JPS5931834B2 - Hydrogen storage electrode - Google Patents

Hydrogen storage electrode

Info

Publication number
JPS5931834B2
JPS5931834B2 JP52073962A JP7396277A JPS5931834B2 JP S5931834 B2 JPS5931834 B2 JP S5931834B2 JP 52073962 A JP52073962 A JP 52073962A JP 7396277 A JP7396277 A JP 7396277A JP S5931834 B2 JPS5931834 B2 JP S5931834B2
Authority
JP
Japan
Prior art keywords
alloy
atoms
cycle life
hydrogen storage
storage electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52073962A
Other languages
Japanese (ja)
Other versions
JPS548841A (en
Inventor
伸行 柳原
正一 池山
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP52073962A priority Critical patent/JPS5931834B2/en
Publication of JPS548841A publication Critical patent/JPS548841A/en
Publication of JPS5931834B2 publication Critical patent/JPS5931834B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 本発明は、水素吸蔵能力を有する電極、例えばこれに吸
蔵されている水素と、酸素との電気化学的反応により電
気工不ルギーを発生する電池に用いられる電極の改良に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is an improvement in an electrode having a hydrogen storage capacity, for example, an electrode used in a battery that generates electrical energy through an electrochemical reaction between the hydrogen stored in the electrode and oxygen. Regarding.

従来、鉛−酸化鉛、ニッケル−カドミウム等の蓄電池が
知られているが、これらの蓄電池は負極中に活物質を含
むために、重量または容量の単位当りエネルギー貯蔵容
量が比較的少ない欠点があつた。
Conventionally, storage batteries such as lead-lead oxide and nickel-cadmium are known, but because these batteries contain active materials in the negative electrode, they have the disadvantage that their energy storage capacity per unit of weight or capacity is relatively low. Ta.

このエネルギー貯蔵容量を向上させるために活物質を保
持しない陰極として水素を吸蔵するCaNi5、LaN
i、等の電極が提案せられている。
In order to improve this energy storage capacity, CaNi5, LaN, which absorbs hydrogen as a cathode that does not hold an active material,
Electrodes such as i, etc. have been proposed.

CaNi5合金は、初期放電容量が大きいが、サイクル
寿命は、比較的短かい欠点を有し、一方LaNi、合金
はサイクル寿命が比較的長いが、初期容量が小さい欠点
があつた。従来から蓄電池の陰極としては、放電容量が
大きく、しかもサイクル寿命が長いものが望まれている
ので、本発明は、La原子の有する長寿命化の性質に着
目し、CaNi、合金のC通子の一部をLa原子により
置換して初期放電容量が大きく、しかもサイクル寿命の
長い水素吸蔵電極を提供して上記従来の欠点を除去した
ものである。
The CaNi5 alloy has a large initial discharge capacity but a relatively short cycle life, while the LaNi alloy has a relatively long cycle life but a small initial capacity. Conventionally, cathodes for storage batteries have been desired to have a large discharge capacity and a long cycle life. Therefore, the present invention focused on the long-life property of La atoms, A hydrogen storage electrode having a large initial discharge capacity and a long cycle life is provided by replacing a portion of the hydrogen atoms with La atoms, thereby eliminating the above-mentioned conventional drawbacks.

以下その一実施例について詳述する。カルシウム(純度
99.5%以上)と、ランタン(純度99%以上)を、
原子比でCa:Laの比が、1.0:ON0.8:0.
2、0.6:0.4、0.4:0.6、0.2゛:0.
8、0:1.0となるように各試料を夫々秤量してのち
混合し、ついでこの混合物1に対してニッケルが原子比
で5になるように加えて溶解炉中は10′″4〜10−
5Toににまで真空吸引し、合金に付着している酸素ガ
スを除去した后、アルゴンガス雰囲気中(減圧状態)で
アークを飛ばし、加熱溶解させる。
One embodiment will be described in detail below. Calcium (purity 99.5% or more) and lanthanum (purity 99% or more)
The atomic ratio of Ca:La is 1.0:ON0.8:0.
2, 0.6:0.4, 0.4:0.6, 0.2゛:0.
8. Weigh and mix each sample so that the ratio is 0:1.0, and then add nickel to this mixture so that the atomic ratio is 5 to 1. 10-
After vacuuming to 5To to remove oxygen gas adhering to the alloy, an arc is struck in an argon gas atmosphere (under reduced pressure) to heat and melt.

試料の均質化をはかるためにこの操作を数回反覆させる
。得られた合金をAr雰囲気中で粉砕して微細な合金粉
末となし、篩分けにより約40μ以下とした。
This operation is repeated several times to homogenize the sample. The obtained alloy was ground into a fine alloy powder in an Ar atmosphere, and the powder was sieved to a size of about 40 μm or less.

このようにして得られた合金粉末をリード付の発泡メタ
ル(連続気泡状空間を有する金属で、三次元的に網状に
形成せられた多孔体)に充填し、Ar気流中で1000
℃、l時間焼結してCa、−xLaxNi、(x=1〜
0)系合金焼結体を製造し、ついでこの合金焼結体を約
200kg/dで加圧し陰極となした。
The alloy powder obtained in this way was filled into a leaded foam metal (a metal with open cell-like spaces and a porous body formed in a three-dimensional network shape), and
℃, l hour sintering to give Ca, -xLaxNi, (x=1~
0) system alloy sintered body was produced, and then this alloy sintered body was pressurized at about 200 kg/d to form a cathode.

なお陰極の大きさは、50×40n、厚さ1.5□とな
し、活物質としての合金粉末は一枚当り約59程充填し
、導電材料としてのニッケル粉末を焼結前に混合して電
極抵抗の向上を図つた。
The size of the cathode is 50 x 40n and the thickness is 1.5□, and the alloy powder as an active material is filled in about 59% per sheet, and the nickel powder as a conductive material is mixed before sintering. The aim was to improve electrode resistance.

以上のようにして得られた多孔性合金を陰極1とし、公
知の酸化ニツケルを陽極2とし、アルカリ電解液3中に
浸漬して第1図に示すアルカリ蓄電池を構成する。なお
第1図において1は陰極、2は陽極、3は電解液、4は
陰極リード板、5は陽極リード板、6はセパレータ、7
は電槽、8は注液栓である。この蓄電池を200mAの
放電々流により初期放電容量を測定した結果は第2図に
示す通りであつた。
The porous alloy obtained as described above was used as the cathode 1, a known nickel oxide was used as the anode 2, and the electrodes were immersed in an alkaline electrolyte 3 to construct the alkaline storage battery shown in FIG. In FIG. 1, 1 is a cathode, 2 is an anode, 3 is an electrolyte, 4 is a cathode lead plate, 5 is an anode lead plate, 6 is a separator, and 7 is a cathode.
is a battery container, and 8 is a liquid injection tap. The initial discharge capacity of this storage battery was measured using a 200 mA discharge current, and the results were as shown in FIG.

この結果よりCa原子がLa原子により置換されるにつ
れて初期放電容量は著しく減少し、CaNi5合金(x
=0のとき)の初期放電容量0.33Ah/9(活物質
)に対してLaNi5合金(x=1.0のとき)の初期
放電容量は0.05AFVf!(活物質)と非常に小さ
く、実用的なアルカリ蓄電池を考える時は、少なくとも
初期放電容量が0.25Ah/9を必要とする事からC
a原子のLa原子置換はxの値で0.5以下が好ましい
。一方この蓄電池のサイクル寿命を測定した結果は第3
図に示す通りであつた。この結果よりCa原子がLa原
子により置換されるにつれてサイクル寿命は著しく増加
し、CaNi,合金(x=0のとき)のサイクル寿命は
約65サイクルであつたのに比し、LaNi5合金(x
=1.0のとき)のサイクル寿命は約300サイクルと
大きく向上し、実用的なアルカリ蓄電池を考える時、少
なくともサイクル寿命は150サイクルを必要とするこ
とからCa原子のLa原子置換はxの値で0.05以上
が好ましい。
This result shows that as Ca atoms are replaced by La atoms, the initial discharge capacity decreases significantly, and the CaNi5 alloy (x
= 0)), the initial discharge capacity of the LaNi5 alloy (when x = 1.0) is 0.05 AFVf! When considering a practical alkaline storage battery that is very small (active material), it is necessary to have an initial discharge capacity of at least 0.25Ah/9.
In the substitution of La atom for a atom, the value of x is preferably 0.5 or less. On the other hand, the result of measuring the cycle life of this storage battery is the third
It was as shown in the figure. This result shows that the cycle life increases significantly as Ca atoms are replaced by La atoms, and while the cycle life of CaNi alloy (when x = 0) was about 65 cycles, the cycle life of LaNi5 alloy (x
= 1.0), the cycle life is greatly improved to approximately 300 cycles, and when considering a practical alkaline storage battery, the cycle life requires at least 150 cycles. Therefore, the substitution of La atoms for Ca atoms will increase the value of x. is preferably 0.05 or more.

以上の結果より、実用的に好ましい最適な範囲は、Ca
l−XLaXNi5合金におけるXの値が0.05〜0
.5となる。
From the above results, the optimal range that is practically preferable is Ca
The value of X in l-XLaXNi5 alloy is 0.05 to 0
.. It becomes 5.

xの値が0.05以下の時は、サイクル寿命が短かすぎ
、またXの値が0.5以上となると初期容量が小さすぎ
ていずれの場合も実用的な蓄電池とはなり得なくなる。
When the value of x is 0.05 or less, the cycle life is too short, and when the value of x is 0.5 or more, the initial capacity is too small, and in either case, the battery cannot be used as a practical storage battery.

その他にLaが過剰になると価格的にも問題が発生する
のでできるだけ少量のLaにより十分な特性を発揮させ
ることにもよる。Ca原子の一部をLa原子により置換
する事によつてサイクル寿命が伸長する理由としては次
のことが考えられる。CaNl5合金は、最初から多量
の水素を一度に吸蔵して高い放電容量を示すが、サイク
ルを繰り返している間に、一部Cacu5型構造の結晶
性がくずれ、電解液のKOHと反応してCa(0H)2
に変化し、水素吸蔵による電極自身の膨張による内部抵
抗等が増大してサイクル寿命が短かくなる。今CaNi
5合金のCa原子の一部をLa原子により置換するとC
aCu,型構造の結晶性がくずれにくくなつて電極自身
の膨張も少なくなる0すなわちLa原子で置換すること
により初期において一度に多量の水素を吸蔵することが
抑制される作用から除々に電極自体も活性化さわ、初期
容量は少し低下するがサイクル寿命が伸長する作用をす
る。このことはLaNl5合金は最初水素吸蔵能が低く
、活性化に時間を要することからも推測できる。以上の
ように、本発明は、カルシウムおよびニツケルからなる
CaNi5合金のCa原子の一部をLa原子で置換した
Cal−XLaXNi5合金により構成することにより
水素吸蔵電極の初期放電容量およびサイクル寿命共に向
上させた工業的価値の大なるものである。
In addition, an excessive amount of La causes problems in terms of cost, so it is important to exhibit sufficient characteristics with as little La as possible. The following may be the reason why the cycle life is extended by replacing a portion of Ca atoms with La atoms. CaNl5 alloy exhibits high discharge capacity by absorbing a large amount of hydrogen at once from the beginning, but during repeated cycles, the crystallinity of the Cacu5 type structure partially collapses and reacts with KOH in the electrolyte, causing Ca (0H)2
The electrode itself expands due to hydrogen absorption, increasing internal resistance and shortening the cycle life. Now CaNi
When some of the Ca atoms in the 5 alloy are replaced by La atoms, C
aCu, the crystallinity of the type structure becomes less likely to collapse, and the expansion of the electrode itself is reduced. By replacing with 0, that is, La atoms, the electrode itself gradually becomes more difficult to absorb due to the effect of suppressing the absorption of a large amount of hydrogen at once in the initial stage. When activated, the initial capacity decreases a little, but it has the effect of extending the cycle life. This can be inferred from the fact that the LaNl5 alloy initially has a low hydrogen storage capacity and requires time for activation. As described above, the present invention improves both the initial discharge capacity and the cycle life of a hydrogen storage electrode by using a Cal-XLaXNi5 alloy in which some of the Ca atoms of the CaNi5 alloy consisting of calcium and nickel are replaced with La atoms. It is of great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による水素吸蔵電極を用いた
アルカリ蓄電池の構成図、第2図は初期容量特性線図、
第3図はサイタル寿命特性線図である。
FIG. 1 is a configuration diagram of an alkaline storage battery using a hydrogen storage electrode according to an embodiment of the present invention, FIG. 2 is an initial capacity characteristic diagram,
FIG. 3 is a cytal life characteristic diagram.

Claims (1)

【特許請求の範囲】 1 CaNi_5合金のCa原子の一部をLa原子によ
り置換したCa_1_−_xLa_xNi_5合金によ
り構成させたことを特徴とする水素吸蔵電極。 2 xの値が0.05〜0.5の範囲に存在することを
特徴とする特許請求の範囲第1項記載の水素吸蔵電極。
[Scope of Claims] 1. A hydrogen storage electrode comprising a Ca_1_-_xLa_xNi_5 alloy in which some of the Ca atoms of the CaNi_5 alloy are replaced with La atoms. 2. The hydrogen storage electrode according to claim 1, wherein the value of 2x is in the range of 0.05 to 0.5.
JP52073962A 1977-06-21 1977-06-21 Hydrogen storage electrode Expired JPS5931834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52073962A JPS5931834B2 (en) 1977-06-21 1977-06-21 Hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52073962A JPS5931834B2 (en) 1977-06-21 1977-06-21 Hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPS548841A JPS548841A (en) 1979-01-23
JPS5931834B2 true JPS5931834B2 (en) 1984-08-04

Family

ID=13533202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52073962A Expired JPS5931834B2 (en) 1977-06-21 1977-06-21 Hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPS5931834B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60241651A (en) * 1984-05-16 1985-11-30 Matsushita Electric Ind Co Ltd Alkali battery
JPS61168869A (en) * 1985-01-19 1986-07-30 Sanyo Electric Co Ltd Metal-hydrogen alkaline storage battery

Also Published As

Publication number Publication date
JPS548841A (en) 1979-01-23

Similar Documents

Publication Publication Date Title
JP2752970B2 (en) Hydrogen storage electrode
JPH0677451B2 (en) Manufacturing method of hydrogen storage electrode
JPS5931834B2 (en) Hydrogen storage electrode
JP2579072B2 (en) Hydrogen storage alloy electrode
JP2548271B2 (en) Alkaline secondary battery manufacturing method
JP2968360B2 (en) Method for producing hydride secondary battery
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH02250260A (en) Hydrogen storage electrode and manufacture thereof
JP3248762B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2001035526A (en) Nickel hydrogen storage battery
JPH06145849A (en) Hydrogen storage alloy electrode
JP3342506B2 (en) Hydride secondary battery and method for producing the same
JP3316687B2 (en) Nickel-metal hydride storage battery
JP3342699B2 (en) Hydride battery and method for charging negative electrode thereof
JPH0582125A (en) Hydrogen occluding alloy electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP3352479B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH04176833A (en) Hydrogen storage alloy electrode
JPS61168871A (en) Hydrogen occlusion electrode
JPH09289036A (en) Manufacture of alkaline storage battery
JPS6332856A (en) Closed nickel-hydrogen storage battery
JPS6151760A (en) Alkaline storage battery
JPH06251769A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH06150918A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH0785866A (en) Hydrogen storage alloy electrode and manufacture thereof