JPS6151760A - Alkaline storage battery - Google Patents

Alkaline storage battery

Info

Publication number
JPS6151760A
JPS6151760A JP59171970A JP17197084A JPS6151760A JP S6151760 A JPS6151760 A JP S6151760A JP 59171970 A JP59171970 A JP 59171970A JP 17197084 A JP17197084 A JP 17197084A JP S6151760 A JPS6151760 A JP S6151760A
Authority
JP
Japan
Prior art keywords
hydrogen
equilibrium dissociation
alloys
pressure
hydrogen absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59171970A
Other languages
Japanese (ja)
Other versions
JPH0564420B2 (en
Inventor
Nobuyuki Yanagihara
伸行 柳原
Hiroshi Kawano
川野 博志
Munehisa Ikoma
宗久 生駒
Koji Gamo
孝治 蒲生
Yoshio Moriwaki
良夫 森脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59171970A priority Critical patent/JPS6151760A/en
Publication of JPS6151760A publication Critical patent/JPS6151760A/en
Publication of JPH0564420B2 publication Critical patent/JPH0564420B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain an alkaline storage battery having high capacity, low internal pressure, and increased safety by using a hydrogen absorption electrode comprising a plurality of hydrogen absorption alloys having different hydrogen equilibrium dissociation pressure or hydrides of these hydrogen absorption alloys. CONSTITUTION:A hydrogen absorption electrode comprising two or more hydrogen absorption alloy powder having different hydrogen equilibrium pressure or hydride powder of these alloys is used. One or more hydrogen absorption alloy powder having a hydrogen equilibrium dissociation pressure of 1atm. or less is preferable to be contained in the hydrogen absorption alloy powder. 5-20wt% hydrogen absorption alloy having a hydrogen equilibrium dissociation pressure of 1-5atm. is preferable to be mixed to a plurality of hydrogen absorption alloys having different hydrogen equilibrium dissociation pressure. Thereby, discharge capacity is increased, and gas evolution during charge-discharge is decreased, and increase in internal pressure of the battery is suppressed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、水素を可逆的に吸蔵・放出する水素吸蔵電極
を負極とし、この負極に吸蔵している水素を正極の酸素
と電気化学的に反応させて電気エネルギーを発生するア
ルカリ蓄電池に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention uses a hydrogen storage electrode that reversibly stores and releases hydrogen as a negative electrode, and electrochemically reacts the hydrogen stored in the negative electrode with oxygen at the positive electrode. The present invention relates to an alkaline storage battery that generates electrical energy.

従来例の構成とその問題点 従来の鉛−酸化鉛蓄電池、ニッケルーカドミウム蓄電池
等の電池は、酸化物電極を持つだめに、重量または容積
の単位当たりのエネルギー貯蔵容量が比較的低い。そこ
でエネルギー貯蔵容量の向上を図るために、負極として
可逆的に水素を吸蔵・放出する水素吸蔵合金を用い、吸
蔵した水素を活物質とする電極が提案されている。たと
えば特開昭51−13934号公報には、水素吸蔵合金
としてLaCo5 、 LaNi5合金などが提案され
ている。
Conventional Structures and Problems Conventional batteries such as lead-lead oxide batteries and nickel-cadmium batteries have relatively low energy storage capacity per unit of weight or volume because they have oxide electrodes. Therefore, in order to improve the energy storage capacity, an electrode has been proposed in which a hydrogen storage alloy that reversibly stores and releases hydrogen is used as a negative electrode, and the stored hydrogen is used as an active material. For example, LaCo5 and LaNi5 alloys are proposed as hydrogen storage alloys in JP-A-51-13934.

これらの水素吸蔵電極は、1種類の水素吸蔵合金からな
っているため、比較的大きな放電容量を有している。し
かし、ニッケル正極と組合せて密閉型のアルカリ蓄電池
を構成した場合、LaCo 5合金は水素平衡解離圧力
が低いため、水素が水素吸蔵電極内で比較的安定に存在
し、過充電状態で正極から発生する酸素ガスを水素吸蔵
電極の界面で水素吸蔵合金中の水素と反応して水を生成
する機構が円滑に進行しにくい問題点を有する。一方、
LaNi 5合金は水素平衡解離圧力が高いため、合金
の界面で水素ガスと正極から発生する酸素ガスとの反応
性は良いが、とくに高温時において充電しにくい傾向が
あるため放電容量が小さくなる。
Since these hydrogen storage electrodes are made of one type of hydrogen storage alloy, they have a relatively large discharge capacity. However, when a sealed alkaline storage battery is configured in combination with a nickel positive electrode, the LaCo 5 alloy has a low hydrogen equilibrium dissociation pressure, so hydrogen exists relatively stably within the hydrogen storage electrode, and hydrogen is generated from the positive electrode in an overcharged state. The problem is that the mechanism in which oxygen gas reacts with hydrogen in the hydrogen storage alloy at the interface of the hydrogen storage electrode to generate water does not proceed smoothly. on the other hand,
Since the LaNi 5 alloy has a high hydrogen equilibrium dissociation pressure, the reactivity between hydrogen gas and oxygen gas generated from the positive electrode at the alloy interface is good, but it tends to be difficult to charge, especially at high temperatures, resulting in a small discharge capacity.

発明の目的 本発明の目的は、上記に鑑み、負極の放電容量が大きく
、しかも過充電時に正極から発生する酸素ガスの吸収能
力向上を図り、高容量かつ電池内圧が低く、安全性の高
いアルカリ蓄電池を提供することである。
Purpose of the Invention In view of the above, an object of the present invention is to provide an alkaline battery with a high capacity, low internal pressure, and high safety, which has a large negative electrode discharge capacity and also improves the ability to absorb oxygen gas generated from the positive electrode during overcharging. The aim is to provide storage batteries.

発明の構成 本発明は、水素平衡解離圧力の異なる2種類以上の水素
吸蔵合金粉末又はその水素化物粉末からなる水素吸蔵電
極を用いるものである。ここで、上記水素吸蔵合金粉末
の中で水素平衡解離圧力が少なくとも1気圧かまたはそ
れ以下の水素吸蔵合金粉末を1種類以上含有するのが望
ましい。また、上記水素平衡解離圧力の異なる複数の水
素吸蔵合金の混合物粉末において、常温で水素平衡解離
圧力が1〜5気圧の範囲内にある水素吸蔵合金が5重量
係から20重量%含有していることが望ましい。
Structure of the Invention The present invention uses a hydrogen storage electrode made of two or more types of hydrogen storage alloy powders or hydride powders thereof having different hydrogen equilibrium dissociation pressures. Here, it is desirable that the hydrogen storage alloy powder contains at least one type of hydrogen storage alloy powder having a hydrogen equilibrium dissociation pressure of at least 1 atmosphere or less. Further, in the powder mixture of a plurality of hydrogen storage alloys having different hydrogen equilibrium dissociation pressures, the hydrogen storage alloy having a hydrogen equilibrium dissociation pressure within the range of 1 to 5 atm at room temperature is contained in an amount of 5 to 20% by weight. This is desirable.

実施例の説明 実施例1 M[99,6%以上ノランタン、ニッケル、コバルト金
属を用いて、元素比でLu:N工が1:6になる配合組
成混合物、及び元素比でLa :Ni :C。
Description of Examples Example 1 M[99.6% or more of noranthane, nickel, and cobalt metals, a composition mixture with an elemental ratio of Lu:N of 1:6, and an elemental ratio of La:Ni:C .

が1:3:2になる配合組成混合物を各々アーク溶解炉
ニテ溶解し、LaNi5. LaNi、Go、、合金を
製造した。この各々の合金試料をアルゴン雰囲気のドラ
イボックス中で粉砕し、篩分けして300メソシュ通過
の粉末を用意した。ついで、 LaNi 5合金粉末A
とLaNi 3Co 2合金粉末Bを各種の配合比で混
合し、この混合粉末に結着剤としてボピニルアルコール
の水溶液を用いてペースト状とし、これをニッケルの発
泡多孔体に加圧充填し、約200 Kg/aA の圧力
で加圧圧縮後乾燥した。こうして得た電極を負極とし、
公知の焼結式酸化ニッケル正極を用いて、公称2.0人
り程度に和尚する単2型密閉アルカリ蓄電池を2種類ず
つ構成した。
LaNi5. LaNi, Go, and alloys were manufactured. Each of the alloy samples was ground in a dry box under an argon atmosphere and sieved to prepare a powder that passed 300 mesh. Next, LaNi 5 alloy powder A
and LaNi 3Co 2 alloy powder B are mixed in various blending ratios, this mixed powder is made into a paste using an aqueous solution of bopinyl alcohol as a binder, and this is pressurized and filled into a nickel foam porous body. It was compressed and dried at a pressure of about 200 Kg/aA. The electrode obtained in this way is used as a negative electrode,
Using a known sintered nickel oxide positive electrode, two types of AA sealed alkaline storage batteries each having a nominal capacity of about 2.0 people were constructed.

すなわち容量測定用は負極律則とし、電池内圧測定用は
正極律則とした。
That is, the negative electrode rule was used for capacity measurement, and the positive electrode rule was used for measuring battery internal pressure.

上記容量測定用の電池を40 ’Cの温度において0、
I C(10時間率)で130%以上充電した後、0.
2 G (5時間率)で放電し、i、ovまでの放電容
量を測定した。また温度20℃における充電電流レー)
0.10から1Cまでの過充電特性を電圧上昇変化で調
べた。各種負極試料は第1表に示す通りである。
The above battery for capacity measurement was heated at 40'C.
After charging more than 130% with IC (10 hour rate), 0.
It was discharged at 2 G (5 hour rate) and the discharge capacity up to i, ov was measured. Also, the charging current at a temperature of 20℃)
The overcharge characteristics from 0.10 to 1C were investigated by changing the voltage rise. Various negative electrode samples are shown in Table 1.

第2表に各種負極試料の放電容量試験結果と過充電時の
電池内圧を示す。電池内圧は160%充電した時、各充
電率毎に示したものである。
Table 2 shows the discharge capacity test results of various negative electrode samples and the battery internal pressure during overcharging. The internal pressure of the battery is shown for each charging rate when the battery is charged to 160%.

第1表 なおLaNi5合金は温度25℃で水素平衡解離圧力は
2気圧であり、平衡解離圧力の高い合金である。
Table 1 Note that the LaNi5 alloy has a hydrogen equilibrium dissociation pressure of 2 atm at a temperature of 25° C., and is an alloy with a high equilibrium dissociation pressure.

一方、LaNi 5002合金は0.3気圧であり、平
衡解離圧力の低い合金である。
On the other hand, LaNi 5002 alloy has a low equilibrium dissociation pressure of 0.3 atm.

第2表かられかる様に、従来型の合金単体を負極とした
電池層1は、水素平衡解離圧力の低い材料のみを用いて
いるため、容量は大きいが、電池内圧は0.1〜1.0
 Gにおいて、3.7〜8.2 Kg/C+Jと非常に
高い値を示す。一方、電池層2は水素平衡解離圧力の高
い材料のみを用いているため、同じ範囲で電池内圧は1
.5〜4.5Kg〜 と低い反面、電池容量が小さい。
As can be seen from Table 2, the battery layer 1 using a conventional alloy as a negative electrode has a large capacity because only materials with low hydrogen equilibrium dissociation pressure are used, but the internal pressure of the battery is 0.1 to 1. .0
In G, it shows a very high value of 3.7 to 8.2 Kg/C+J. On the other hand, since battery layer 2 uses only materials with high hydrogen equilibrium dissociation pressure, the battery internal pressure is 1 in the same range.
.. Although it is low at 5 to 4.5 kg, the battery capacity is small.

実用的に電池容量と電池内圧の両方を比較的満足する電
池はA3〜5である。
Batteries that relatively satisfy both battery capacity and battery internal pressure in practical terms are A3 to A5.

水素平衡解離圧力の異なる合金を混合することによって
、単体よりは実用範囲の拡大ができると共に、とぐに水
素平衡解離圧力の高い合金の割合は5〜20重量%が実
用上優れている。
By mixing alloys with different hydrogen equilibrium dissociation pressures, the practical range can be expanded compared to single alloys, and a ratio of 5 to 20% by weight of alloys with high hydrogen equilibrium dissociation pressures is practically excellent.

実施例2 純1i99.5%以上の、ミソシュメタル(Mm;希土
類元素の混合物)、ランタン、カルシウム、ニッケル金
属を用いて、元素比でMm:Ca:Niが0.5:O,
5: Sになる配合組成混合物、及び元素比でLz:C
a:Niが0.5 : o、ts ; s になる配合
組成混合物を各々高周波溶解炉にて溶解し、Mm o、
 5Ca、5Ni5  、 Lao5Cao5Ni5合
金を製造した。
Example 2 Using miso metal (Mm; a mixture of rare earth elements), lanthanum, calcium, and nickel metals with a purity of 99.5% or more, the elemental ratio of Mm:Ca:Ni was 0.5:O,
5: A composition mixture that becomes S and an element ratio of Lz:C
a: The composition mixtures in which Ni is 0.5: o, ts; s are each melted in a high frequency melting furnace, and Mmo,
5Ca, 5Ni5, Lao5Cao5Ni5 alloys were produced.

Mmo5Cao5Ni、合金は水素平衡解離圧力の高い
材料であり、La05Cao5N工5合金は低い材料で
ある。
The Mmo5Cao5Ni alloy is a material with a high hydrogen equilibrium dissociation pressure, and the La05Cao5N engineering 5 alloy is a material with a low hydrogen equilibrium dissociation pressure.

これらの合金を第3表に示すような割合で混合した負極
を用いて、実施例1と同様にして電池を構成し、同じ条
件で放電容量と電池内圧を測定した。
A battery was constructed in the same manner as in Example 1 using a negative electrode in which these alloys were mixed in the proportions shown in Table 3, and the discharge capacity and battery internal pressure were measured under the same conditions.

その結果を第4表に示す。The results are shown in Table 4.

第3表 第4表 第4表からもわかる様に、実施例1の結果と同じ傾向に
sb、水素平衡解離圧力の相対的々差異を利用すること
によって、電池容量と充電時の電池内圧の改善を図るこ
とができる。
As can be seen from Table 3 and Table 4, by utilizing the relative differences in sb and hydrogen equilibrium dissociation pressure, the battery capacity and battery internal pressure during charging can be adjusted in the same manner as the results of Example 1. Improvements can be made.

実施例で示したように、水素平衡解離圧力が1気圧又は
それ以下の水素吸蔵合金を1種類以上含有すると電池性
能がよくなることがわかる。また、常温で水素平衡解離
圧力が1〜5気圧の範囲内にある水素吸蔵合金が5〜2
0重量%含有していると、とくに実用上の電池性能が優
れている。水素平衡解離圧力が常温で10気圧以上ある
合金材料は、高温時の充電が殆んどできなくて、ガス吸
収能も十分発揮しなくなる。1から5気圧の範囲内にあ
る合金がとくに実用上望ましい。実施例では2種類の混
合物を用いたが、さらに他の合金系を用いてもよい。ま
た、水素平衡解離圧力の異なる3種以上を用いても同じ
効果が期待できる。
As shown in the examples, it can be seen that the battery performance is improved when one or more types of hydrogen storage alloys having a hydrogen equilibrium dissociation pressure of 1 atm or less are contained. In addition, a hydrogen storage alloy whose hydrogen equilibrium dissociation pressure is within the range of 1 to 5 atm at room temperature is 5 to 2 atm.
When it is contained in an amount of 0% by weight, the practical battery performance is particularly excellent. An alloy material with a hydrogen equilibrium dissociation pressure of 10 atm or more at room temperature will hardly be able to be charged at high temperatures and will not exhibit sufficient gas absorption ability. Alloys in the range of 1 to 5 atmospheres are particularly desirable for practical purposes. Although a mixture of two types was used in the example, other alloy systems may also be used. Moreover, the same effect can be expected even if three or more types having different hydrogen equilibrium dissociation pressures are used.

実施例では、水素吸蔵合金を出発材料として負極を構成
したが、この負極の充電時には合金は大半が水素化物に
変化するので、前もって水素化物の型で負極を製造し、
電池を構成することもできる。
In the example, the negative electrode was constructed using a hydrogen storage alloy as a starting material, but when this negative electrode is charged, most of the alloy changes to a hydride, so the negative electrode was manufactured in advance in the form of a hydride.
It can also constitute a battery.

発明の効果 以上のように、本発明のアルカリ蓄電池は、放電容量も
比較的大きく、密閉型電池においては1、充放電時のガ
ス発生も少なく、電池内圧の上昇を抑制することができ
る。
Effects of the Invention As described above, the alkaline storage battery of the present invention has a relatively large discharge capacity, and for a sealed battery, 1, gas generation during charging and discharging is small, and an increase in battery internal pressure can be suppressed.

Claims (3)

【特許請求の範囲】[Claims] (1)水素平衡解離圧力の異なる複数の水素吸蔵合金ま
たはその水素化物からなる水素吸蔵電極を用いたアルカ
リ蓄電池。
(1) An alkaline storage battery using a hydrogen storage electrode made of a plurality of hydrogen storage alloys or hydrides thereof having different hydrogen equilibrium dissociation pressures.
(2)水素吸蔵電極が、1気圧またはそれ以下の水素平
衡解離圧力を有する水素吸蔵合金を少なくとも1種含有
する特許請求の範囲第1項記載のアルカリ蓄電池。
(2) The alkaline storage battery according to claim 1, wherein the hydrogen storage electrode contains at least one hydrogen storage alloy having a hydrogen equilibrium dissociation pressure of 1 atmosphere or less.
(3)水素吸蔵合金またはその水素化物の混合物におい
て、常温で水素平衡解離圧力が1〜5気圧の範囲内にあ
る水素吸蔵合金またはその水素化物の比率が5重量%か
ら20重量%である特許請求の範囲第1項記載のアルカ
リ蓄電池。
(3) A patent for a hydrogen storage alloy or a mixture of its hydrides whose hydrogen equilibrium dissociation pressure is within the range of 1 to 5 atm at room temperature, or whose hydride has a proportion of 5% to 20% by weight. The alkaline storage battery according to claim 1.
JP59171970A 1984-08-18 1984-08-18 Alkaline storage battery Granted JPS6151760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59171970A JPS6151760A (en) 1984-08-18 1984-08-18 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59171970A JPS6151760A (en) 1984-08-18 1984-08-18 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS6151760A true JPS6151760A (en) 1986-03-14
JPH0564420B2 JPH0564420B2 (en) 1993-09-14

Family

ID=15933126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59171970A Granted JPS6151760A (en) 1984-08-18 1984-08-18 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS6151760A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5554456A (en) * 1994-06-14 1996-09-10 Ovonic Battery Company, Inc. Electrochemical hydrogen storage alloys and batteries containing heterogeneous powder particles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338631U (en) * 1976-09-07 1978-04-04

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338631U (en) * 1976-09-07 1978-04-04

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5554456A (en) * 1994-06-14 1996-09-10 Ovonic Battery Company, Inc. Electrochemical hydrogen storage alloys and batteries containing heterogeneous powder particles
WO1996036083A1 (en) * 1995-05-08 1996-11-14 Ovonic Battery Company, Inc. Electrochemical hydrogen storage alloys and batteries containing heterogeneous powder particles

Also Published As

Publication number Publication date
JPH0564420B2 (en) 1993-09-14

Similar Documents

Publication Publication Date Title
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
US4925748A (en) Alkaline storage battery using hydrogen absorbing alloy
Notten et al. The Influence of Mn on the Crystallography and Electrochemistry of Nonstoichiometric AB 5‐Type Hydride‐Forming Compounds
US5532076A (en) Hydrogen storage alloy and electrode therefrom
JP2965475B2 (en) Hydrogen storage alloy
JPS61233969A (en) Electrode for storage battery
JP2752970B2 (en) Hydrogen storage electrode
JPH0448042A (en) Hydrogen occluding electrode
JPS6151760A (en) Alkaline storage battery
JPH0953136A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP2563638B2 (en) Hydrogen storage alloy electrode
JP2713881B2 (en) Sealed metal oxide / hydrogen battery
JPS61168870A (en) Metal-hydrogen alkaline storage battery
JPH0690922B2 (en) Sealed alkaline storage battery
JPS6164068A (en) Manufacture of hydrogen-absorbing electrode
JPH0456427B2 (en)
JPH0690924B2 (en) Storage battery electrode
JPS5931834B2 (en) Hydrogen storage electrode
JPH04176833A (en) Hydrogen storage alloy electrode
JPS61168871A (en) Hydrogen occlusion electrode
JPS6145562A (en) Alkaline storage battery
JPS5945190B2 (en) Hydrogen storage electrode
JPS60241651A (en) Alkali battery
JPS60193266A (en) Sealed type alkaline storage battery
JPH06215769A (en) Rare earth element-based hydrogen absorbing alloy electrode