JP2968360B2 - Method for producing hydride secondary battery - Google Patents

Method for producing hydride secondary battery

Info

Publication number
JP2968360B2
JP2968360B2 JP3041232A JP4123291A JP2968360B2 JP 2968360 B2 JP2968360 B2 JP 2968360B2 JP 3041232 A JP3041232 A JP 3041232A JP 4123291 A JP4123291 A JP 4123291A JP 2968360 B2 JP2968360 B2 JP 2968360B2
Authority
JP
Japan
Prior art keywords
storage alloy
hydrogen storage
secondary battery
hydrogen
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3041232A
Other languages
Japanese (ja)
Other versions
JPH04259762A (en
Inventor
浩 服部
龍 長井
浩 福永
章 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP3041232A priority Critical patent/JP2968360B2/en
Publication of JPH04259762A publication Critical patent/JPH04259762A/en
Application granted granted Critical
Publication of JP2968360B2 publication Critical patent/JP2968360B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は水素化物二次電池の製造
方法に関する。
The present invention relates to a method for producing a hydride secondary batteries.

【0002】[0002]

【従来の技術】水素化物二次電池は、負極に水素原子を
可逆的に吸蔵、放出できる水素吸蔵合金を用い、正極に
水酸化ニッケルを用いた電池であり、無公害な高エネル
ギー密度アルカリ二次電池として、その発展が期待され
ている。
2. Description of the Related Art A hydride secondary battery is a battery using a hydrogen storage alloy capable of reversibly storing and releasing hydrogen atoms for a negative electrode and nickel hydroxide for a positive electrode. Its development is expected as a secondary battery.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記水
素化物二次電池では、充電状態で負極の水素吸蔵合金に
吸蔵された水素原子が、水素分子となって水素吸蔵合金
から脱離し、電解液中に拡散し、電解液を伝って正極に
たどりつき、正極を還元する、いわゆる、自己放電を起
こしやすく、それが貯蔵性を低下させる要因になってい
た。
However, in the above-mentioned hydride secondary battery, in the charged state, the hydrogen atoms occluded in the hydrogen storage alloy of the negative electrode are converted into hydrogen molecules and desorbed from the hydrogen storage alloy. To the positive electrode through the electrolytic solution to reduce the positive electrode, that is, the so-called self-discharge is likely to occur, which has been a factor of lowering the storability.

【0004】また、貯蔵中に水素分子(水素ガス)がベ
ント部(高圧での電池破裂を防止するための安全弁装
置)から電池系外に逸散して、容量を低下させるという
問題もあった。
There is also a problem that during storage, hydrogen molecules (hydrogen gas) escape from the vent portion (a safety valve device for preventing battery rupture at high pressure) to the outside of the battery system, thereby reducing the capacity. .

【0005】本発明は、従来の水素化物二次電池が持っ
ていた貯蔵性の悪さを解消し、自己放電の少ない水素化
物二次電池を提供することを目的とする。
[0005] It is an object of the present invention to provide a hydride secondary battery which eliminates the poor storability of a conventional hydride secondary battery and has less self-discharge.

【0006】[0006]

【課題を解決するための手段】本発明は、負極の水素吸
蔵合金の表面に化学酸化重合法によりポリアニリンを結
着させることによって、水素吸蔵合金からの水素分子の
脱離を抑制して、上記目的を達成したものである。
According to the present invention, the desorption of hydrogen molecules from a hydrogen storage alloy is suppressed by binding polyaniline to the surface of a hydrogen storage alloy of a negative electrode by a chemical oxidation polymerization method. The purpose has been achieved.

【0007】上記のように、水素吸蔵合金の表面にポリ
アニリンを結着させると、水素吸蔵合金からの水素分子
の脱離がポリアニリンによって物理的に抑制される。
As described above, when polyaniline is bound to the surface of the hydrogen storage alloy, the desorption of hydrogen molecules from the hydrogen storage alloy is physically suppressed by the polyaniline.

【0008】その結果、水素分子が正極にたどりついて
正極を還元するのが少なくなる。
As a result, it is less likely that hydrogen molecules reach the positive electrode and reduce the positive electrode.

【0009】水素吸蔵合金の表面にポリアニリンを結着
させるには、水素吸蔵合金をニッケル支持体に圧着した
後のいわゆる水素吸蔵合金電極の状態で行うことが好ま
しい。
In order to bind the polyaniline to the surface of the hydrogen storage alloy, it is preferable to perform the bonding in the state of a so-called hydrogen storage alloy electrode after the hydrogen storage alloy is pressed against a nickel support.

【0010】水素吸蔵合金の表面にポリアニリンを結着
させるには、上記のようにアニリンの化学酸化重合法に
よって行
[0010] To bind the polyaniline on the surface of the hydrogen-absorbing alloy, intends <br/> thus lines the chemical oxidative polymerization method aniline as described above.

【0011】化学酸化重合法は、例えばホウフッ化水素
酸、硫酸、過塩素酸などの酸を加え、アニリンを溶解さ
せた水溶液中に、ニッケル支持体に圧着した状態の水素
吸蔵合金を浸漬し、そこに二酸化マンガン、重クロム酸
カリウム、重クロム酸アンモニウムなどの酸化剤を加え
てアニリンを重合させ、水素吸蔵合金の表面にポリアニ
リンを結着させる方法である。
In the chemical oxidation polymerization method, for example, an acid such as borofluoric acid, sulfuric acid, perchloric acid or the like is added, and a hydrogen storage alloy pressed against a nickel support is immersed in an aqueous solution in which aniline is dissolved. An oxidizing agent such as manganese dioxide, potassium bichromate, and ammonium bichromate is added thereto to polymerize aniline, and to bind polyaniline to the surface of the hydrogen storage alloy.

【0012】[0012]

【0013】水素吸蔵合金の表面に結着させるポリアニ
リンの量としては、2×10-4〜2×10-3mg/cm
2 が好ましい。
The amount of polyaniline bound to the surface of the hydrogen storage alloy is 2 × 10 -4 to 2 × 10 -3 mg / cm.
2 is preferred.

【0014】ポリアニリン量が上記範囲より少ない場合
は、水素吸蔵合金から水素分子が脱離するのを防止する
効果が充分に発揮されない。
If the amount of polyaniline is less than the above range, the effect of preventing the desorption of hydrogen molecules from the hydrogen storage alloy is not sufficiently exhibited.

【0015】また、ポリアニリン量が前記範囲より多く
なると、電池反応を阻害し、容量を低下させる原因にな
る。特に大電流放電時や低温放電時の放電特性が悪くな
る。
On the other hand, when the amount of polyaniline is larger than the above range, the battery reaction is inhibited and the capacity is reduced. In particular, discharge characteristics at the time of large current discharge and low temperature discharge are deteriorated.

【0016】負極に用いる水素吸蔵合金とは、可逆的に
水素原子を吸蔵、放出できる合金をいい、通常、水素原
子を完全に脱離(放出)した状態で合成される。そし
て、この水素吸蔵合金を用いた負極では、充電は水素原
子の吸蔵であり、放電は水素原子の放出である。
The hydrogen storage alloy used for the negative electrode is an alloy capable of reversibly storing and releasing hydrogen atoms, and is usually synthesized in a state where hydrogen atoms are completely desorbed (released). In the negative electrode using this hydrogen storage alloy, charging is storing hydrogen atoms and discharging is releasing hydrogen atoms.

【0017】正極には、焼結式またはペースト式で作製
された、いわゆるニッケル電極が用いられる。
As the positive electrode, a so-called nickel electrode produced by a sintering method or a paste method is used.

【0018】このニッケル電極は、放電状態ではニッケ
ルが水酸化物の状態、つまり水酸化ニッケルになり、充
電状態ではニッケルがオキシ水酸化物の状態、つまりN
iOOHになっている。
In this nickel electrode, nickel is in a hydroxide state, that is, nickel hydroxide in a discharged state, and nickel is in an oxyhydroxide state, that is, N in a charged state.
It is iOOH.

【0019】本発明では、水酸化ニッケルを含む正極と
表現しているが、これは正極が放電状態にある場合を意
味するものである。
In the present invention, the positive electrode containing nickel hydroxide is expressed, but this means that the positive electrode is in a discharged state.

【0020】前記の焼結式ニッケル電極とは、ニッケル
焼結体を基体とし、これに水酸化ニッケルを充填したも
ので、ペースト式ニッケル電極とは、金網、パンチング
メタル、エキスパンドメタル、金属発泡体などの多孔性
金属を基体とし、これにペースト状にした水酸化ニッケ
ルを添着し、乾燥、圧着したものである。
The above-mentioned sintered nickel electrode has a nickel sintered body as a base and is filled with nickel hydroxide. The paste nickel electrode is a wire mesh, punched metal, expanded metal, metal foam, or the like. A porous metal substrate is used as a substrate, and paste-like nickel hydroxide is attached to the substrate, dried, and pressed.

【0021】電解液には、水酸化リチウム、水酸化ナト
リウム、水酸化カリウムなどのアルカリ金属の水酸化物
を含むアルカリ水溶液が用いられる。
As the electrolytic solution, an alkaline aqueous solution containing an alkali metal hydroxide such as lithium hydroxide, sodium hydroxide and potassium hydroxide is used.

【0022】[0022]

【実施例】つぎに実施例を挙げて本発明をより具体的に
説明する。
Next, the present invention will be described more specifically with reference to examples.

【0023】実施例1 Ti(チタン)、Zr(ジルコニウム)、V(バナジウ
ム)、Ni(ニッケル)、Cr(クロム)を所望の組成
比で秤量し、アーク溶解炉によって加熱溶解させ、(T
0.5 1.5 1.0 Ni3.0 0.8 Cr0.2 の組成を持
つ多相系合金を得た。
Example 1 Ti (titanium), Zr (zirconium), V (vanadium), Ni (nickel), and Cr (chromium) were weighed at a desired composition ratio, and were heated and melted by an arc melting furnace.
A multi-phase alloy having a composition of i 0.5 Z 1.5 V 1.0 Ni 3.0 ) 0.8 Cr 0.2 was obtained.

【0024】この合金を耐圧容器内に入れ、容器内の圧
力を10-4torrにし、アルゴンを導入した。
This alloy was placed in a pressure vessel, the pressure in the vessel was adjusted to 10 -4 torr, and argon was introduced.

【0025】この操作を3回繰り返した後、14kg/c
2 の水素ガスを導入し、24時間保持後、水素ガスを
排気し、400℃で加熱して、水素を完全に脱離するこ
とにより、水素吸蔵合金を粒径20〜100μmの微粉
末状で得た。
After repeating this operation three times, 14 kg / c
After introducing hydrogen gas of m 2 and holding for 24 hours, the hydrogen gas is exhausted, heated at 400 ° C., and hydrogen is completely desorbed. I got it.

【0026】得られた水素吸蔵合金粉末をニッケル支持
体に分散させ、5tonで圧着し、Ar/H2 ガス比が
96:4の雰囲気中1050℃で5分間焼結して、いわ
ゆる水素吸蔵合金電極と呼ばれる状態のものを得た。
The obtained hydrogen storage alloy powder was dispersed on a nickel support, pressed at 5 tons, and sintered at 1050 ° C. for 5 minutes in an atmosphere having an Ar / H 2 gas ratio of 96: 4 to form a so-called hydrogen storage alloy. An electrode called a state was obtained.

【0027】つぎに、これを水45gにホウフッ化水素
酸4ミリリットルを加え、アニリン5gを溶解させた溶
液中に浸漬した。
Next, 4 ml of borofluoric acid was added to 45 g of water and immersed in a solution in which 5 g of aniline was dissolved.

【0028】つぎに、上記溶液中に、二酸化マンガンを
アニリン1モルに対して0.75モルの割合で添加し、
1時間放置して、水素吸蔵合金の表面にポリアニリンを
結着させた。
Next, manganese dioxide was added to the above solution at a ratio of 0.75 mol per 1 mol of aniline.
It was left for one hour to bind polyaniline to the surface of the hydrogen storage alloy.

【0029】このようにして水素吸蔵合金の表面に結着
させたポリアニリンの量は8.6×10-4mg/cm2
であった。
The amount of polyaniline bound on the surface of the hydrogen storage alloy in this way is 8.6 × 10 −4 mg / cm 2.
Met.

【0030】上記のようにして得た負極と、水酸化ニッ
ケルを活物質として含む焼結式ニッケル電極を正極とし
て用い、図1に示すモデルセルを作製した。
Using the negative electrode obtained as described above and a sintered nickel electrode containing nickel hydroxide as an active material as a positive electrode, a model cell shown in FIG. 1 was produced.

【0031】図1において、1は正極であり、2は負極
である。この負極2の水素吸蔵合金の表面にはポリアニ
リンが結着している。
In FIG. 1, 1 is a positive electrode and 2 is a negative electrode. Polyaniline is bound to the surface of the hydrogen storage alloy of the negative electrode 2.

【0032】3はポリプロピレン不織布からなるセパレ
ータであり、4は参照電極であって、この参照電極4に
は水銀/酸化水銀電極が用いられている。
Reference numeral 3 denotes a separator made of a nonwoven polypropylene fabric, reference numeral 4 denotes a reference electrode, and the reference electrode 4 is a mercury / mercury oxide electrode.

【0033】5は電解液で、この電解液5には濃度30
重量%の水酸化カリウム水溶液が用いられている。6お
よび7はそれぞれニッケル集電体であり、8はリード用
の白金で、9はポリプロピレン製のセル容器である。
Reference numeral 5 denotes an electrolyte which has a concentration of 30.
A weight percent aqueous solution of potassium hydroxide is used. Reference numerals 6 and 7 denote nickel current collectors, 8 denotes platinum for leads, and 9 denotes a polypropylene cell container.

【0034】そして、上記モデルセルにおける負極容量
は200mAhで、正極容量は130mAhである。
The capacity of the negative electrode in the above model cell is 200 mAh, and the capacity of the positive electrode is 130 mAh.

【0035】上記モデルセルを0.1C(13mA)で
15時間充電し、45℃で3日間保存した後、電池電圧
が0.9Vになるまで0.1C(13mA)で放電し、
その時の放電容量と、保存せずに同条件下で放電した時
の放電容量とから、次式により容量保持率を算出した。
得られた容量保持率を比較例1の容量保持率と共に後記
の表1に示す。
The above model cell was charged at 0.1 C (13 mA) for 15 hours, stored at 45 ° C. for 3 days, and then discharged at 0.1 C (13 mA) until the battery voltage reached 0.9 V.
From the discharge capacity at that time and the discharge capacity when the battery was discharged under the same conditions without storage, the capacity retention was calculated by the following equation.
The resulting capacity retention with capacity retention ratio Comparative Examples 1 are shown in the following Table 1.

【0036】 容量保持率(%)=A/B×100 A:45℃で3日間保存した後の放電容量 B:保存しない場合の放電容量Capacity retention (%) = A / B × 100 A: Discharge capacity after storage at 45 ° C. for 3 days B: Discharge capacity without storage

【0037】[0037]

【0038】[0038]

【0039】[0039]

【0040】[0040]

【0041】比較例1 実施例1と同様の水素吸蔵合金をニッケル支持体に圧着
し、Ar/H2 ガス比が96:4の雰囲気中1050℃
で5分間焼結した。
COMPARATIVE EXAMPLE 1 The same hydrogen storage alloy as in Example 1 was pressed on a nickel support at 1050 ° C. in an atmosphere having an Ar / H 2 gas ratio of 96: 4.
For 5 minutes.

【0042】これを、実施例1のようなポリアニリンの
結着処理をすることなく、そのまま負極として用い、そ
れ以外は実施例1と同様にしてモデルセルを作製し、実
施例1と同様の試験を行った。得られた容量保持率を表
1に示す。
[0042] This, without the binder treatment of the polyaniline as in Example 1, it is used as a negative electrode, otherwise to prepare a model cell in the same manner as in Example 1, as in Example 1 Test Was done. Table 1 shows the obtained capacity retention rates.

【0043】[0043]

【表1】 [Table 1]

【0044】表1に示すように、実施例1は、従来例に
相当する比較例1に比べて、容量保持率が大きく、貯蔵
による自己放電が少なかった。
As shown in Table 1, Example 1, as compared to Comparative Example 1 corresponding to the conventional example, the capacity retention rate is large, were less self-discharge due to storage.

【0045】[0045]

【発明の効果】以上説明したように、本発明では、負極
の水素吸蔵合金の表面に化学酸化重合法によりポリアニ
リンを結着させることによって、自己放電の少ない水素
化物二次電池を提供することができた。
As described in the foregoing, in the present invention, it'll be to bind the Poriani <br/> phosphorus by chemical oxidative polymerization method on the surface of the negative electrode of a hydrogen storage alloy, less hydride self-discharge A secondary battery could be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1および比較例1の容量保持率を調べる
ために使用したモデルセルを概略的に示す断面図であ
る。
1 is a cross-sectional view schematically showing a model cell used to investigate the capacity retention of Example 1 Contact and Comparative Example 1.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 1 Positive electrode 2 Negative electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川上 章 大阪府茨木市丑寅一丁目1番88号 日立 マクセル株式会社内 (56)参考文献 特開 平3−192652(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 4/24,4/26,4/62 H01M 10/24 - 10/30 H01M 10/34 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Akira Kawakami 1-1-88 Ushitora, Ibaraki-shi, Osaka Hitachi Maxell, Ltd. (56) References JP-A-3-192652 (JP, A) (58) Survey Field (Int.Cl. 6 , DB name) H01M 4 / 24,4 / 26,4 / 62 H01M 10/24-10/30 H01M 10/34

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素吸蔵合金を含む負極と、水酸化ニッ
ケルを含む正極を有する水素化物二次電池の製造にあた
、 上記負極の水素吸蔵合金の表面に化学酸化重合法により
ポリアニリンを結着させることを特徴とする水素化物二
次電池の製造方法
1. A method for manufacturing a hydride secondary battery having a negative electrode containing a hydrogen storage alloy and a positive electrode containing nickel hydroxide.
A method for producing a hydride secondary battery , comprising binding polyaniline to the surface of the hydrogen storage alloy of the negative electrode by a chemical oxidation polymerization method .
JP3041232A 1991-02-12 1991-02-12 Method for producing hydride secondary battery Expired - Lifetime JP2968360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3041232A JP2968360B2 (en) 1991-02-12 1991-02-12 Method for producing hydride secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3041232A JP2968360B2 (en) 1991-02-12 1991-02-12 Method for producing hydride secondary battery

Publications (2)

Publication Number Publication Date
JPH04259762A JPH04259762A (en) 1992-09-16
JP2968360B2 true JP2968360B2 (en) 1999-10-25

Family

ID=12602666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3041232A Expired - Lifetime JP2968360B2 (en) 1991-02-12 1991-02-12 Method for producing hydride secondary battery

Country Status (1)

Country Link
JP (1) JP2968360B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102274965B (en) * 2011-06-02 2013-04-24 内蒙古稀奥科贮氢合金有限公司 Method for improving electrochemical performance of hydrogen storage alloy powder by utilizing electropolymerization polyaniline
CN104923776A (en) * 2015-05-17 2015-09-23 桂林理工大学 Method for surface modification of AB3 hydrogen storage alloy by using aniline

Also Published As

Publication number Publication date
JPH04259762A (en) 1992-09-16

Similar Documents

Publication Publication Date Title
WO1992008251A1 (en) Hydrogen-storing electrode, nickel electrode, and nickel-hydrogen battery
JPH0638333B2 (en) Electrochemical battery
JP2968360B2 (en) Method for producing hydride secondary battery
JP3255369B2 (en) Hydride rechargeable battery
JP2999277B2 (en) Hydride secondary battery and method for producing the same
JPH01267966A (en) Manufacture of sealed nickel-hydrogen battery
JP2537128B2 (en) Method for producing hydrogen storage alloy powder for negative electrode of nickel-hydrogen secondary battery and method for producing negative electrode for nickel-hydrogen secondary battery
JP3214569B2 (en) Method for producing hydride secondary battery
JP2548271B2 (en) Alkaline secondary battery manufacturing method
JP3387314B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3639494B2 (en) Nickel-hydrogen storage battery
JPS61168866A (en) Hydrogen occlusion electrode
JP3342506B2 (en) Hydride secondary battery and method for producing the same
JP3176387B2 (en) Method for producing hydride secondary battery
JP3214570B2 (en) Hydride rechargeable battery
JP3141141B2 (en) Sealed nickel-metal hydride storage battery
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH06145849A (en) Hydrogen storage alloy electrode
JPS5931834B2 (en) Hydrogen storage electrode
JP3342699B2 (en) Hydride battery and method for charging negative electrode thereof
JP2001035526A (en) Nickel hydrogen storage battery
JP2642144B2 (en) Method for producing hydrogen storage electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPS6332856A (en) Closed nickel-hydrogen storage battery
JP2929716B2 (en) Hydrogen storage alloy electrode

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990810