JPH09289036A - Manufacture of alkaline storage battery - Google Patents

Manufacture of alkaline storage battery

Info

Publication number
JPH09289036A
JPH09289036A JP8099949A JP9994996A JPH09289036A JP H09289036 A JPH09289036 A JP H09289036A JP 8099949 A JP8099949 A JP 8099949A JP 9994996 A JP9994996 A JP 9994996A JP H09289036 A JPH09289036 A JP H09289036A
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
battery
storage battery
alkaline storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8099949A
Other languages
Japanese (ja)
Inventor
Yoichiro Tsuji
庸一郎 辻
Toru Yamamoto
徹 山本
Toshihiro Yamada
敏弘 山田
Yoshinori Toyoguchi
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8099949A priority Critical patent/JPH09289036A/en
Publication of JPH09289036A publication Critical patent/JPH09289036A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method which increases the capacity of a battery in which the negative electrode is a hydrogen storage alloy having two step or more plateau areas in an equilibrium hydrogen pressure-composition isothermal chart, with one or more of the plateau areas having a hydrogen equilibrium pressure of 0.001MPa or less at 45 deg.C. SOLUTION: This method constructs a battery after making a hydrogen storage alloy store hydrogen by an amount corresponding to a plateau area with 0.001MPa or less. More specifically, the method comprises either crushing the hydrogen storage alloy by the repeated storage and release of hydrogen, and then permitting the hydrogen to remain in the hydrogen storage alloy during the final hydrogen releasing process, or molding the hydrogen storage alloy into an electrode and performing at least one cycle of charging and discharging in an open system to construct the sealed battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気化学的な水素
の吸蔵・放出を可逆的に行える水素吸蔵合金電極を具備
するアルカリ蓄電池の製造方法にに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an alkaline storage battery having a hydrogen storage alloy electrode capable of reversibly electrochemically storing and releasing hydrogen.

【0002】[0002]

【従来の技術】水素を可逆的に吸蔵・放出する水素吸蔵
合金を用いた水素吸蔵合金電極は、理論容量密度がカド
ミウム電極より大きく、亜鉛電極のような変形やデンド
ライトの形成などもないので、長寿命・無公害であり、
しかも高エネルギー密度を有するアルカリ蓄電池用負極
として注目されている。このような水素吸蔵合金電極に
用いられる合金は、通常アーク溶解法や高周波誘導加熱
溶解法などで作製される。なかでもAB5タイプ(A:
La,Zr,Tiなどの水素との親和性の大きい元素、
B:Ni,Mn,Crなどの遷移元素)のLa(または
Mm)−Ni系の多元系合金は、近年電極材料として盛
んに開発が進められており、特にMm−Ni系の多元系
合金はすでに実用化されている。しかし、このようなA
5タイプの合金は、理論的にH/M=1までしか水素
を吸蔵することができない。
2. Description of the Related Art A hydrogen storage alloy electrode using a hydrogen storage alloy capable of reversibly storing and releasing hydrogen has a theoretical capacity density larger than that of a cadmium electrode and does not cause deformation such as a zinc electrode or formation of dendrites. Long life and no pollution,
Moreover, it has been drawing attention as a negative electrode for alkaline storage batteries having a high energy density. The alloy used for such a hydrogen storage alloy electrode is usually produced by an arc melting method, a high frequency induction heating melting method, or the like. AB 5 type (A:
Elements such as La, Zr, and Ti that have a high affinity for hydrogen,
B: transition elements such as Ni, Mn, and Cr) La (or Mm) -Ni multi-component alloys have been actively developed in recent years as electrode materials, and in particular, Mm-Ni multi-component alloys are It has already been put to practical use. But such an A
The B 5 type alloy can theoretically store hydrogen only up to H / M = 1.

【0003】これに対して、近年Ti−V系の体心立方
構造(以下bcc構造という)を有する水素吸蔵合金
は、その水素吸蔵量が大きいことから注目され、たとえ
ば、Ti−V−Ni系合金(特開平6−228699号
公報)、Ti−V−Fe系合金(特開平6−93366
号公報)などが提案されている。
On the other hand, in recent years, a hydrogen storage alloy having a Ti-V type body-centered cubic structure (hereinafter referred to as a bcc structure) has attracted attention because of its large hydrogen storage amount. For example, Ti-V-Ni type Alloy (JP-A-6-228699), Ti-V-Fe based alloy (JP-A-6-93366)
Publication).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うなbcc構造を持つ合金は、平衡水素圧−組成等温線
図(P−C−T線図)において2段のプラトー領域を有
し、そのうちの低圧力側のプラトーは非常に圧力が低い
ため、吸蔵された水素は電気化学的に放電ができない。
このような合金を負極として密閉電池を構成すると、1
サイクル目の充電では低圧側のプラトーは充電される
が、放電はできない。このために、正極においては、放
電しても活物質の一部は充電状態にある。従って、正極
で容量を規定するニッケル水素蓄電池では、電池容量が
低下するという問題がある。本発明は以上に鑑み、製造
方法を改善することにより、高容量のアルカリ蓄電池を
提供することを目的とする。
However, an alloy having such a bcc structure has a two-stage plateau region in the equilibrium hydrogen pressure-composition isotherm diagram (P-C-T diagram). Since the plateau on the low pressure side has a very low pressure, the stored hydrogen cannot be electrochemically discharged.
When a sealed battery is constructed using such an alloy as a negative electrode, 1
In the charge of the second cycle, the low-voltage side plateau is charged but cannot be discharged. Therefore, in the positive electrode, a part of the active material is in a charged state even when discharged. Therefore, the nickel-metal hydride storage battery whose capacity is regulated by the positive electrode has a problem that the battery capacity decreases. In view of the above, the present invention aims to provide a high-capacity alkaline storage battery by improving the manufacturing method.

【0005】[0005]

【課題を解決するための手段】本発明は、P−C−T線
図において、2段以上のプラトー領域を持ち、そのうち
の1つ以上のプラトー領域の水素平衡圧が45℃におい
て0.001MPa以下である水素吸蔵合金を負極に用
いたアルカリ蓄電池において、前記合金に0.001M
Pa以下のプラトー領域に相当する量の水素をあらかじ
め吸蔵させた後に電池を構成することを特徴とする。
The present invention has two or more plateau regions in a P-C-T diagram, and one or more plateau regions of which have a hydrogen equilibrium pressure of 0.001 MPa at 45 ° C. In an alkaline storage battery using the following hydrogen storage alloy in the negative electrode, 0.001M is added to the alloy.
It is characterized in that the battery is constructed after absorbing hydrogen in an amount corresponding to a plateau region of Pa or less in advance.

【0006】[0006]

【発明の実施の形態】本発明は、P−C−T線図におい
て、2段以上のプラトー領域を持ち、そのうちの一つ以
上のプラトー領域の水素平衡圧が0.001MPaであ
る水素吸蔵合金を負極に用い、前記合金に0.001M
Pa以下のプラトー領域に相当する量の水素をあらかじ
め吸蔵させた後に電池を構成するものである。水素合金
に水素をあらかじめ吸蔵させる方法としては、水素吸蔵
合金を水素の吸蔵・放出を繰り返して粉砕した後、最後
の水素放出過程で合金中に水素を残留させる方法があ
る。水素吸蔵合金に水素をあらかじめ吸蔵させる他の方
法は、水素吸蔵合金を電極に成型後、開放系で少なくと
も一回の充放電を行った後に密閉電池を構成する方法で
ある。ここに用いる水素吸蔵合金としては、Ti−Vを
主成分とし、体心立方構造を有する合金、またはTi−
Crを主成分とし、体心立方構造を有する合金が好まし
い。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is a hydrogen storage alloy having two or more plateau regions in a P-C-T diagram, and one or more of the plateau regions having a hydrogen equilibrium pressure of 0.001 MPa. Is used for the negative electrode, and 0.001M for the above alloy.
The battery is constructed after absorbing hydrogen in an amount corresponding to a plateau region of Pa or less in advance. As a method of storing hydrogen in a hydrogen alloy in advance, there is a method of pulverizing the hydrogen storage alloy by repeating storage and release of hydrogen and then leaving the hydrogen in the alloy in the final hydrogen release process. Another method of preliminarily storing hydrogen in the hydrogen storage alloy is to form a sealed battery after molding the hydrogen storage alloy into an electrode and performing charge / discharge at least once in an open system. As the hydrogen storage alloy used here, an alloy containing Ti-V as a main component and having a body-centered cubic structure, or Ti-
An alloy containing Cr as a main component and having a body-centered cubic structure is preferable.

【0007】[0007]

【実施例】以下、本発明の実施例について説明する。複
数のプラトー領域を持つ水素吸蔵合金の一例として、T
0.30.4Cr0.2Ni0.1の組成の合金を用いた。この
合金は、市販のTi,V,Cr,およびNi金属を原料
として、アーク溶解によって作製した。この合金の45
℃におけるPCT曲線を図1に示す。1段目のプラトー
領域は0.001MPa以下に存在し、2段目のプラト
ーは吸蔵において0.1MPaであった。この合金の開
放系での単極試験による放電容量は397mAh/g
で、PCT曲線における0.001〜0.5MPaまで
の吸蔵量とほぼ等しいことがわかった。したがって0.
001MPa以下の水素は電気化学的に放出できない。
また、開放系で充放電を行うことによって0.001M
Pa以下の部分の水素を吸蔵した状態の水素吸蔵合金電
極ができることがわかった。
Embodiments of the present invention will be described below. As an example of a hydrogen storage alloy having a plurality of plateau regions, T
An alloy having a composition of i 0.3 V 0.4 Cr 0.2 Ni 0.1 was used. This alloy was produced by arc melting using commercially available Ti, V, Cr, and Ni metals as raw materials. 45 of this alloy
The PCT curve at ° C is shown in Fig. 1. The first-stage plateau region was present at 0.001 MPa or less, and the second-stage plateau was 0.1 MPa in occlusion. The discharge capacity of this alloy in a single pole test in an open system was 397 mAh / g.
It was found that the storage capacity was 0.001 to 0.5 MPa in the PCT curve. Therefore, 0.
Hydrogen below 001 MPa cannot be released electrochemically.
In addition, 0.001M by charging and discharging in an open system
It was found that a hydrogen storage alloy electrode in which hydrogen in a portion of Pa or less was stored can be formed.

【0008】この合金を用いて密閉電池を作製した。合
金を水素の吸蔵放出を繰り返して粉砕し、さらに機械的
に粉砕して38μm以下に分級した。この時最後の水素
の放出を300℃で6時間行わせたものと25℃で1時
間行わせたものについて、残存している水素量を調べ
た。その結果、300℃で水素を放出したものはほとん
ど水素が残っていなかった。一方、25℃で水素を放出
したものは1.1wt%の水素が残っていた。この残存
水素量は、0.001MPa以下の水素吸蔵量にほぼ一
致した。
A sealed battery was produced using this alloy. The alloy was crushed by repeating the occlusion and release of hydrogen and further mechanically crushed to be classified to 38 μm or less. At this time, the remaining amount of hydrogen was examined for the one that was released at 300 ° C. for 6 hours and the one that was released at 25 ° C. for 1 hour. As a result, almost no hydrogen remained in those that released hydrogen at 300 ° C. On the other hand, in the case of releasing hydrogen at 25 ° C., 1.1 wt% of hydrogen remained. This residual hydrogen amount almost matched the hydrogen storage amount of 0.001 MPa or less.

【0009】そこで、300℃で脱水素した合金をその
まま用いて構成した電池を電池A、300℃で脱水素し
た合金を開放系で1サイクル充放電した後に構成した電
池を電池B、25℃で脱水素した合金をそのまま用いて
構成した電池を電池Cとする。電池の構成条件は、以下
の通りである。それぞれの合金粉末をカルボキシメチル
セルローズの希水溶液と混合攪拌してペースト状にし、
多孔度95%、厚さ0.8mmの発泡状ニッケルシート
に充填した。これを120℃で乾燥してローラープレス
で加圧し、さらにその表面にフッ素樹脂粉末をコーティ
ングして水素吸蔵合金電極とした。これらの電極をそれ
ぞれ幅3.5cm、長さ14.5cm、厚さ0.50m
mに調整し、正極、およびセパレータと組み合わせて渦
巻き状の電極群を構成し、4/5Aサイズの電槽に収納
し、電解液注入後、封口して密閉形電池とした。なお正
極は、幅3.5cm、長さ11cmの公知の発泡式ニッ
ケル電極であり、この正極にはリード板を取り付け、こ
れを正極端子に溶接した。またセパレータは、親水性を
付与したポリプロピレン不織布を用いた。電解液は、比
重1.30の水酸化カリウム水溶液に水酸化リチウムを
30g/l溶解したものである。この電池は、正極容量
規制で公称容量は1.6Ahである。
Therefore, a battery constructed by using the alloy dehydrogenated at 300 ° C. as it is is a battery A, and a battery constructed after charging and discharging the alloy dehydrogenated at 300 ° C. for one cycle in an open system is a battery B at 25 ° C. A battery configured by using the dehydrogenated alloy as it is is referred to as a battery C. The battery configuration conditions are as follows. Mixing and stirring each alloy powder with a dilute aqueous solution of carboxymethyl cellulose to form a paste,
It was filled in a foamed nickel sheet having a porosity of 95% and a thickness of 0.8 mm. This was dried at 120 ° C., pressed with a roller press, and further coated on its surface with a fluororesin powder to form a hydrogen storage alloy electrode. Each of these electrodes has a width of 3.5 cm, a length of 14.5 cm, and a thickness of 0.50 m.
Adjusted to m, combined with the positive electrode and the separator to form a spiral electrode group, housed in a 4 / 5A size battery case, filled with an electrolytic solution, and then sealed to obtain a sealed battery. The positive electrode was a known foamed nickel electrode having a width of 3.5 cm and a length of 11 cm, and a lead plate was attached to this positive electrode and this was welded to the positive electrode terminal. In addition, a polypropylene nonwoven fabric provided with hydrophilicity was used as the separator. The electrolytic solution is obtained by dissolving 30 g / l of lithium hydroxide in an aqueous solution of potassium hydroxide having a specific gravity of 1.30. This battery has a nominal capacity of 1.6 Ah according to the positive electrode capacity regulation.

【0010】このようにして作製した電池を25℃にお
いて0.1Cで15時間充電し、0.2Cで放電する初
充放電をした。この時点で電池Aは理論容量の約40%
の放電容量であり、電池B、Cは約80%の放電容量で
あった。その後、50℃で2日間放置し、初充放電と同
じ条件で10サイクル充放電をして活性化を行った。こ
の充放電の間に電池B、Cは正極の理論容量の98%以
上の放電容量を示したが、電池Aは理論容量の40%程
度のままほとんど変化がなかった。この電池Aを放電後
に分解して、正極を別の充電状態の負極と組み合わせて
さらに放電させたところ、理論容量の60%の放電容量
が得られた。このことから、電池Aの放電容量が小さい
のは、負極の0.001MPa以下の平衡水素圧の部分
が放電されなかったためであることがわかった。以上の
ように平衡圧が非常に低いプラトー領域を持つ水素吸蔵
合金に対してあらかじめ水素を吸蔵させておくことによ
り、容量の大きいアルカリ蓄電池を得ることができる。
The battery thus manufactured was charged at 25 ° C. at 0.1 C for 15 hours and discharged at 0.2 C for the first charge / discharge. Battery A is about 40% of theoretical capacity at this point
The discharge capacities of the batteries B and C were about 80%. Then, it was left to stand at 50 ° C. for 2 days, and charged and discharged for 10 cycles under the same conditions as the initial charge and discharge to activate. During this charging / discharging, the batteries B and C showed a discharge capacity of 98% or more of the theoretical capacity of the positive electrode, while the battery A remained at about 40% of the theoretical capacity with almost no change. When this battery A was disassembled after discharge and the positive electrode was combined with another negative electrode in a charged state and further discharged, a discharge capacity of 60% of the theoretical capacity was obtained. From this, it was found that the discharge capacity of the battery A was small because the portion of the negative electrode having an equilibrium hydrogen pressure of 0.001 MPa or less was not discharged. As described above, an alkaline storage battery having a large capacity can be obtained by storing hydrogen in advance in a hydrogen storage alloy having a plateau region having a very low equilibrium pressure.

【0011】あらかじめ水素を吸蔵させておく方法とし
ては、実施例で述べた方法以外にも、電池内で電解液と
反応して水素を発生するものを電池内に配置する方法
や、正極内にCoのような非可逆的に充電のみされるよ
うなものを添加しておく方法などがある。しかし、これ
らの方法は、電池内に物質をいれる体積の分容量が小さ
くなるデメリットがある。また、実施例ではTi−V−
Cr−Ni系の合金について示したが、ほかの組成のb
cc構造を持つ合金や、Ti−Co系の合金など複数の
プラトー領域を持つ合金を用いた電池においても同様の
効果が得られる。
As a method of storing hydrogen in advance, in addition to the method described in the embodiments, a method of arranging in the battery a material which reacts with an electrolytic solution in the battery to generate hydrogen and a positive electrode There is a method of adding a substance such as Co which is irreversibly charged only. However, these methods have a demerit that the capacity corresponding to the volume of the substance in the battery is reduced. In the example, Ti-V-
The Cr-Ni alloys are shown, but other compositions of b
The same effect can be obtained in a battery using an alloy having a cc structure or an alloy having a plurality of plateau regions such as a Ti—Co alloy.

【0012】[0012]

【発明の効果】以上のように、本発明によれば、非常に
低圧のプラトー領域を持つ水素吸蔵合金にあらかじめ水
素を吸蔵させておくことにより高容量のアルカリ蓄電池
を得ることができる。
As described above, according to the present invention, a high-capacity alkaline storage battery can be obtained by storing hydrogen in advance in a hydrogen storage alloy having a very low plateau region.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に用いた水素吸蔵合金の45℃
における平衡水素圧−組成等温線図である。
FIG. 1 shows a hydrogen storage alloy used in an example of the present invention at 45 ° C.
3 is an equilibrium hydrogen pressure-composition isotherm diagram in FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 豊口 ▲吉▼徳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toyoguchi ▲ Yoshi ▼ Toku 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 平衡水素圧−組成等温線図において、2
段以上のプラトー領域を持ち、そのうちの1つ以上のプ
ラトー領域の水素平衡圧が45℃において0.001M
Pa以下である水素吸蔵合金を負極に用いたアルカリ蓄
電池の製造方法であって、前記合金に0.001MPa
以下のプラトー領域に相当する量の水素をあらかじめ吸
蔵させた後に電池を構成することを特徴とするアルカリ
蓄電池の製造方法。
1. In an equilibrium hydrogen pressure-composition isotherm diagram, 2
It has more than one plateau region, and the hydrogen equilibrium pressure of one or more plateau regions is 0.001M at 45 ° C.
A method for manufacturing an alkaline storage battery using a hydrogen storage alloy of Pa or less for a negative electrode, wherein the alloy contains 0.001 MPa.
A method for manufacturing an alkaline storage battery, comprising the step of storing hydrogen in an amount corresponding to the following plateau region in advance and then constructing the battery.
【請求項2】 前記合金に水素をあらかじめ吸蔵させる
方法が、前記合金を水素の吸蔵・放出を繰り返して粉砕
した後、最後の水素放出過程で合金中に水素を残留させ
ることからなる請求項1記載のアルカリ蓄電池の製造方
法。
2. The method of storing hydrogen in the alloy in advance comprises pulverizing the alloy by repeatedly storing and releasing hydrogen, and then leaving the hydrogen in the alloy in the final hydrogen releasing process. A method for manufacturing the alkaline storage battery described.
【請求項3】 前記合金に水素をあらかじめ吸蔵させる
方法が、前記合金を電極に成型後、開放系で少なくとも
一回の充放電を行った後に密閉電池を構成することから
なる請求項1記載のアルカリ蓄電池の製造方法。
3. The method of causing hydrogen to be occluded in the alloy in advance, comprising molding the alloy into an electrode and then charging and discharging at least once in an open system to form a sealed battery. Manufacturing method of alkaline storage battery.
【請求項4】 前記合金が、Ti−VもしくはTi−C
rを主成分とし、体心立方構造を有する合金である請求
項1記載のアルカリ蓄電池の製造方法。
4. The alloy is Ti-V or Ti-C.
The method for producing an alkaline storage battery according to claim 1, wherein the alloy is a main component of r and has a body-centered cubic structure.
JP8099949A 1996-04-22 1996-04-22 Manufacture of alkaline storage battery Pending JPH09289036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8099949A JPH09289036A (en) 1996-04-22 1996-04-22 Manufacture of alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8099949A JPH09289036A (en) 1996-04-22 1996-04-22 Manufacture of alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH09289036A true JPH09289036A (en) 1997-11-04

Family

ID=14260962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8099949A Pending JPH09289036A (en) 1996-04-22 1996-04-22 Manufacture of alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH09289036A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107579301A (en) * 2017-08-31 2018-01-12 中盐安徽红四方锂电有限公司 A kind of chemical synthesis technology of lithium iron phosphate dynamic battery
JP2019125472A (en) * 2018-01-16 2019-07-25 トヨタ自動車株式会社 Alkaline secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107579301A (en) * 2017-08-31 2018-01-12 中盐安徽红四方锂电有限公司 A kind of chemical synthesis technology of lithium iron phosphate dynamic battery
CN107579301B (en) * 2017-08-31 2020-04-10 中盐安徽红四方锂电有限公司 Formation process of lithium iron phosphate power battery
JP2019125472A (en) * 2018-01-16 2019-07-25 トヨタ自動車株式会社 Alkaline secondary battery

Similar Documents

Publication Publication Date Title
JP3381264B2 (en) Hydrogen storage alloy electrode
JP2595967B2 (en) Hydrogen storage electrode
JPH09289036A (en) Manufacture of alkaline storage battery
JPS6119063A (en) Hydrogen occlusion electrode
JPH0953136A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP2983426B2 (en) Production method and electrode for hydrogen storage alloy
JP2537084B2 (en) Hydrogen storage alloy electrode
JP2548271B2 (en) Alkaline secondary battery manufacturing method
JPH0758614B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JP3198896B2 (en) Nickel-metal hydride battery
JPH07111151A (en) Hydrogen storage electrode active material
JPH05275082A (en) Forming method for sealed nickel-hydrogen storage battery
JP2750793B2 (en) Nickel-metal hydride battery
JPH04328252A (en) Hydrogen storage alloy electrode
JP2594147B2 (en) Metal-hydrogen alkaline storage battery
JPH03226539A (en) Hydrogen storage alloy electrode
JP2529898B2 (en) Hydrogen storage alloy electrode
JP2983425B2 (en) Production method and electrode for hydrogen storage alloy
JPH0582125A (en) Hydrogen occluding alloy electrode
JPS60119079A (en) Hydrogen absorption electrode
JPH06145849A (en) Hydrogen storage alloy electrode
JPH04176833A (en) Hydrogen storage alloy electrode
JPS5931834B2 (en) Hydrogen storage electrode
JP2003068291A (en) Formation method for gas tight nickel - hydrogen storage battery
JPS61168871A (en) Hydrogen occlusion electrode

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050721