JPS62116786A - Selective surface treatment - Google Patents

Selective surface treatment

Info

Publication number
JPS62116786A
JPS62116786A JP25458285A JP25458285A JPS62116786A JP S62116786 A JPS62116786 A JP S62116786A JP 25458285 A JP25458285 A JP 25458285A JP 25458285 A JP25458285 A JP 25458285A JP S62116786 A JPS62116786 A JP S62116786A
Authority
JP
Japan
Prior art keywords
substrate
light
reaction
gas
adsorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25458285A
Other languages
Japanese (ja)
Other versions
JPH0718012B2 (en
Inventor
Shunji Kishida
岸田 俊二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60254582A priority Critical patent/JPH0718012B2/en
Publication of JPS62116786A publication Critical patent/JPS62116786A/en
Publication of JPH0718012B2 publication Critical patent/JPH0718012B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To selectively suppress surface chemical reaction in a light irradiated part of a substrate by adsorbing a reaction seed by the chemical reaction of gas on the surface of the substrate and irradiating light thereto so that the adsorbed reaction seed is selectively desorbed from the desired part. CONSTITUTION:The substrate 7 installed in a reaction cell 6 is maintained at a prescribed temp.; further a suitable atmosphere of the gas introduced through a valve 10 from a gas supply source 9 is maintained in the cell 6. The reaction seed of the surface chemical reaction is thereby adsorbed onto the substrate 7 surface. The exit light from a laser 1 which oscillates at a suitable wavelength is passed through a window 5 provided to the cell 6 by a reflection mirror 2 and a lens 4 and is irradiated onto the substrate 7. The image of a mask 3 having a desired irradiation pattern is formed on the surface of the substrate 7 by a lens 4 in order to make selective irradiation. The reaction seed adsorbed on the substrate is selectively eliminated from the substrate by the irradiation of the light in the above-mentioned manner, by which the thin film pattern of a desired negative type is formed with high accuracy.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、表面処理を選択的に行なう方法、特に光を用
いて選択精度を高めた表面処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for selectively performing surface treatment, and particularly to a surface treatment method that uses light to improve selection accuracy.

(従来の技術) 近年、光を用いたCVDやエツチング等の光励起プロセ
ス技術が、プロセスの低温化や簡略化をもたらすものと
して盛んに開発されている。しかしながら従来の光励起
プロセス技術はすべて、光照射部に存在する基板上の反
志種と照射光との光化学反応に基づいているため、基板
上の光照射部には堆積やエツチング、ドーピング等の加
工を施し、非照射部には加工を施さないでいた。この選
択性を利用して、基板への光照射をパターン化すること
により、レジストレスの一回のプロセスでパターン化し
た薄膜の形成を光励起プロセスで実現しうろことが、例
えば特開昭57−26445に記載された量体になる発
明で提案され、その有用性が大いに期待される。しかし
、このような従来提案されている光励起プロセス技術は
、以下の理由で必ずしも実用中のレジストプロセスをす
べて代替できる訳ではない。
(Prior Art) In recent years, photoexcitation process techniques such as CVD and etching using light have been actively developed as a means of lowering the temperature and simplifying the process. However, all conventional photoexcitation process technologies are based on a photochemical reaction between the anti-reactive species on the substrate existing in the light irradiation area and the irradiation light. The non-irradiated areas were left unprocessed. By utilizing this selectivity and patterning the light irradiation onto the substrate, it is possible to form a patterned thin film in a single resistless process using a photoexcitation process. 26445, and its usefulness is highly anticipated. However, such conventionally proposed photoexcitation process techniques cannot necessarily replace all resist processes currently in use for the following reasons.

(発明が解決しようとする問題点) まず従来のレジストプロセスにおいては、レジストの有
無による加工の空間的な選択性が非常に高いのに対、シ
、光励起プロセス、特に光C’/Dにおいては、基板表
面の光化学反応に加えて、気相中の光化学反応も堆積に
寄与するから、光照射領域外にも気相中からの降り積も
bK基づく堆積を生じて選択性が劣化する。例えば5i
n4を用いる絶縁膜のcvpの場合には、以上の要因に
加え、さらに堆積物の構成分子が複数の反応種の化学反
応により生ずるという要因のため、金属や81等のごと
く単一の反応種の分解反応のみで堆積するのに比べ、関
与する反応種間の気相中での平均衝突距離程度に堆積パ
ターンが照射光パターンから更に拡がる。
(Problems to be Solved by the Invention) First, in the conventional resist process, the spatial selectivity of processing depending on the presence or absence of resist is extremely high, whereas in the optical excitation process, especially in the optical C'/D, In addition to the photochemical reaction on the substrate surface, the photochemical reaction in the gas phase also contributes to deposition, so that precipitation outside the light irradiation area and from the gas phase also causes bK-based deposition, deteriorating selectivity. For example, 5i
In the case of CVP of an insulating film using n4, in addition to the above factors, the constituent molecules of the deposit are generated by chemical reactions of multiple reactive species, so it is difficult to use a single reactive species such as metal or 81. Compared to the case where the deposition occurs only by decomposition reaction, the deposition pattern spreads further from the irradiation light pattern to the extent of the average collision distance in the gas phase between the participating reactive species.

また、従来のレジストプロセスにおいては、レジストに
ポジ形とネガ形があるため、レジスト露光の光照射のパ
ターンと後工程のプロセス、例えばエツチングのパター
ンとを、同一か相補的かに自由に選択しうる利点がある
のに対し、既存の光励起プロセス技術では、光照射部に
のみ加工を施すいわばポジ形のプロセス技術のみが存在
し、従ってプロセスの自由度が狭くなるという欠点があ
つた。
In addition, in conventional resist processes, since there are positive and negative types of resist, it is possible to freely select whether the light irradiation pattern for resist exposure and the pattern for subsequent processes, such as etching, are the same or complementary. However, existing photoexcitation process techniques have the disadvantage that only positive type process techniques exist, in which only the light irradiated area is processed, and therefore the degree of freedom in the process is narrowed.

そこで、本発明の目的は、以上述べた従来の光励起プロ
セス技術の欠点を除去し、選択性に優れ、光照射部にお
ける光化学反応の誘起を抑止する表面選択処理方法を提
供することに6る。
Therefore, an object of the present invention is to provide a surface selective treatment method that eliminates the drawbacks of the conventional photoexcitation process techniques described above, has excellent selectivity, and suppresses the induction of photochemical reactions in the light irradiated area.

(問題点を解決するための手段) 前述の問題点を解決するために禾発明が提供する表面選
択処理方法は、基板の表面に吸着して表面化学反応によ
り前記表面に処理を施す気体の雰囲気中で、前記表面の
所望部に選択的に光を照射することにより、前記表面化
学反応に関与する少なくとも一種類の吸着反応種を前記
所望部から脱離させて、前記吸着反応種の関与する表面
化学反応を前記所望部において抑止することを特徴とす
る。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the surface selective treatment method provided by the present invention uses a gas atmosphere that adsorbs to the surface of a substrate and processes the surface through a surface chemical reaction. By selectively irradiating a desired part of the surface with light, at least one type of adsorption reaction species involved in the surface chemical reaction is desorbed from the desired part, and the adsorption reaction species participating in the surface chemical reaction is desorbed from the desired part. It is characterized in that surface chemical reactions are inhibited at the desired portions.

(発明の作用・原理) 本発明は、以上の方法をとることにより従来技術の問題
点を解決した。従来の光励起プロセス技術では、基板上
の光照射部に存在するC’l/D材料やエッチャント等
の反応種に光を照射して光化学反応を起こさせることに
より、光照射領域を選択的に加工した。これに対し、本
発明においては、基板上に吸着している反応種を光照射
により選択的に脱離させることにより、光照射部分だけ
吸着反応種の関与する化学反応を抑止し、ひいてはその
部分の加工を止めるから、従来の光励起プロセスでは困
・堀であったネガ形の光励起プロセス技術が可11ヒと
なる。また、従来の光励起プロセスでは多くの場合、気
相中の光化学反応により生成した活性種が光照射領域外
の等板上に吸着するので、光照射領域外にも加工が及び
、選択性が低下するのに対し、本発明では、反応に関与
する吸着種そのものを基板上の光照射部から脱離させる
から、基板上における加工の有無が光照射の有無を忠実
に反映して選択性が飛躍的に高まる。
(Operation/Principle of the Invention) The present invention has solved the problems of the prior art by employing the method described above. With conventional photoexcitation process technology, the light irradiation area is selectively processed by irradiating light onto reactive species such as C'I/D materials and etchants present in the light irradiation area on the substrate to cause a photochemical reaction. did. In contrast, in the present invention, by selectively desorbing reactive species adsorbed on the substrate by light irradiation, chemical reactions involving the adsorbed reactive species are inhibited only in the light irradiated area, and as a result, in that area Because the process of processing is stopped, negative light excitation process technology, which was difficult to use with conventional optical excitation processes, becomes possible. In addition, in many cases in conventional photoexcitation processes, active species generated by photochemical reactions in the gas phase are adsorbed on the same plate outside the light irradiation area, so processing extends outside the light irradiation area, reducing selectivity. In contrast, in the present invention, since the adsorbed species involved in the reaction are themselves desorbed from the light irradiated area on the substrate, the presence or absence of processing on the substrate faithfully reflects the presence or absence of light irradiation, resulting in a dramatic increase in selectivity. will increase.

吸着種を一括して脱離させる方法としては、基板温度を
高める方法が最も広く知られているが、光照射による脱
離についても最近基礎検討が進みつつあす、例えばサー
フェス・サイエンス・レポート(5urface 5c
ience Reports )誌、3巻(p、1〜p
、105)に記載のチャン(T、J。
The most widely known method for desorbing adsorbed species all at once is to increase the substrate temperature, but basic studies have recently been progressing on desorption by light irradiation. 5c
ience Reports), vol. 3 (p, 1-p.
Chang (T, J., 105).

CHUANG)氏の論文にその現状の詳しい説明がある
。本発明では、光脱離を生ぜしめる光照射を空間的に選
択的に行ない、さらに吸着種による表面化学反応を光照
射領域外では並行して進行させる。このことにより従来
の光励起プロセスによる薄膜パターンの形成に比べ、は
るかに空間的選択性が向上するうえ、従来の光励起プロ
セスでは困難であったネガ形のプロセスが可能となりプ
ロセスの自由度が大幅に向上する。
CHUANG)'s paper provides a detailed explanation of the current situation. In the present invention, light irradiation that causes photodesorption is carried out spatially selectively, and surface chemical reactions by adsorbed species are allowed to proceed in parallel outside the light irradiation region. This significantly improves spatial selectivity compared to the formation of thin film patterns using conventional photoexcitation processes, and enables negative tone processing, which was difficult with conventional photoexcitation processes, greatly increasing the degree of freedom in the process. do.

(実施例) 以下図面を参照して、本発明による方法の実施例を説明
する。第り図は本発明の実施列を適用した表面処理装置
の構成図である。
(Example) Examples of the method according to the present invention will be described below with reference to the drawings. FIG. 3 is a configuration diagram of a surface treatment apparatus to which an embodiment of the present invention is applied.

光入射用の窓5を有する反応セル6の内部に設置された
基板7を、弁10を通してガス供給系9から導入した反
応ガスの雰囲気にさらす。基板7は、基板70表面にお
いて、反応ガスの吸着(僅が所望の表面反応を生じうる
よう適当な温度に保たれている。このとき、この吸着f
、l光脱離させるのに適した波長で発振するレーザ1の
出射光を、反射鏡2とレンズ4を介して基板7に照射す
る。
A substrate 7 placed inside a reaction cell 6 having a window 5 for light incidence is exposed to an atmosphere of a reaction gas introduced from a gas supply system 9 through a valve 10 . The substrate 7 is maintained at an appropriate temperature so that reaction gas adsorption (slightly desired surface reaction occurs) on the surface of the substrate 70. At this time, this adsorption f
, l The emitted light of a laser 1 oscillating at a wavelength suitable for light desorption is irradiated onto a substrate 7 via a reflecting mirror 2 and a lens 4 .

選択的な照射を行なうために所望の照射/くターンを有
するマスク3の像をレンズ4により基板7の表面に結像
させる。
In order to perform selective irradiation, an image of the mask 3 having the desired irradiation/cut pattern is focused onto the surface of the substrate 7 by a lens 4.

第2図は、第1図の装置を用いてその実施例の方法によ
り選択的な成膜を行なう場合の基板部分の概略図でちる
。マスクパターンを基板7に転与したパターン化照射光
20を照射した部分では反応ガスの基板への吸着が抑え
られ、未照射部分に堆積膜21を堆積させることができ
る。堆積膜21のエツジ部分の分解能は、従来方法によ
るものよりはるかに高い。
FIG. 2 is a schematic diagram of a substrate portion when selective film formation is performed by the method of the embodiment using the apparatus shown in FIG. At the portions irradiated with the patterned irradiation light 20 with the mask pattern transferred to the substrate 7, adsorption of the reactive gas to the substrate is suppressed, and the deposited film 21 can be deposited on the unirradiated portions. The resolution of the edge portion of the deposited film 21 is much higher than that achieved by conventional methods.

具体的な例として、810.膜の形成の場合を、より詳
しく述べる。反応ガスとしてはテトラ・エトキシ・シラ
ン(TE01−81(OCgHs)a)を用いる。75
0℃程度の熱CVDで8i0を膜が一括成膜されること
は良く知られている。この反応は気相及び表面での分解
反応で、810.が析出する。本実施例では、この際、
8iと00振動状態を共鳴的に励起する約1070cr
rr’や約800cIIL−”の波数の光をパターン化
して照射して、一旦吸着したS10.を光照射部から脱
離せしめて、光照射パターンを忠実に反映したパターン
化したS10゜膜を形成する。
As a specific example, 810. The case of film formation will be described in more detail. Tetra ethoxy silane (TE01-81(OCgHs)a) is used as the reaction gas. 75
It is well known that an 8i0 film can be formed at once by thermal CVD at about 0°C. This reaction is a decomposition reaction in the gas phase and on the surface, and is 810. is precipitated. In this embodiment, at this time,
Approximately 1070 cr that excites 8i and 00 vibrational states resonantly
rr' or approximately 800cIIL-'' wave number is patterned and irradiated to cause the once adsorbed S10. to detach from the light irradiation area, forming a patterned S10 film that faithfully reflects the light irradiation pattern. .

欠に% SiH4を反応ガスとした場合の81膜の形成
の例では、通常の場合に、400℃程度の熱CvDやプ
ラス−r CV Dで、SIHJp 81)(、tDラ
ジカルが生成して基板7に吸着し、水素引き抜き反応を
介してS1膜が形成される。本実施列ではさらに、例え
ば8iHの振動吸収波数に当る約1970i’の共鳴赤
外光をパターン化して照射することによりSIHを照射
領域から脱離し、また同様に81H,も脱離させて、照
射領域の成膜を抑止する。
In the example of forming a 81 film when SiH4 is used as a reaction gas, in normal cases, thermal CVD at about 400°C or plus-r CVD is used to form SIHJp 81) (tD radicals and damage the substrate. 7, and an S1 film is formed through a hydrogen abstraction reaction. In this example, SIH is further produced by patterning and irradiating resonant infrared light of approximately 1970i', which corresponds to the vibrational absorption wavenumber of 8iH. It is desorbed from the irradiated area, and 81H is also desorbed in the same way, thereby suppressing film formation in the irradiated area.

一方、CVDではなく、エツチングに本発明を適用した
実施例を次に述べる。81基板を反応ガスSF、  を
用いてエツチングで睡ることは良く知られているが、S
F、 はその振動モードである約950ニー10波該の
光を照射することにより基板7から脱離させられるので
、CvDの場合と同様、照射した部分を除いてエツチン
グが進行する。このときの基板7の状態を第3図に示す
On the other hand, an example in which the present invention is applied to etching instead of CVD will be described below. It is well known that 81 substrates are etched using reactive gas SF, but S
Since F, is detached from the substrate 7 by irradiating it with light of approximately 950 knee 10 waves, which is its vibration mode, etching proceeds except for the irradiated portion, as in the case of CvD. The state of the substrate 7 at this time is shown in FIG.

さらに第1図の実施例は酸化等の表面改質にも適用でき
る。Slを酸素雰囲気中で加熱することにより良質の熱
酸化膜が形成できることは良く知られている。一方、こ
の場合の反応ガスである0゜は、L85nmの水銀ラン
プからの光で脱離することも知られているので、上記の
熱酸化中に[85膜mの光を基板にパターン化して照射
することにより、光照射部の酸化を抑止したパターンが
形成できる。このプロセスはポリシリコンの配線を形成
するプロセスを大幅に短縮することができる。
Furthermore, the embodiment shown in FIG. 1 can also be applied to surface modification such as oxidation. It is well known that a high quality thermal oxide film can be formed by heating Sl in an oxygen atmosphere. On the other hand, it is known that 0°, which is the reactive gas in this case, is desorbed by light from a L85 nm mercury lamp. By irradiating, a pattern can be formed in which oxidation of the light irradiated area is suppressed. This process can significantly shorten the process for forming polysilicon interconnects.

以上のエツチング工程と、CvD工程とを組み合わせれ
ば、エツチング除去した部分を、別のCVD材料で埋め
込めるのは当然である。
If the above etching process and CVD process are combined, it is natural that the etched portions can be filled with another CVD material.

本発明と従来の光励起プロセスとを併用して、ネガ形プ
ロセスと、ポジ形プロセスとの両方を活用する実施例を
第4′図を参照して説明する。まず従来の光励起プロセ
スでマスクパターン転写による直接CVDで基板7上に
例えば金属からなる堆積膜21を形成する。この場合の
CVD材料としてはMO(co)s を用いパターン化
照射光20としてはマスクパターンを転写したKrFエ
キシマレーザ光を用いうる。次いで本発明を適用して堆
積膜2【のない部分に別の堆積膜を堆積させる。このと
き、LSI等のプレーナプロセスでは成膜等を平担化す
る必要が高く、上記の金属の堆積膜21に対応する平担
化堆積膜22としては絶縁膜を用いる必要がある。その
場合には反応ガスとして先に例を示したT13:O8を
用い、レーザ1を例えばNd:YAG レーザ光と色素
レーザ光との差周波の発生を可能にするレーザシステム
に切り換えて8101の振動準位に共鳴する約1070
CrrLや約800cm  の光を、上記の金属堆積用
と同一のマスクを通して基板7に照射する。金属堆積と
絶縁堆積での照射光の波長の違いによるレンズ40色収
差により若干の焦点調整は必要となるものの、はとんど
同一の光学系で2つのプロセスを反応ガスと光源の切換
えだけで可能となる利点が生まれる。もちろん2つの引
き続くプロセスで使用するパターン化照射光を同一の波
長で用いうる場合には、単に反応ガスの切換えだけで一
切の機械的調整なしにプロセスを進め得ることはもちろ
んである。
An embodiment in which the present invention is combined with a conventional optical excitation process to utilize both a negative tone process and a positive tone process will be described with reference to FIG. 4'. First, a deposited film 21 made of, for example, metal is formed on the substrate 7 by direct CVD using mask pattern transfer using a conventional photoexcitation process. In this case, MO(co)s may be used as the CVD material, and KrF excimer laser light onto which a mask pattern has been transferred may be used as the patterning irradiation light 20. Next, by applying the present invention, another deposited film is deposited on the portion where the deposited film 2 is not present. At this time, in a planar process such as an LSI, it is highly necessary to flatten the deposited film, etc., and it is necessary to use an insulating film as the flattened deposited film 22 corresponding to the metal deposited film 21 described above. In that case, the T13:O8 shown in the example above is used as the reactant gas, and the laser 1 is switched to, for example, a laser system that can generate a difference frequency between the Nd:YAG laser beam and the dye laser beam. Approximately 1070 that resonates with the level
CrrL or approximately 800 cm 2 light is irradiated onto the substrate 7 through the same mask as used for metal deposition described above. Although slight focus adjustment is required due to lens 40 chromatic aberration due to the difference in the wavelength of the irradiated light for metal deposition and insulation deposition, the two processes can be performed using the same optical system by simply switching the reactant gas and light source. This creates an advantage. Of course, if the patterning radiation used in two subsequent processes can be of the same wavelength, the process can proceed without any mechanical adjustment simply by switching the reactant gas.

以上、本発明の実施例をいくつかの場合について詳しく
述べ、本発明による利点を明確化した六本発明が以上の
実施例にとどまらず、本発明の趣旨を逸脱しない範囲で
変形が可能なことは言うまでもない。
Above, the embodiments of the present invention have been described in detail in several cases, and the advantages of the present invention have been clarified.6 It is understood that the present invention is not limited to the above-mentioned embodiments, and can be modified without departing from the spirit of the present invention. Needless to say.

例えば、以上の実施例ではパターン化した照射光を一種
類だけ用いた場合を示したが、他の光を必要に応じて一
括照射しうろことや、同時に複数の光を同一のマスクを
通して転写して用いうをことは言うまでもない。また実
施例では、光脱離用の光としては、吸着種を振動的に励
起する赤外光を用いる場合を述べたが、本発明の光励起
脱離は、電子的励起によっても可能なことは言うまでも
なく、そのことに対応して、紫外光や真空紫外光を用い
得ることも自明である。
For example, although the above example shows the case where only one type of patterned irradiation light is used, it is also possible to irradiate the scales with other lights at once as needed, or to transfer multiple lights at the same time through the same mask. Needless to say, it is also used. Furthermore, in the embodiment, the case where infrared light that vibrationally excites the adsorbed species is used as the light for photodesorption is described, but the photoexcitation desorption of the present invention is also possible by electronic excitation. Needless to say, it is also obvious that ultraviolet light or vacuum ultraviolet light can be used accordingly.

(発明の効果) 以上に詳しく説明したように、本発明によれば、選択性
に優れ、光照射部における光化学反応の誘起を抑止する
表面選択処理方法が提供できる。
(Effects of the Invention) As described in detail above, according to the present invention, a surface selective treatment method that has excellent selectivity and suppresses induction of photochemical reactions in the light irradiation area can be provided.

【図面の簡単な説明】 第1図は本発明の実施例を適用する表面処理装置の構成
図、第2図は本発明を成膜に適用する実施例によシ表面
処理が施される基板の断面図、第3図は本発明をエツチ
ングに適用する実施例により表面処理が施される基板の
断面図、第4図は本発明の方法と従来の光励起プロセス
技術の表面処理方法とを併用して2種類の膜をパターン
化して平坦に成膜した基板の断面図である。 1・・・レーザ、2・・・反射鏡、3・・・マスク、4
・・・レンズ、5・・・窓、6・・・反応セル、7・・
・基板、9・・・ガス供給系、10・・・弁、20・・
・パターン化照射光、21・・・堆積膜、22・・・平
担化堆積膜。 代理人 弁理士 本 庄 伸 介 第1図 第2図 肪 第3図 第4図 耘
[Brief Description of the Drawings] Fig. 1 is a configuration diagram of a surface treatment apparatus to which an embodiment of the present invention is applied, and Fig. 2 is a substrate whose surface is subjected to surface treatment according to an embodiment to which the present invention is applied to film formation. FIG. 3 is a cross-sectional view of a substrate surface-treated by an embodiment in which the present invention is applied to etching, and FIG. 4 is a cross-sectional view of a substrate surface-treated by an embodiment in which the present invention is applied to etching. FIG. 2 is a cross-sectional view of a substrate on which two types of films are patterned and formed into flat films. 1...Laser, 2...Reflector, 3...Mask, 4
...Lens, 5...Window, 6...Reaction cell, 7...
・Substrate, 9...Gas supply system, 10...Valve, 20...
- Patterned irradiation light, 21... Deposited film, 22... Flattened deposited film. Agent Patent Attorney Shinsuke Honjo Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 基板の表面に吸着して表面化学反応により前記表面に処
理を施す気体の雰囲気中で、前記表面の所望部に選択的
に光を照射することにより、前記表面化学反応に関与す
る少なくとも一種類の吸着反応種を前記所望部から脱離
させて、前記吸着反応種の関与する表面化学反応を前記
所望部において抑止することを特徴とする表面選択処理
方法。
By selectively irradiating light onto a desired portion of the surface in an atmosphere of a gas that adsorbs onto the surface of the substrate and processes the surface through a surface chemical reaction, at least one type of gas that participates in the surface chemical reaction is removed. 1. A surface selective treatment method, comprising: desorbing adsorbed reactive species from the desired area, and inhibiting a surface chemical reaction involving the adsorbed reactive species in the desired area.
JP60254582A 1985-11-13 1985-11-13 Surface selection treatment method Expired - Lifetime JPH0718012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60254582A JPH0718012B2 (en) 1985-11-13 1985-11-13 Surface selection treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60254582A JPH0718012B2 (en) 1985-11-13 1985-11-13 Surface selection treatment method

Publications (2)

Publication Number Publication Date
JPS62116786A true JPS62116786A (en) 1987-05-28
JPH0718012B2 JPH0718012B2 (en) 1995-03-01

Family

ID=17267037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60254582A Expired - Lifetime JPH0718012B2 (en) 1985-11-13 1985-11-13 Surface selection treatment method

Country Status (1)

Country Link
JP (1) JPH0718012B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613333A (en) * 1992-02-18 1994-01-21 Nec Corp Thermal cvd method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108880A (en) * 1980-01-30 1981-08-28 Fujitsu Ltd Selectively etching method for silicon oxide film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108880A (en) * 1980-01-30 1981-08-28 Fujitsu Ltd Selectively etching method for silicon oxide film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613333A (en) * 1992-02-18 1994-01-21 Nec Corp Thermal cvd method

Also Published As

Publication number Publication date
JPH0718012B2 (en) 1995-03-01

Similar Documents

Publication Publication Date Title
US5344522A (en) Pattern forming process and process for preparing semiconductor device utilizing said pattern forming process
JP3286103B2 (en) Method and apparatus for manufacturing exposure mask
US4643799A (en) Method of dry etching
US4608117A (en) Maskless growth of patterned films
EP0198361A2 (en) Method and apparatus for thin film formation using photo-induced chemical reaction
US6210843B1 (en) Modulation of peripheral critical dimension on photomask with differential electron beam dose
JPS62116786A (en) Selective surface treatment
JPS61104614A (en) Formation of deposited film
JPS6041229A (en) Manufacture of semiconductor device and manufacturing equipment thereof
JPH11292551A (en) Production of synthetic quartz glass and synthetic quartz glass produced thereby
JPS59208065A (en) Depositing method of metal by laser
JP3258121B2 (en) CVD equipment
JP2840419B2 (en) Light treatment method and light treatment device
JP2770578B2 (en) Photo CVD method
JP2008286838A (en) Exposure mask, pattern forming device and pattern forming method
JPH0722128B2 (en) Method for manufacturing semiconductor device
JPH0628235B2 (en) Method for forming bit pattern of thin film device
JPH0555186A (en) Surface processing method
JPS5940523A (en) Manufacture of semiconductor thin film
JPH0430519A (en) Treating apparatus of surface of substrate
JP2622188B2 (en) Fine processing method of thin film device
JPS61189644A (en) Dry etching method
JPS61132593A (en) Optical cvd process
JPS6053015A (en) Thin film formation by laser irradiation
JPS6152232B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term