JP3342699B2 - Hydride battery and method for charging negative electrode thereof - Google Patents

Hydride battery and method for charging negative electrode thereof

Info

Publication number
JP3342699B2
JP3342699B2 JP2002042426A JP2002042426A JP3342699B2 JP 3342699 B2 JP3342699 B2 JP 3342699B2 JP 2002042426 A JP2002042426 A JP 2002042426A JP 2002042426 A JP2002042426 A JP 2002042426A JP 3342699 B2 JP3342699 B2 JP 3342699B2
Authority
JP
Japan
Prior art keywords
battery
negative electrode
hydride
discharge
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002042426A
Other languages
Japanese (ja)
Other versions
JP2002289252A (en
Inventor
浩 福永
宏和 貴堂
龍 長井
章 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2002042426A priority Critical patent/JP3342699B2/en
Publication of JP2002289252A publication Critical patent/JP2002289252A/en
Application granted granted Critical
Publication of JP3342699B2 publication Critical patent/JP3342699B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素化物電池およ
びその負極の充電方法に関する。
The present invention relates to a hydride battery and a method for charging a negative electrode thereof.

【0002】[0002]

【従来の技術】水素吸蔵合金は多量の水素を吸蔵、放出
する能力を有していて、これを負極に用いた水素化物電
池では、その負極がアルカリ水溶液中においても電気化
学的に多量の水素の吸蔵、放出を行うことができる。
2. Description of the Related Art A hydrogen storage alloy has the ability to store and release a large amount of hydrogen. In a hydride battery using the same as a negative electrode, the negative electrode can electrochemically store a large amount of hydrogen even in an alkaline aqueous solution. Occlusion and release.

【0003】このときの負極の充放電反応は、次の〔式
1〕〜〔式2〕に示すような反応式で進行する。反応式
において、充電反応は左から右方向への矢印で示し、放
電反応は右から左方向への矢印で示す。つまり、〔式
1〕が充電反応で、〔式2〕が放電反応である。
The charge / discharge reaction of the negative electrode at this time proceeds according to the following reaction formulas (1) and (2). In the reaction formula, the charge reaction is indicated by an arrow from left to right, and the discharge reaction is indicated by an arrow from right to left. That is, [Equation 1] is a charging reaction, and [Equation 2] is a discharging reaction.

【0004】〔負極〕 〔式1〕 M+H2 O+e- → M(H)+OH- 〔式2〕 M+H2 O+e- ← M(H)+OH- [Negative electrode] [Formula 1] M + H 2 O + e → M (H) + OH [Formula 2] M + H 2 O + e ← M (H) + OH

【0005】〔式1〕および〔式2〕中のMは水素吸蔵
合金を示している。充電反応において、負極の水素吸蔵
合金Mは、〔式1〕に示すように、アルカリ水溶液中の
水を電気分解して、水素を吸蔵し、M(H)で示す状態
になり、放電反応においては、この逆反応が生じる。つ
まり、充電は水素吸蔵合金の水素の吸蔵であり、放電は
水素吸蔵合金の水素の放出となる。
[0005] M in [Equation 1] and [Equation 2] indicates a hydrogen storage alloy. In the charging reaction, the hydrogen storage alloy M of the negative electrode electrolyzes water in the alkaline aqueous solution to occlude hydrogen as shown in [Equation 1] and becomes a state indicated by M (H). This reverse reaction occurs. That is, charging is storing of hydrogen in the hydrogen storage alloy, and discharging is releasing of hydrogen in the hydrogen storage alloy.

【0006】例えば、上記水素吸蔵合金を用いた負極
と、ニッケル水酸化物を用いた正極と、アルカリ水溶液
からなる電解液を電解質として有する水素化物電池系の
二次電池では、上記負極の充放電反応に対応する正極の
充放電反応は、次の〔式3〕〜〔式4〕に示すような反
応式で進行する。〔式3〕が充電反応で、〔式4〕が放
電反応である。
For example, in a hydride battery-based secondary battery having a negative electrode using the above-mentioned hydrogen storage alloy, a positive electrode using nickel hydroxide, and an electrolyte solution composed of an alkaline aqueous solution as an electrolyte, the charge / discharge of the negative electrode The charge / discharge reaction of the positive electrode corresponding to the reaction proceeds according to the following reaction formulas [Formula 3] and [Formula 4]. [Equation 3] is a charging reaction, and [Equation 4] is a discharging reaction.

【0007】 〔正極〕 〔式3〕 Ni(OH)2 +OH- → NiOOH+H2 O+e- 〔式4〕 Ni(OH)2 +OH- ← NiOOH+H2 O+e- [Positive electrode] [Equation 3] Ni (OH) 2 + OH → NiOOH + H 2 O + e [Equation 4] Ni (OH) 2 + OH ← NiOOH + H 2 O + e

【0008】〔式3〕に示す充電反応において、負極で
生じた水酸基(OH- )が正極のNi(OH)2 と反応
して、NiOOHになり、水を生じる。
In the charging reaction shown in [Equation 3], the hydroxyl group (OH ) generated at the negative electrode reacts with Ni (OH) 2 of the positive electrode to form NiOOH, thereby generating water.

【0009】[0009]

【発明が解決しようとする課題】ところで、負極に用い
られる水素吸蔵合金は、合金材料をアーク(高周波)溶
解炉で溶解し、インゴット状に形成した後、水素の吸
蔵、放出により微粉末化させ、負極の作製に使用されて
いる。
The hydrogen storage alloy used for the negative electrode is obtained by melting an alloy material in an arc (high frequency) melting furnace, forming it into an ingot, and then pulverizing the alloy by absorbing and releasing hydrogen. , And a negative electrode.

【0010】そして、負極をぺースト式で作製する場合
には、上記の水素吸蔵合金粉末を結着剤としてのポリテ
トラフルオロエチレンの分散液と混合し、それを集電体
に塗布、乾燥することによって、負極が作製される。
When the negative electrode is manufactured by a paste method, the above-mentioned hydrogen storage alloy powder is mixed with a dispersion of polytetrafluoroethylene as a binder, and the mixture is applied to a current collector and dried. Thus, a negative electrode is manufactured.

【0011】この負極作製は、通常、空気中で行われる
ので、水素吸蔵合金粉末の表面には、薄い酸化物層が形
成される。
Since the production of the negative electrode is usually performed in air, a thin oxide layer is formed on the surface of the hydrogen storage alloy powder.

【0012】そのため、この酸化物層が形成された負極
と正極とを組み合わせ、電解液中で放電すると、所定の
放電容量が得られないという問題が生じる。前記二次電
池では、上記酸化物層を除去するために、充放電を数回
繰り返すことが必要になる。
Therefore, when the negative electrode and the positive electrode on which the oxide layer is formed are combined and discharged in an electrolytic solution, a problem arises in that a predetermined discharge capacity cannot be obtained. In the secondary battery, it is necessary to repeat charging and discharging several times in order to remove the oxide layer.

【0013】このような水素吸蔵合金に関する問題を解
決するために、電池組立後、電池を高温(40〜70
℃)で長時間エージングしたり、水素吸蔵合金粉末をア
ルカリ水溶液で処理してから負極を作製するなどの、い
わゆる活性化処理が行われている(例えば、特開昭63
−146353号公報)。
In order to solve such a problem relating to the hydrogen storage alloy, after assembling the battery, the battery is heated to a high temperature (40 to 70).
C.) for a long time, or a hydrogen storage alloy powder is treated with an alkaline aqueous solution to produce a negative electrode, and so-called activation treatment is performed (for example, Japanese Unexamined Patent Publication No. Sho 63).
146353).

【0014】また、活性化処理に代えて、電池製造工程
をすべて不活性ガス雰囲気中または水素雰囲気中で行う
ことも行われている。
Further, instead of the activation treatment, all the battery manufacturing steps are performed in an inert gas atmosphere or a hydrogen atmosphere.

【0015】しかし、高温で長時間エージングする場合
は、セパレータを損傷させることになり、水素吸蔵合金
粉末をアルカリ水溶液で処理する場合は、その後の負極
作製での取扱いを困難にすることになる。
However, when aging is carried out at a high temperature for a long time, the separator is damaged, and when the hydrogen storage alloy powder is treated with an aqueous alkaline solution, it becomes difficult to handle the subsequent negative electrode preparation.

【0016】また、電池の製造を特定雰囲気中で行うた
めには、その設備に多大の費用が必要になる。しかし、
負極の活性化が充分に行われていないと、大電流や低温
で放電した場合の放電電圧の低下、放電容量の減少とい
う問題も生じる。
Further, in order to manufacture a battery in a specific atmosphere, a large amount of equipment is required. But,
If the activation of the negative electrode is not sufficiently performed, there arises a problem that a discharge voltage is reduced and a discharge capacity is reduced when the battery is discharged at a large current or a low temperature.

【0017】本発明は、上記のような水素吸蔵合金を負
極に用いた水素化物電池における種々の問題点を解決
し、活性化処理が簡略化でき、しかも大電流放電特性、
低温放電特性が優れた水素化物電池を提供することを目
的とする。
The present invention solves various problems in a hydride battery using the above-mentioned hydrogen storage alloy for a negative electrode, simplifies activation treatment, and has a large current discharge characteristic.
An object is to provide a hydride battery having excellent low-temperature discharge characteristics.

【0018】[0018]

【課題を解決するための手段】本発明は、正極と水素吸
蔵合金を含む負極と電解質を有する水素化物電池におい
て、水素化ホウ素ナトリウムなどの可溶性水素化物を電
池系内に含有させ、その可溶性水素化物から放出される
水素を負極に吸蔵させて充電状態にすることにより、活
性化処理を簡略化し、大電流放電特性、低温放電特性を
向上させる技術を提供するものである。
SUMMARY OF THE INVENTION The present invention relates to a hydride battery having a positive electrode, a negative electrode containing a hydrogen storage alloy, and an electrolyte, wherein a soluble hydride such as sodium borohydride is contained in a battery system, It is an object of the present invention to provide a technology for simplifying an activation process and improving a large-current discharge characteristic and a low-temperature discharge characteristic by storing hydrogen released from a compound in a negative electrode by storing the hydrogen in the negative electrode.

【0019】電池内で負極に水素を吸蔵させて充電状態
にするにあたり、その水素源としては可溶性水素化物を
用いることが好ましく、特にその可溶性水素化物をアル
カリ水溶液に含有させて用いることが最適である。可溶
性水素化物を電池内に含有させる形態としては、電解液
中に水素化ホウ素ナトリウムなどの可溶性水素化物を含
有させてもよく、例えば、可溶性水素化物として水素化
ホウ素ナトリウム(NaBH4 )を用いて、それを電解
液中に含有させた場合を例にあげて説明すると、水素化
ホウ素ナトリウムはアルカリ水溶液中で安定で、〔式
5〕、〔式6〕に示すように水素を放出する。
In order to cause the negative electrode to store hydrogen in the battery and bring it into a charged state, it is preferable to use a soluble hydride as the hydrogen source, and it is particularly preferable to use the soluble hydride contained in an aqueous alkaline solution. is there. As a form in which the soluble hydride is contained in the battery, a soluble hydride such as sodium borohydride may be contained in the electrolytic solution. For example, sodium borohydride (NaBH 4 ) may be used as the soluble hydride. For example, when it is contained in an electrolytic solution, sodium borohydride is stable in an alkaline aqueous solution and releases hydrogen as shown in [Formula 5] and [Formula 6].

【0020】 〔式5〕 NaBH4 → Na+ +BH4 - 〔式6〕 BH4 - +2H2 O → BO2 - +4H2 [0020] [Formula 5] NaBH 4 → Na + + BH 4 - [Formula 6] BH 4 - + 2H 2 O → BO 2 - + 4H 2

【0021】また、次の〔式7〕に示す反応が平衡電位
−1.23V(vs.Hg/HgO)で生じる。 〔式7〕 BH4 - +8OH- → BO2 - +6H2 O+8e-
A reaction represented by the following [Formula 7] occurs at an equilibrium potential of −1.23 V (vs. Hg / HgO). [Formula 7] BH 4 + 8OH → BO 2 + 6H 2 O + 8e

【0022】上記〔式6〕で発生した水素は負極に吸蔵
されて負極が充電された状態になり、さらに、負極表面
で〔式7〕で示す反応が生じることにより、前記の〔式
1〕で示す充電反応が誘起される。
The hydrogen generated in the above [Equation 6] is occluded by the negative electrode, and the negative electrode is charged, and the reaction shown in [Equation 7] occurs on the surface of the negative electrode. Is induced.

【0023】このようにして充電反応が進行するので、
負極表面の酸化物層が除去され、その結果、電池組立後
の高温で長時間のエージング処理が不要になり、活性化
処理が簡略化される。
Since the charging reaction proceeds in this manner,
The oxide layer on the surface of the negative electrode is removed, and as a result, the aging treatment at a high temperature for a long time after the battery is assembled becomes unnecessary, and the activation treatment is simplified.

【0024】例えば、電池組立後、25〜80℃で0.
1〜4時間保存することによって、活性化処理が行い得
るようになり、従来、活性化処理に12時間を超える長
時間を必要としていたのに比べて、活性化処理に要する
時間が短縮される。
For example, after assembling the battery, the temperature is adjusted to 0.2 at 25 to 80 ° C.
By storing for 1 to 4 hours, the activation process can be performed, and the time required for the activation process is reduced as compared with the conventional case where the activation process requires a long time exceeding 12 hours. .

【0025】本発明において、可溶性水素化物として
は、例えば、上記の水素化ホウ素ナトリウム(NaBH
4 )や、水素化ホウ素カリウム(KBH4 )、水素化ア
ルミニウムリチウム(LiAlH4 )など、各種の化合
物が用いられる。これらの可溶性水素化物は、強い還元
剤であり、わずかな添加量で上記〔式5〕〜〔式7〕に
示す反応が短時間で生じる。
In the present invention, examples of the soluble hydride include the above-mentioned sodium borohydride (NaBH).
4 ), various compounds such as potassium borohydride (KBH 4 ) and lithium aluminum hydride (LiAlH 4 ) are used. These soluble hydrides are strong reducing agents, and the reaction shown in the above [Equation 5] to [Equation 7] occurs in a short time with a small amount of addition.

【0026】電解質としてアルカリ水溶液からなる電解
液を用いる場合には、このアルカリ水溶液としては、例
えば水酸化ナトリウム、水酸化カリウム、水酸化リチウ
ムなどのアルカリ金属の水酸化物の水溶液が用いられ
る。
When an electrolytic solution composed of an alkaline aqueous solution is used as the electrolyte, an aqueous solution of an alkali metal hydroxide such as sodium hydroxide, potassium hydroxide or lithium hydroxide is used as the alkaline aqueous solution.

【0027】電解液中に含有させる場合の可溶性水素化
物の量としては、電解液中における可溶性水素化物の濃
度が0.001〜5質量%の範囲になるようにするのが
好ましい。
The amount of the soluble hydride when contained in the electrolyte is preferably such that the concentration of the soluble hydride in the electrolyte is in the range of 0.001 to 5% by mass.

【0028】電解液中の可溶性水素化物の濃度が0.0
01質量%より少ない場合は、前記〔式5〕〜〔式7〕
で示す反応が充分に起こらないため、効果が充分に得ら
れず、また5質量%を超えると〔式5〕〜〔式7〕で示
す反応が急速に生じるため、負極の水素吸蔵合金が基体
から剥離するおそれがある。電解液中での可溶性水素化
物の特に好ましい濃度は0.2〜3質量%の範囲であ
る。
When the concentration of the soluble hydride in the electrolyte is 0.0
When the amount is less than 01% by mass, the above [Equation 5] to [Equation 7]
When the amount exceeds 5% by mass, the reactions represented by [Formula 5] to [Formula 7] occur rapidly. There is a risk of peeling off from Particularly preferred concentrations of the soluble hydride in the electrolyte range from 0.2 to 3% by weight.

【0029】電解液に可溶性水素化物を含有させるにあ
たっては、可溶性水素化物を調製済の電解液に添加して
もよいし、また、電解液の調製時に可溶性水素化物を添
加し、可溶性水素化物を含有した状態の電解液として調
製してもよい。さらに、電池組立後に結果的に電解液が
可溶性水素化物を所定量含有するように、電池系内の何
れかの部材に保持させるようにしてもよい。
When the soluble hydride is contained in the electrolytic solution, the soluble hydride may be added to the prepared electrolytic solution, or the soluble hydride may be added at the time of preparing the electrolytic solution to remove the soluble hydride. It may be prepared as an electrolyte solution in a contained state. Furthermore, after assembly of the battery, any of the members in the battery system may be held so that the electrolyte solution contains a predetermined amount of soluble hydride.

【0030】本発明において、負極に用いる水素吸蔵合
金としては、例えば、実施例で用いるようなTi17Zr
1623Ni37Cr7 などをはじめ、La0.9 Zr0.1
4. 5 Al0.5 、TiNi系、TiNiZr系、(Ti
2-X ZrX 4-X Ni)1-ZCr2 (x=0〜1.5、
y=0.6〜3.5、z≧0.2)系、MmNi5 系な
どの水素吸蔵合金が挙げられる。水素吸蔵合金とは、可
逆的に水素を吸蔵、放出できる合金をいい、通常、水素
を完全に脱蔵(放出)した状態で合成される。そして、
この水素吸蔵合金を用いた負極では、充電は水素の吸蔵
であり、放電は水素の放出である。
In the present invention, as the hydrogen storage alloy used for the negative electrode, for example, Ti 17 Zr
La 0.9 Zr 0.1 N, including 16 V 23 Ni 37 Cr 7
i 4. 5 Al 0.5, TiNi system, TiNiZr system, (Ti
2-X Zr X V 4- X Ni) 1-Z Cr 2 (x = 0~1.5,
y = 0.6 to 3.5, z ≧ 0.2) and MmNi 5 based hydrogen storage alloys. The hydrogen storage alloy refers to an alloy capable of reversibly storing and releasing hydrogen, and is usually synthesized in a state where hydrogen is completely desorbed (released). And
In the negative electrode using the hydrogen storage alloy, charging is storing hydrogen and discharging is releasing hydrogen.

【0031】負極は、焼結式、ぺースト式のいずれで作
製してもよい。なお、焼結式による負極の作製方法と
は、例えば金網、パンチングメタル、エキスパンドメタ
ルなどの多孔性金属を基体とし、これに上記の水素吸蔵
合金の粉末を圧着して、焼結し、シート状に成形するこ
とによって負極を作製する方法であり、ぺースト式によ
る負極の作製方法とは、上記水素吸蔵合金の粉末を結着
剤などと共にぺースト状にし、そのぺーストを上記多孔
性金属からなる基体に添着し、乾燥後、プレスなどで圧
着することによって負極を作製する方法である。
The negative electrode may be manufactured by either a sintering method or a paste method. The method of producing a negative electrode by a sintering method refers to, for example, a method in which a porous metal such as a wire mesh, a punching metal, or an expanded metal is used as a base material, and the above-described hydrogen storage alloy powder is press-bonded thereto, sintered, and formed into a sheet. This is a method of producing a negative electrode by molding into a paste, and the method of producing a negative electrode by the paste method is to paste the hydrogen storage alloy powder together with a binder and the like, and then paste the paste from the porous metal. This is a method in which a negative electrode is produced by attaching to a substrate to be formed, followed by drying and pressure bonding with a press or the like.

【0032】また、正極に用いる材料としては、例え
ば、一酸化ニッケル(NiO)、二酸化ニッケル(Ni
2 )、水酸化ニッケル〔Ni(OH)2 〕などのニッ
ケル酸化物やニッケル水酸化物が挙げられる。ただし、
これらは、正極が放電状態にあるときであり、正極が充
電状態では、上記ニッケル酸化物やニッケル水酸化物は
別の化合物として存在する。
As the material used for the positive electrode, for example, nickel monoxide (NiO), nickel dioxide (Ni
O 2 ), nickel hydroxide such as nickel hydroxide [Ni (OH) 2 ], and nickel hydroxide. However,
These are when the positive electrode is in a discharged state, and when the positive electrode is in a charged state, the nickel oxide or nickel hydroxide exists as another compound.

【0033】正極は、例えば、ニッケル焼結体を基体と
し、これにニッケル酸化物またはニッケル水酸化物を充
填する焼結式や、金網、パンチングメタル、エキスパン
ドメタル、金属発泡体などの多孔性金属を基体とし、こ
れにニッケル酸化物またはニッケル水酸化物を添着する
ぺースト式などでシート状の成形体として作製される
が、本発明の実施にあたっては、例えば、焼結式やぺー
スト式などで作製した公知のニッケル電極を使用するこ
とができる。
The positive electrode is, for example, a sintered type in which a nickel sintered body is used as a base and filled with nickel oxide or nickel hydroxide, or a porous metal such as a wire mesh, a punched metal, an expanded metal, or a metal foam. Is formed into a sheet-like molded body by a paste method or the like in which a nickel oxide or a nickel hydroxide is attached to the substrate, and in the practice of the present invention, for example, a sintered method or a paste method The known nickel electrode prepared in the above can be used.

【0034】[0034]

【実施例】つぎに、実施例を挙げて本発明をより具体的
に説明する。
Next, the present invention will be described more specifically with reference to examples.

【0035】実施例1 市販品のTi(チタン)、Zr(ジルコニウム)、V
(バナジウム)、Ni(ニッケル)およびCr(クロ
ム)をTi17Zr1623Ni37Cr7 の組成になるよう
に秤量し、高周波溶解炉によって加熱溶解して、上記組
成の多相系合金を得た。
Example 1 Commercially available Ti (titanium), Zr (zirconium), V
(Vanadium), weighed Ni a (nickel) and Cr (chromium) so that the composition of Ti 17 Zr 16 V 23 Ni 37 Cr 7, dissolved by heating by high frequency melting furnace, a multi-phase alloy having the above composition Obtained.

【0036】この合金を耐圧容器内に入れ、該容器内を
1.33×10-2Pa(10-4torr)まで真空吸引
し、Ar(アルゴン)で3回パージを行った後、水素圧
力1.37MPa(14kg/cm2 )で24時間保持
し、水素を排気後、400℃で加熱して水素を完全に脱
蔵することにより、粒径20〜100μmの水素吸蔵合
金粉末を得た。
This alloy was placed in a pressure vessel, the inside of the vessel was evacuated to 1.33 × 10 −2 Pa (10 −4 torr), and purged three times with Ar (argon). The mixture was held at 1.37 MPa (14 kg / cm 2 ) for 24 hours, and after evacuation of hydrogen, the mixture was heated at 400 ° C. and completely devolved with hydrogen to obtain a hydrogen storage alloy powder having a particle size of 20 to 100 μm.

【0037】この水素吸蔵合金粉末16gにポリテトラ
フルオロエチレンの分散液をその固形分量が全重量の4
質量%になるように添加して混練した。
A dispersion of polytetrafluoroethylene was added to 16 g of the hydrogen-absorbing alloy powder and the solid content of the dispersion was 4% of the total weight.
It was added and kneaded so as to give a mass%.

【0038】この混練物をローラーにより、280mm
×38mm×0.4mmのシート状にし、それをニッケ
ル集電体(線径0.178mmで、14メッシュのニッ
ケル製網からなり、その一端にニッケル製のリード体が
取り付けられている)に圧着して負極を作製した。
The kneaded material was rolled by a roller to 280 mm
× 38mm × 0.4mm sheet, crimped on nickel current collector (wire diameter 0.178mm, 14 mesh nickel net, nickel end attached to one end) Thus, a negative electrode was produced.

【0039】正極には焼結式で作製した公知のニッケル
電極(240mm×38mm)を用いた。電池の公称容
量を3500mAhにするため、負極は理論容量が52
00mAhになるように作製し、正極は理論容量が40
00mAhになるように作製したものを用いた。
As the positive electrode, a known nickel electrode (240 mm × 38 mm) manufactured by a sintering method was used. In order to make the nominal capacity of the battery 3500 mAh, the negative electrode has a theoretical capacity of 52
And the positive electrode has a theoretical capacity of 40 mAh.
What was manufactured so that it might be set to 00 mAh was used.

【0040】上記負極と正極とをセパレータを介して渦
巻状に巻回して図1に示すような渦巻状の電極体を作製
し、その渦巻状の電極体を単2サイズの電池ケースと同
体積の耐圧容器内に入れ、封口して、図2に示すような
内圧測定が可能な電池を作製した。
The negative electrode and the positive electrode are spirally wound through a separator to form a spiral electrode body as shown in FIG. 1, and the spiral electrode body has the same volume as a single-size battery case. And sealed, thereby producing a battery capable of measuring the internal pressure as shown in FIG.

【0041】図1に示す渦巻状の電極体について説明す
ると、1は正極であり、この正極1は焼結式で作製した
ニッケル電極からなる。2は負極であり、この負極2は
Ti 17Zr1623Ni37Cr7 の組成を持つ水素吸蔵合
金を含む成形体からなる。ただし、これらの正極1や負
極2には集電体としての作用を兼ねて基体が使用されて
いるが、図1にそれらを図示すると繁雑化するため、図
1にはそれらを図示していない。
The spiral electrode body shown in FIG. 1 will be described.
Then, 1 is a positive electrode, and this positive electrode 1 was produced by a sintering method.
It consists of a nickel electrode. 2 is a negative electrode, and this negative electrode 2
Ti 17Zr16Vtwenty threeNi37Cr7Occlusion with the composition of
It consists of a molded body containing gold. However, these positive electrodes 1 and negative
A base is used for the pole 2 also as a current collector.
However, if they are shown in FIG.
1 do not show them.

【0042】3はセパレータであり、このセパレータ3
はポリアミド不織布からなり、前記正極1と負極2はこ
のセパレータ3を介して渦巻状に巻回され、図示のよう
な渦巻状の電極体にされている。
Reference numeral 3 denotes a separator.
Is made of a polyamide non-woven fabric. The positive electrode 1 and the negative electrode 2 are spirally wound through the separator 3 to form a spiral electrode body as shown in the figure.

【0043】図2に示す電池について説明すると、上記
渦巻状の電極体4は耐圧容器5内に収納され、負極リー
ド体6は耐圧容器5の内壁にスポット溶接され、正極リ
ード体7は電極体4上部のアクリル板部分8より取り出
している。電解液は注入口9より耐圧容器5内に注入
し、注入口9は電解液の注入後、封止され、図2にはそ
の状態が示されている。電池の内部圧力はゲージ(ブル
ドンゲージ)10によって読み取ることができるように
なっている。
Referring to the battery shown in FIG. 2, the spiral electrode body 4 is housed in a pressure-resistant container 5, the negative electrode lead body 6 is spot-welded to the inner wall of the pressure-resistant container 5, and the positive electrode lead body 7 is an electrode body. 4 is taken out from the acrylic plate portion 8 on the upper part. The electrolyte is injected into the pressure-resistant container 5 from the injection port 9, and the injection port 9 is sealed after the injection of the electrolyte, and FIG. 2 shows the state. The internal pressure of the battery can be read by a gauge (Bourdon gauge) 10.

【0044】使用された電解液は、30質量%水酸化カ
リウム水溶液に水素化ホウ素ナトリウムを0.2質量%
含有させたものであり、その注入量は6.5mlであ
る。この水素化ホウ素ナトリウムを含有する電解液を注
入した後、電池を60℃で2時間保存した。
The electrolyte used was prepared by adding 0.2% by mass of sodium borohydride to a 30% by mass aqueous solution of potassium hydroxide.
The injection volume is 6.5 ml. After injecting the electrolyte containing sodium borohydride, the battery was stored at 60 ° C. for 2 hours.

【0045】保存後、上記電池を350mAで15時間
充電し、700mAで0.9Vまで放電した。これを1
サイクルとし、6サイクルまで充放電した場合の各サイ
クル毎の放電容量を調べた。
After storage, the battery was charged at 350 mA for 15 hours, and discharged at 700 mA to 0.9 V. This one
The discharge capacity was determined for each cycle when charging and discharging were performed up to six cycles.

【0046】比較例1 電解液として水素化ホウ素ナトリウムを含有させていな
い30質量%水酸化カリウム水溶液を用いたほかは、実
施例1と同様にして電池を作製した。この電池について
も、電解液の注入後、60℃で2時間保存したのち、実
施例1と同様に充放電して、各サイクル毎の放電容量を
調べた。
Comparative Example 1 A battery was fabricated in the same manner as in Example 1, except that a 30% by mass aqueous solution of potassium hydroxide containing no sodium borohydride was used as an electrolytic solution. This battery was also stored at 60 ° C. for 2 hours after injecting the electrolytic solution, charged and discharged in the same manner as in Example 1, and the discharge capacity of each cycle was examined.

【0047】比較例2 30質量%水酸化ナトリウム水溶液に水素化ホウ素ナト
リウムを0.2質量%溶解させた溶液を500ml準備
し、この溶液を25℃に保持し、その中に実施例1にお
ける負極を2時間浸漬した。その後、負極を不活性雰囲
気中に取り出し、洗浄、乾燥を経て、実施例1と同様に
して電池を作製した。ただし、使用した電解液は30質
量%水酸化カリウム水溶液であり、その注入量は6.5
mlであるが、この電解液には実施例1におけるような
水素化ホウ素ナトリウムを含有させていない。この電池
についても、電解液の注入後、60℃で2時間保存した
のち、実施例1と同様に充放電して、各サイクル毎の放
電容量を調べた。
Comparative Example 2 500 ml of a solution prepared by dissolving 0.2% by mass of sodium borohydride in a 30% by mass aqueous sodium hydroxide solution was prepared, and this solution was kept at 25 ° C. Was immersed for 2 hours. Thereafter, the negative electrode was taken out in an inert atmosphere, washed and dried, and a battery was fabricated in the same manner as in Example 1. However, the electrolytic solution used was a 30% by mass aqueous solution of potassium hydroxide, and the injection amount was 6.5.
ml, but this electrolyte solution does not contain sodium borohydride as in Example 1. This battery was also stored at 60 ° C. for 2 hours after injecting the electrolytic solution, charged and discharged in the same manner as in Example 1, and the discharge capacity of each cycle was examined.

【0048】上記実施例1の電池および比較例1〜2の
電池の定格容量(これらの電池の場合は3.5Ahであ
る)に到達するまでの充放電サイクル数と放電容量との
関係を図3に示す。
The relationship between the number of charge / discharge cycles and the discharge capacity before reaching the rated capacity (3.5 Ah in the case of these batteries) of the battery of Example 1 and the batteries of Comparative Examples 1 and 2 is shown. 3 is shown.

【0049】図3に示すように、比較例1の電池では、
定格容量の3.5Ahに到達するのに充放電を5回繰り
返すことを必要としたが、実施例1の電池では、充放電
を2回行うだけで定格容量に到達した。また、電解液に
可溶性水素化物を含有させた実施例1の電池は、可溶性
水素化物を含有させたアルカリ水溶液に浸漬処理した負
極を用いて構成された比較例2の電池よりも活性化が速
かった。なお、図3では、比較例2の電池の充放電サイ
クル数と放電容量との関係を示す曲線の測定点を表す□
印を一部所定位置より少し左側にずらして図示してい
る。
As shown in FIG. 3, in the battery of Comparative Example 1,
Although it was necessary to repeat charging and discharging five times to reach the rated capacity of 3.5 Ah, the battery of Example 1 reached the rated capacity only by performing charging and discharging twice. In addition, the battery of Example 1 in which the soluble hydride was contained in the electrolytic solution was activated more quickly than the battery of Comparative Example 2 which was configured using the negative electrode immersed in the aqueous alkali solution containing the soluble hydride. Was. In FIG. 3, the measurement points of the curve showing the relationship between the number of charge / discharge cycles and the discharge capacity of the battery of Comparative Example 2 are shown by squares.
The mark is partially shifted leftward from the predetermined position.

【0050】この結果は、電解液に水素化ホウ素ナトリ
ウムを0.2質量%含有させるだけで、定格容量に到達
するまでの充放電回数を減少させることができ、活性化
処理を簡略化できることを示している。また、あらかじ
め水素化ホウ素ナトリウムにより充電状態にした負極を
用いて電池を組み立てるより、電池内に水素化ホウ素ナ
トリウムを存在させ、電池内で負極を充電状態にする方
が活性化が容易になることを示している。
This result shows that the content of sodium borohydride in the electrolyte is only 0.2% by mass, so that the number of times of charging and discharging until reaching the rated capacity can be reduced and the activation process can be simplified. Is shown. In addition, it is easier to activate the battery by placing sodium borohydride in the battery and charging the negative electrode in the battery than by assembling the battery using the negative electrode previously charged with sodium borohydride. Is shown.

【0051】実施例2 電解液中の水素化ホウ素ナトリウムの濃度を0.1質量
%、0.2質量%、0.5質量%、1質量%、2質量
%、3質量%、4質量%および5質量%に変え、それ以
外は実施例1と同様に電池組立を行い、電池組立後、そ
れぞれ25℃、45℃、60℃および80℃で2時間保
存した。
Example 2 The concentration of sodium borohydride in the electrolyte was 0.1% by mass, 0.2% by mass, 0.5% by mass, 1% by mass, 2% by mass, 3% by mass, and 4% by mass. The battery was assembled in the same manner as in Example 1 except for the above, and stored at 25 ° C., 45 ° C., 60 ° C., and 80 ° C. for 2 hours after the battery assembly.

【0052】そして、上記電池について、実施例1と同
様に充放電し、定格容量(3.5Ah)に到達するまで
の充放電サイクル数を調べた。
The battery was charged and discharged in the same manner as in Example 1, and the number of charge and discharge cycles required to reach the rated capacity (3.5 Ah) was examined.

【0053】各温度での、定格容量に到達するまでの充
放電サイクル数と電解液中の水素化ホウ素ナトリウムの
濃度との関係を図4に示す。
FIG. 4 shows the relationship between the number of charge / discharge cycles required to reach the rated capacity and the concentration of sodium borohydride in the electrolyte at each temperature.

【0054】図4に示すように、電解液中に水素化ホウ
素ナトリウムを含有させることにより、温度にもよる
が、その濃度が0.2質量%と低い場合でも、定格容量
に到達するまでの充放電サイクル数を少なくすることが
できる。
As shown in FIG. 4, by including sodium borohydride in the electrolytic solution, even if its concentration is as low as 0.2% by mass, it does not take until the rated capacity is reached, depending on the temperature. The number of charge / discharge cycles can be reduced.

【0055】そして、水素化ホウ素ナトリウムの濃度が
2質量%以上になると、処理温度が25℃と常温であっ
ても、2回の充放電で定格容量に到達することができ
る。
When the concentration of sodium borohydride is 2% by mass or more, the rated capacity can be reached by two charge / discharge operations even at a normal temperature of 25 ° C.

【0056】つぎに、実施例1の電池および比較例1〜
2の電池について、25℃における大電流(3C相当)
放電での放電特性を調べた。その結果を図5に示す。図
5に示すように、水素化ホウ素ナトリウムを電解液に添
加した実施例1の電池は、比較例1の電池に比べて大電
流放電における放電電圧、放電容量ともに改善されてい
ることがわかる。さらに、実施例1の電池は、水素化ホ
ウ素ナトリウムを溶解させたアルカリ水溶液に負極を浸
漬した比較例2の電池と比べても、優れた放電電圧、放
電容量を示している。
Next, the battery of Example 1 and Comparative Examples 1 to
Large current at 25 ° C for battery 2 (3C equivalent)
The discharge characteristics in the discharge were examined. The result is shown in FIG. As shown in FIG. 5, it can be seen that the battery of Example 1 in which sodium borohydride was added to the electrolytic solution was improved in both the discharge voltage and the discharge capacity in the large current discharge as compared with the battery of Comparative Example 1. Furthermore, the battery of Example 1 exhibited excellent discharge voltage and discharge capacity as compared with the battery of Comparative Example 2 in which the negative electrode was immersed in an aqueous alkaline solution in which sodium borohydride was dissolved.

【0057】さらに、実施例1および比較例1〜2の電
池について、0℃で0.5C相当の放電電流で放電した
ときの放電特性を図6に示す。図6に示すように、水素
化ホウ素ナトリウムを電解液に添加した実施例1の電池
は、比較例1の電池に比べて低温放電における放電電
圧、放電容量ともに改善されていることがわかる。さら
に、実施例1の電池は、水素化ホウ素ナトリウムを溶解
させたアルカリ水溶液に負極を浸漬した比較例2の電池
と比べても、優れた放電電圧、放電容量を示している。
FIG. 6 shows the discharge characteristics of the batteries of Example 1 and Comparative Examples 1 and 2 when discharged at 0 ° C. with a discharge current equivalent to 0.5 C. As shown in FIG. 6, it can be seen that the battery of Example 1 in which sodium borohydride was added to the electrolytic solution had improved discharge voltage and discharge capacity at low-temperature discharge as compared with the battery of Comparative Example 1. Furthermore, the battery of Example 1 exhibited excellent discharge voltage and discharge capacity as compared with the battery of Comparative Example 2 in which the negative electrode was immersed in an aqueous alkaline solution in which sodium borohydride was dissolved.

【0058】実施例3 電解液として、30質量%水酸化カリウム水溶液に水酸
化リチウムを17g/lの割合で添加し、水素化アルミ
ニウムリチウムを0.2質量%含有させたものを用いた
ほかは、実施例1と同様にして電池を組み立て、電池組
立後、実施例1と同様に60℃で2時間保存した。
Example 3 An electrolyte was prepared by adding lithium hydroxide at a ratio of 17 g / l to a 30% by mass aqueous solution of potassium hydroxide and containing 0.2% by mass of lithium aluminum hydride. A battery was assembled in the same manner as in Example 1. After the battery was assembled, the battery was stored at 60 ° C. for 2 hours as in Example 1.

【0059】この電池について、定格容量に到達するま
でに要する充放電サイクル数などを調べたところ、実施
例1と同様の結果を示した。
When the number of charge / discharge cycles required to reach the rated capacity of this battery was examined, the same results as in Example 1 were shown.

【0060】[0060]

【発明の効果】以上説明したように、本発明では、可溶
性水素化物を電池内に含有させ、可溶性水素化物から放
出される水素を負極に吸蔵させて充電状態にすることに
より、活性化処理を簡略化し、大電流放電における放電
特性や低温放電における放電特性を向上させることがで
きた。
As described above, according to the present invention, the activation treatment is performed by causing the soluble hydride to be contained in the battery and storing the hydrogen released from the soluble hydride in the negative electrode to make the battery charged. The simplification was able to improve the discharge characteristics in a large current discharge and the discharge characteristics in a low temperature discharge.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の水素化物電池における渦巻状の電極体
の概略平面図である。
FIG. 1 is a schematic plan view of a spiral electrode body in a hydride battery of the present invention.

【図2】電池内圧の測定が可能な電池の概略斜視図であ
る。
FIG. 2 is a schematic perspective view of a battery capable of measuring a battery internal pressure.

【図3】実施例1の電池および比較例1〜2の電池の定
格容量に到達するまでの間における充放電サイクル数と
放電容量との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the number of charge / discharge cycles and the discharge capacity until the batteries of Example 1 and the batteries of Comparative Examples 1 and 2 reach the rated capacity.

【図4】実施例2において定格容量に到達するまでの電
解液中の水素化ホウ素ナトリウムの濃度と充放電サイク
ル数との関係を示す図である。
FIG. 4 is a diagram showing the relationship between the concentration of sodium borohydride in the electrolyte and the number of charge / discharge cycles until the rated capacity is reached in Example 2.

【図5】実施例1の電池および比較例1〜2の電池の大
電流放電での放電特性を示す図である。
FIG. 5 is a diagram showing the discharge characteristics of the battery of Example 1 and the batteries of Comparative Examples 1 and 2 at large current discharge.

【図6】実施例1の電池および比較例1〜2の電池の低
温放電での放電特性を示す図である。
FIG. 6 is a diagram showing discharge characteristics of the battery of Example 1 and the batteries of Comparative Examples 1 and 2 at low temperature discharge.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 1 Positive electrode 2 Negative electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川上 章 大阪府茨木市丑寅一丁目1番88号 日立 マクセル株式会社内 (56)参考文献 特開 平4−206469(JP,A) 特開 平4−322068(JP,A) 特開 平5−225976(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/24 - 10/30 H01M 4/00 - 4/62 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Akira Kawakami 1-88 Ushitora, Ibaraki-shi, Osaka Hitachi Maxell, Ltd. (56) References JP-A-4-206469 (JP, A) JP-A-4 -322068 (JP, A) JP-A-5-225976 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/24-10/30 H01M 4/00-4/62

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極と水素吸蔵合金を含む負極と電解質
を有する水素化物電池であって、電池系内に可溶性水素
化物を含有させたことを特徴とする水素化物電池。
1. A hydride battery having a positive electrode, a negative electrode containing a hydrogen storage alloy, and an electrolyte, wherein a soluble hydride is contained in a battery system.
【請求項2】 負極が、可溶性水素化物から放出される
水素を吸蔵して充電状態になっていることを特徴とする
請求項1記載の水素化物電池。
2. The hydride battery according to claim 1, wherein the negative electrode is in a charged state by storing hydrogen released from the soluble hydride.
【請求項3】 可溶性水素化物を含有するアルカリ水溶
液からなる電解液を電解質として用い、可溶性水素化物
の電解液中の濃度が0.001〜5質量%であることを
特徴とする請求項1または2記載の水素化物電池。
3. The method according to claim 1, wherein an electrolyte comprising an aqueous alkaline solution containing a soluble hydride is used as the electrolyte, and the concentration of the soluble hydride in the electrolyte is 0.001 to 5% by mass. 3. The hydride battery according to 2.
【請求項4】 正極と水素吸蔵合金を含む負極と電解質
を有する水素化物電池の系内に可溶性水素化物を含有さ
せ、該可溶性水素化物から放出される水素を負極の水素
吸蔵合金に吸蔵させることにより負極を充電状態にする
ことを特徴とする水素化物電池の負極の充電方法。
4. A hydride battery having a positive electrode, a negative electrode containing a hydrogen storage alloy, and an electrolyte containing a soluble hydride, and storing hydrogen released from the soluble hydride in the hydrogen storage alloy of the negative electrode. A method for charging a negative electrode of a hydride battery, the method comprising:
【請求項5】 可溶性水素化物を含有するアルカリ水溶
液を電池系内に注入することを特徴とする請求項4記載
の水素化物電池の負極の充電方法。
5. The method for charging a negative electrode of a hydride battery according to claim 4, wherein an alkaline aqueous solution containing a soluble hydride is injected into the battery system.
JP2002042426A 1991-04-19 2002-02-20 Hydride battery and method for charging negative electrode thereof Expired - Lifetime JP3342699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002042426A JP3342699B2 (en) 1991-04-19 2002-02-20 Hydride battery and method for charging negative electrode thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11688691 1991-04-19
JP3-116886 1991-04-19
JP2002042426A JP3342699B2 (en) 1991-04-19 2002-02-20 Hydride battery and method for charging negative electrode thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12122992A Division JP3342506B2 (en) 1991-04-19 1992-04-15 Hydride secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002289252A JP2002289252A (en) 2002-10-04
JP3342699B2 true JP3342699B2 (en) 2002-11-11

Family

ID=26455116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002042426A Expired - Lifetime JP3342699B2 (en) 1991-04-19 2002-02-20 Hydride battery and method for charging negative electrode thereof

Country Status (1)

Country Link
JP (1) JP3342699B2 (en)

Also Published As

Publication number Publication date
JP2002289252A (en) 2002-10-04

Similar Documents

Publication Publication Date Title
JP2926734B2 (en) Alkaline storage battery using hydrogen storage alloy
EP0251385B1 (en) Electrochemical cell
JP3393944B2 (en) Hydride rechargeable battery
EP0468568A1 (en) Electrochemical cell comprising a hydride-forming intermetallic compound
US5922146A (en) Hydrogen-absorbing alloy of ultra high capacity for electrode of secondary battery
JP3342699B2 (en) Hydride battery and method for charging negative electrode thereof
JP3342506B2 (en) Hydride secondary battery and method for producing the same
JPH05258748A (en) Hydride secondary battery
KR0137797B1 (en) Manufacturing method of electrode for the secondary battery using the hydrogen storage alloy
JP3176387B2 (en) Method for producing hydride secondary battery
JP2548271B2 (en) Alkaline secondary battery manufacturing method
KR100207618B1 (en) Negative electrode manufacturing method and secondary battery having it
JP2968360B2 (en) Method for producing hydride secondary battery
JP3171401B2 (en) Hydride rechargeable battery
JP6951047B2 (en) Alkaline secondary battery
JP3214570B2 (en) Hydride rechargeable battery
JP3214569B2 (en) Method for producing hydride secondary battery
JPH06145849A (en) Hydrogen storage alloy electrode
JP2642144B2 (en) Method for producing hydrogen storage electrode
JPH08222210A (en) Metal oxide/hydrogen storage battery
JP2001035526A (en) Nickel hydrogen storage battery
JP2999277B2 (en) Hydride secondary battery and method for producing the same
JP2919547B2 (en) Method for producing hydrogen storage alloy electrode for alkaline storage battery
JPS5931834B2 (en) Hydrogen storage electrode
JP2529898B2 (en) Hydrogen storage alloy electrode

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020812

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070823

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110823

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120823

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120823

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120823

Year of fee payment: 10