぞれ
の電池は、10μm以下のニッケル粒子をMmNi、、
55Mno、4ム’0.S ”0.75合金粉末の表面
に実施例1と同様な方法で固定化しているため、0℃の
雰囲気中で3000111人 の大電流で放電を行って
も負極の過電圧が増大せず、端子電圧が1.0マまでの
放電容量は700 mAh以上であり、優れた放電特性
を示した。一方、電池Jは、端子電圧が1.0マまでの
放電容量は170m1IAh程度である。これは、固定
化するニッケル粒子の平均粒子径が16μmであり、放
電時に水素原子をイオン化する電気化学的な触媒作用に
劣ることと、粒子径が大きいため、水素吸蔵合金粉末に
均一に分散しないことに起因する。したがって、優れた
放電特性を得るためには、固定化するニッケル粒子の平
均粒子径は10μm以下が適切である。
As a result, each of the F, G, and H batteries according to the present invention contained nickel particles of 10 μm or less in size such as MmNi, MmNi,
55 Mno, 4 M'0. Since it is immobilized on the surface of the S''0.75 alloy powder in the same manner as in Example 1, the overvoltage of the negative electrode does not increase even when discharging at a large current of 3,000,111 people in an atmosphere at 0°C, and the terminal The discharge capacity at voltages up to 1.0 mA was over 700 mAh, showing excellent discharge characteristics. On the other hand, battery J had a discharge capacity of about 170 m1 IAh at terminal voltages up to 1.0 mA. The average particle size of the immobilized nickel particles is 16 μm, which is inferior to the electrochemical catalytic action that ionizes hydrogen atoms during discharge, and because the particle size is large, they are not uniformly dispersed in the hydrogen storage alloy powder. Therefore, in order to obtain excellent discharge characteristics, it is appropriate that the average particle diameter of the nickel particles to be immobilized is 10 μm or less.

なお、本実施例では、ニッケル粒子の含有量を6重量部
と一定にしたが、2〜10重量部の範囲であれば同様な
結果が得られた。ニッケルの含有量が10重量部以上に
なると、水素吸蔵合金電極のエネルギー密度が低下し、
工業的価値は少ない。
In this example, the content of nickel particles was kept constant at 6 parts by weight, but similar results were obtained if the content was in the range of 2 to 10 parts by weight. When the nickel content exceeds 10 parts by weight, the energy density of the hydrogen storage alloy electrode decreases,
It has little industrial value.

また、2重量部未満では、放電特性を改善する効果が得
られない。
Moreover, if it is less than 2 parts by weight, the effect of improving discharge characteristics cannot be obtained.

発明の効果 以上のように本発明によれば、活物質である水素を電気
化学的に吸蔵・放出する水素吸蔵合金粉末の表面に、遷
移金属を固定化した粉末を備えた水素吸蔵合金電極を用
いることにより、低温度雰囲気中で大電流の放電を行っ
ても優れた放電特性を有する負極を提出できると云う効
果が得られる。
Effects of the Invention As described above, according to the present invention, a hydrogen storage alloy electrode is provided with a powder on which a transition metal is immobilized on the surface of a hydrogen storage alloy powder that electrochemically absorbs and releases hydrogen as an active material. By using this material, it is possible to provide a negative electrode with excellent discharge characteristics even when discharging at a large current in a low-temperature atmosphere.

また、真空中または不活性ガス雰囲気中で焼成する簡単
な工程により、遷移金属粒子を水素吸蔵合金粉末の表面
上に確実に固定化できる。
Moreover, the transition metal particles can be reliably immobilized on the surface of the hydrogen storage alloy powder by a simple process of firing in vacuum or in an inert gas atmosphere.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における水素吸蔵合金粉末の
表面にニッケル粒子が固定化された状態を示す概略図、
第2図はニッケル粒子の平均粒子径を一定とし、水素吸
蔵合金粉末の平均粒子径を変化させた場合の放電カーブ
を示す図、第3図は水素吸蔵合金粉末の平均粒子径を一
定とし、固定化するニッケル粒子の平均粒子径を変化さ
せた場合の放電カーブを示す図である。 1・・・・・・水素吸蔵合金粉末、2・・・・・・ニッ
ケル粒子、3・・・・・・水素吸蔵合金粉末とニッケル
粒子が一部溶は合って固定化された部分。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 f−−一水粟り及艮合請禾 r−<、クグル1(つ:弓「− 3−−一同定化されに師) 8   冒$・駅゛Hミ
FIG. 1 is a schematic diagram showing a state in which nickel particles are immobilized on the surface of a hydrogen storage alloy powder in an embodiment of the present invention;
Figure 2 is a diagram showing the discharge curve when the average particle size of the hydrogen storage alloy powder is changed while the average particle size of the nickel particles is constant, and Figure 3 is a diagram showing the discharge curve when the average particle size of the hydrogen storage alloy powder is constant. It is a figure which shows the discharge curve when the average particle diameter of the nickel particle to fix|immobilize is changed. 1...Hydrogen storage alloy powder, 2...Nickel particles, 3...Part where the hydrogen storage alloy powder and nickel particles are partially melted together and fixed. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure f--Ichizu Awari and the combination request r-<, Kuguru 1 (tsu: Bow "- 3--Identified as a teacher) 8 Expansion/Station゛Hmi

Claims (6)

【特許請求の範囲】[Claims] (1)活物質である水素を電気化学的に吸蔵・放出する
水素吸蔵合金粉末の表面に、遷移金属粒子を固定化した
ことを特徴とする水素吸蔵合金電極。
(1) A hydrogen storage alloy electrode characterized in that transition metal particles are immobilized on the surface of a hydrogen storage alloy powder that electrochemically stores and releases hydrogen as an active material.
(2)水素吸蔵合金粉末はCaCu_5型の結晶構造を
有することを特徴とする特許請求の範囲第1項記載の水
素吸蔵合金電極。
(2) The hydrogen storage alloy electrode according to claim 1, wherein the hydrogen storage alloy powder has a CaCu_5 type crystal structure.
(3)水素吸蔵合金粉末の平均粒子径が30μm以下で
あり、遷移金属粒子の平均粒子径が10μm以下である
ことを特徴とする特許請求の範囲第1項記載の水素吸蔵
合金電極。
(3) The hydrogen storage alloy electrode according to claim 1, wherein the average particle size of the hydrogen storage alloy powder is 30 μm or less, and the average particle size of the transition metal particles is 10 μm or less.
(4)水素吸蔵合金粉末の表面に固定化した前記遷移金
属粒子の含有量が、前記合金粉末100重量部に対して
2〜10重量部であることを特徴とする特許請求の範囲
第1項記載の水素吸蔵合金電極。
(4) The content of the transition metal particles fixed on the surface of the hydrogen-absorbing alloy powder is 2 to 10 parts by weight based on 100 parts by weight of the alloy powder. The hydrogen storage alloy electrode described.
(5)活物質である水素を電気化学的に吸蔵・放出する
水素吸蔵合金粉末と遷移金属粒子との混合物を、不活性
ガス雰囲気中あるいは真空中で焼成する工程と、前記焼
成した粉末を支持体に塗着、圧入または充填した後、所
望の厚さに加圧する工程とを有することを特徴とする水
素吸蔵合金電極の製造法。
(5) A process of firing a mixture of hydrogen storage alloy powder and transition metal particles that electrochemically absorbs and releases hydrogen, which is an active material, in an inert gas atmosphere or in a vacuum, and supporting the fired powder. 1. A method for producing a hydrogen storage alloy electrode, comprising the steps of applying, press-fitting or filling the electrode onto a body, and then applying pressure to a desired thickness.
(6)焼成する温度が700〜900℃であることを特
徴とする特許請求の範囲第5項記載の水素吸蔵合金電極
の製造法。
(6) The method for manufacturing a hydrogen storage alloy electrode according to claim 5, wherein the firing temperature is 700 to 900°C.
JP63096009A 1988-04-19 1988-04-19 Hydrogen storage alloy electrode and its manufacturing method Expired - Lifetime JP2629807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63096009A JP2629807B2 (en) 1988-04-19 1988-04-19 Hydrogen storage alloy electrode and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63096009A JP2629807B2 (en) 1988-04-19 1988-04-19 Hydrogen storage alloy electrode and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH01267955A true JPH01267955A (en) 1989-10-25
JP2629807B2 JP2629807B2 (en) 1997-07-16

Family

ID=14153183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63096009A Expired - Lifetime JP2629807B2 (en) 1988-04-19 1988-04-19 Hydrogen storage alloy electrode and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2629807B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992008251A1 (en) * 1990-10-29 1992-05-14 Yuasa Corporation Hydrogen-storing electrode, nickel electrode, and nickel-hydrogen battery
JPH05343053A (en) * 1991-08-29 1993-12-24 Furukawa Battery Co Ltd:The Hydrogen storage alloy electrode and mill treated mixed powder for electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992008251A1 (en) * 1990-10-29 1992-05-14 Yuasa Corporation Hydrogen-storing electrode, nickel electrode, and nickel-hydrogen battery
US5393616A (en) * 1990-10-29 1995-02-28 Yuasa Corporation Metal hydride electrode
JPH05343053A (en) * 1991-08-29 1993-12-24 Furukawa Battery Co Ltd:The Hydrogen storage alloy electrode and mill treated mixed powder for electrode

Also Published As

Publication number Publication date
JP2629807B2 (en) 1997-07-16

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP2001143745A (en) Nickel hydrogen storage battery
JPS62139255A (en) Manufacture of hydrogen absorbing electrode
JPS59181459A (en) Metal oxide hydrogen battery
JP2512076B2 (en) Manufacturing method of sealed nickel-metal hydride storage battery
JPH01267955A (en) Hydrogen absorption alloy electrode and its manufacture
JP3255369B2 (en) Hydride rechargeable battery
JPH0447676A (en) Manufacture of sealed storage battery
JP2926741B2 (en) Alkaline storage battery and method of manufacturing the same
JP2808679B2 (en) Formation method of sealed alkaline storage battery using hydrogen storage alloy negative electrode
JPH06283197A (en) Sealed nickel-hydrogen battery and activation thereof
JP2968360B2 (en) Method for producing hydride secondary battery
JPH01267960A (en) Hydrogen absorption alloy electrode and its manufacture
JP2558624B2 (en) Nickel-hydrogen alkaline storage battery
JP3342506B2 (en) Hydride secondary battery and method for producing the same
JP2642144B2 (en) Method for producing hydrogen storage electrode
JPH01130467A (en) Hydrogen occlusive alloy electrode
JPH03285270A (en) Alkaline storage battery
JP2679441B2 (en) Nickel-metal hydride battery
JPS60119079A (en) Hydrogen absorption electrode
JPH04284369A (en) Nickel-metal hydride storage battery
JPS63239771A (en) Paste-type hydrogen occluded electrode
JP2584075B2 (en) Manufacturing method of nickel-hydrogen storage battery
JPS60130063A (en) Manufacture of sealed nickel-hydrogen storage battery
JP3222902B2 (en) Manufacturing method of hydrogen storage alloy electrode

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080418

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 12