JPH0628235B2 - Method for forming bit pattern of thin film device - Google Patents

Method for forming bit pattern of thin film device

Info

Publication number
JPH0628235B2
JPH0628235B2 JP59125567A JP12556784A JPH0628235B2 JP H0628235 B2 JPH0628235 B2 JP H0628235B2 JP 59125567 A JP59125567 A JP 59125567A JP 12556784 A JP12556784 A JP 12556784A JP H0628235 B2 JPH0628235 B2 JP H0628235B2
Authority
JP
Japan
Prior art keywords
light
bit pattern
thin film
glass substrate
film device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59125567A
Other languages
Japanese (ja)
Other versions
JPS614223A (en
Inventor
克彦 谷
弘之 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP59125567A priority Critical patent/JPH0628235B2/en
Publication of JPS614223A publication Critical patent/JPS614223A/en
Publication of JPH0628235B2 publication Critical patent/JPH0628235B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material

Description

【発明の詳細な説明】 技術分野 本発明は、光励起CVD法による薄膜デバイスのビツト
パターン形成方法に関する。
TECHNICAL FIELD The present invention relates to a method for forming a bit pattern of a thin film device by a photoexcited CVD method.

従来技術 従来、薄膜半導体デバイスの形成方法としてCVD法
(化学気相成長法)が知られている。その一つとして、
光エネルギーを利用して気体材料から薄膜を形成する光
励起CVD法が最近注目されている。
2. Description of the Related Art Conventionally, a CVD method (chemical vapor deposition method) is known as a method for forming a thin film semiconductor device. As one of them,
Recently, a photo-excited CVD method, which uses light energy to form a thin film from a gas material, has attracted attention.

ここに、薄膜デバイス、例えばa−Si:H膜を光導電
材料に用いるa−Si等倍光センサーでは、a−Si:
H膜のビツトパターンを所定ピツチで形成することが必
要となる。しかして、フオトリソグラフイ工程を用いる
ことなく、光励起CVD法による薄膜形成時にその反応
室内でビツトパターンも同時に形成する方法として次の
ようなものがある。
Here, in a thin film device, for example, an a-Si equal-magnification photosensor using an a-Si: H film as a photoconductive material, a-Si:
It is necessary to form the bit pattern of the H film with a predetermined pitch. Then, there is the following method as a method of simultaneously forming a bit pattern in the reaction chamber when a thin film is formed by the photoexcited CVD method without using a photolithography process.

第3図は、その一例を示すものである。まず、シリコン
等で作つたサセプタ1上にガラス基板2を置き、このサ
セプタ1側から反応室3外に配置した光源4によりガラ
ス基板2を300〜200℃程度に加熱する。そして、
a−Si:H膜を堆積すべきこのガラス基板2上に所望
のビツトパターンを形成してなるメタルマスク5を密着
させる。しかして、反応室3内に原料ガスとしてSi
ガスを流し、メタルマスク5を密着させたガラス基
板2上面から紫外単色光UV(ArFレーザ−光193
nmあるいは低圧水銀灯253nm等)を照射する。こ
れにより、紫外単色光UVはSiに吸収されてこ
のSiガスを分解させ、メタルマスク5を密着さ
せたガラス基板2上にa−Si:H膜のビツトパターン
が形成される。ところが、ビツトパターンの精度がメタ
ルマスク5の精度で決まるため、精密なメタルマスクが
必要となる。従つて、近年におけるビツトパターンの微
細化や長尺化に対応できないものである。
FIG. 3 shows an example thereof. First, the glass substrate 2 is placed on the susceptor 1 made of silicon or the like, and the glass substrate 2 is heated to about 300 to 200 ° C. from the susceptor 1 side by the light source 4 arranged outside the reaction chamber 3. And
A metal mask 5 having a desired bit pattern formed thereon is brought into close contact with the glass substrate 2 on which an a-Si: H film is to be deposited. Then, Si 2 is used as a source gas in the reaction chamber 3.
H 6 gas is flowed, and ultraviolet monochromatic light UV (ArF laser-light 193 is applied from the upper surface of the glass substrate 2 to which the metal mask 5 is adhered.
nm or low pressure mercury lamp 253 nm). Thus, ultraviolet monochromatic light UV is absorbed in Si 2 H 6 to decompose the Si 2 H 6 gas, a-Si on a glass substrate 2 is adhered to the metal mask 5: bit pattern H film is formed It However, since the precision of the bit pattern is determined by the precision of the metal mask 5, a precise metal mask is required. Therefore, it is not possible to cope with the miniaturization and lengthening of bit patterns in recent years.

一方、メタルマスクを用いることなく、基板上のビツト
パターン形成部分にのみレーザー光を順次照射すること
により、ビツトパターンを形成する方法もある。しか
し、このような走査方式によると時間がかかり、効率が
悪いものである。
On the other hand, there is also a method of forming a bit pattern by sequentially irradiating only the bit pattern forming portion on the substrate with laser light without using a metal mask. However, such a scanning method is time consuming and inefficient.

目的 本発明は、このような点に鑑みなされたもので、メタル
マスクを用いることなく精度の高いビツトパターンを効
率よく形成することができる薄膜デバイスのビツトパタ
ーン形成方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for forming a bit pattern of a thin film device capable of efficiently forming a highly accurate bit pattern without using a metal mask. .

構成 本発明の一実施例を第1図及び第2図を参照して説明す
る。本実施例は、光励起CVD法において用いられる紫
外単色光の干渉を利用するものである。
Configuration One embodiment of the present invention will be described with reference to FIGS. 1 and 2. This embodiment utilizes the interference of ultraviolet monochromatic light used in the photo-excited CVD method.

まず、第1図により原理を説明する。シリコン等により
作つたサセプタ1上にガラスス基板2を置き、このガラ
ス基板2を光源4により300〜200℃程度に加熱す
る。そして、反応室3内に原料ガスとしてSi
スを流す。なお、Heを希釈ガス,Nをキヤリアガス
として用いることもある。そこで、光励起CVD法に基
づき、Siガスの分解用として紫外単色光UVを
照射する訳であるが、その照射方法に本発明の特徴があ
る。即ち、ビームスプリツタにより二分割された紫外単
色光UV、UV(ArFレーザ−光 193nmあ
るいは低圧水銀灯253nm等)を交叉角θでもつて二
方向からガラス基板2に向けて照射するようにしたもの
である。ここに、紫外単色光UV,UVの二つの光
路はガラス基板2面上で合致するように設定されてい
る。
First, the principle will be described with reference to FIG. The glass substrate 2 is placed on the susceptor 1 made of silicon or the like, and the glass substrate 2 is heated to about 300 to 200 ° C. by the light source 4. Then, Si 2 H 6 gas is flown into the reaction chamber 3 as a source gas. Note that He may be used as a diluent gas and N 2 may be used as a carrier gas. Therefore, ultraviolet monochromatic light UV is irradiated for decomposition of Si 2 H 6 gas based on the photo-excited CVD method, and the irradiation method has a feature of the present invention. That is, the ultraviolet monochromatic lights UV 1 and UV 2 (ArF laser-light 193 nm or low-pressure mercury lamp 253 nm, etc.) split into two by the beam splitter are irradiated from two directions toward the glass substrate 2 at an intersection angle θ. It is a thing. Here, the two optical paths of the ultraviolet monochromatic lights UV 1 and UV 2 are set so as to match on the surface of the glass substrate 2.

このように、紫外単色光UV、UVを二方向から導
入して交叉させることにより、波長をλとすると、2つ
の光線の干渉によりガラス基板2表面にλ/sinθのピ
ツチで明暗の干渉パターンが形成される。この明暗のパ
ターンのうち、明パターン部分ではその光の照射により
ガラス基板2表面上でSiガスの分解が起こり、
予め適当な温度に加熱されているガラス基板2の表面に
a−Si:H膜の堆積が行なわれる。つまり、明パター
ン部分にのみ堆積してビツトパターンとなる。このよう
にして、メタルマスクを用いることなく、ガラス基板2
上に作られた光の干渉強度像に対応したa−Si:H膜
のビツトパターンが直接形成されることになる。この方
式によれば、レーザー光の走査方式に比べても形成が速
くて効率的である。又、二つの光線UV、UVがガ
ラス基板2表面上で集束するため、このガラス基板2上
でのSiガスの分解レートが最も高く、光が導入
される反応室3の導入窓壁でのSiガスの分解レ
ートは低いため、光導入窓が堆積物で曇ることも少な
い。
In this way, by introducing the ultraviolet monochromatic lights UV 1 and UV 2 from two directions so as to cross each other, and letting the wavelength be λ, interference of two rays causes interference of light and darkness on the surface of the glass substrate 2 with a pitch of λ / sin θ. A pattern is formed. In this bright and dark pattern, in the bright pattern portion, the light irradiation causes decomposition of Si 2 H 6 gas on the surface of the glass substrate 2,
An a-Si: H film is deposited on the surface of the glass substrate 2 which has been heated to an appropriate temperature in advance. That is, only the bright pattern portion is deposited to form a bit pattern. In this way, the glass substrate 2 can be used without using a metal mask.
The bit pattern of the a-Si: H film corresponding to the light interference intensity image formed above is directly formed. According to this method, the formation is faster and more efficient than the laser light scanning method. Further, since the two light rays UV 1 and UV 2 are focused on the surface of the glass substrate 2, the decomposition rate of the Si 2 H 6 gas on this glass substrate 2 is the highest and the introduction of the reaction chamber 3 into which the light is introduced is introduced. Since the decomposition rate of Si 2 H 6 gas on the window wall is low, the light introduction window is less likely to be clouded by deposits.

ところで、実際の装置化にあつては、第2図に示すよう
に、レーザー光源等の光源6から照射される紫外単色光
UVをビームスプリツタ7により紫外単色光UV,U
として二分割し、その一方の紫外単色光UVを反
射鏡8を通すことにより、二光線UV,UVを二方
向からガラス基板2に向けて照射することになる。ここ
で、光の干渉による明暗のパターンのピツチはλ/sin
θであるので、二光線UV,UVの交叉角θを反射
鏡8により調整することにより、ガラス基板2上に所望
のビツトパターンに相当する明暗のパターンが生ずるよ
う光を照射することができる。なお、図面において第1
図は光の干渉の原理を示すためのものであり、第2図は
より実際の装置的なものを示すため、交叉角の図示上の
大きさは異なるが、交叉角θは同じ意味で使用するもの
である。
By the way, in actual implementation, as shown in FIG. 2, an ultraviolet monochromatic light UV emitted from a light source 6 such as a laser light source is converted into an ultraviolet monochromatic light UV 1 , U by a beam splitter 7.
By dividing into two as V 2 , and passing one of the ultraviolet monochromatic light UV 1 through the reflecting mirror 8, the two rays UV 1 and UV 2 are irradiated from two directions toward the glass substrate 2. Here, the pitch of the light and dark pattern due to the interference of light is λ / sin
Since it is θ, by adjusting the crossing angle θ of the two light rays UV 1 and UV 2 by the reflecting mirror 8, it is possible to irradiate the glass substrate 2 with light so that a bright and dark pattern corresponding to a desired bit pattern is generated. it can. In the drawings, the first
The figure is for showing the principle of light interference, and FIG. 2 is for showing a more actual device. Therefore, although the size of the crossing angle is different, the crossing angle θ is used in the same meaning. To do.

ところで、本実施例では、薄膜を形成すべき基板2の表
面側から紫外単色光を照射するようにしたが、基板が紫
外単色光を吸収しないものであれば、この基板の裏面側
から紫外単色光を二方向から照射し、基板表面にて合致
するように光路を設定してもよい。
By the way, in this embodiment, the monochromatic ultraviolet light is applied from the front surface side of the substrate 2 on which the thin film is to be formed. However, if the substrate does not absorb the monochromatic ultraviolet light, the monochromatic ultraviolet light is emitted from the rear surface side of the substrate. The light path may be set so that the light is irradiated from two directions and the light beams match with each other on the surface of the substrate.

効果 本発明は上述のように、原料ガスを分解するための紫外
単色光をビームスプリツタで分割し光導入窓から反応室
内に二方向から導入して前記光導入窓から離反して設け
られた基板面上で合致するようにその光路を設定し、こ
の二方向からの紫外単色光の干渉の結果生ずる明暗のパ
ターンによりビツトパターンを形成するようにしたの
で、光の干渉による明暗のパターンに基づき堆積物のビ
ツトパターンを基板面上に直接形成することができ、よ
つて、メタルマスクを用いることなく精度のよいビツト
パターンを効率よく形成することができ、また、紫外単
色光は導入窓壁から反応室内に二方向から導入され、か
つ、基板面は導入窓壁から離反して設けられているた
め、光導入窓が堆積物で曇ることがない等の効果を有す
る。
Effect As described above, the present invention is provided so that the ultraviolet monochromatic light for decomposing the raw material gas is split by the beam splitter and introduced from the light introducing window into the reaction chamber from two directions and separated from the light introducing window. The optical paths are set so that they match on the substrate surface, and the bit pattern is formed by the light and dark patterns resulting from the interference of the ultraviolet monochromatic light from these two directions, so based on the light and dark patterns due to the light interference. The bit pattern of the deposit can be directly formed on the surface of the substrate, and thus the accurate bit pattern can be efficiently formed without using a metal mask, and the monochromatic ultraviolet light is introduced from the introduction window wall. Since the light is introduced into the reaction chamber from two directions and the surface of the substrate is provided away from the introduction window wall, the light introduction window is prevented from being clouded by deposits.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の原理を示す概略正面図、第
2図はその交叉角の設定等を示す概略正面図、第3図は
従来方式を示す概略正面図である。 2……基板、3……反応室、7……ビームスプリツタ
FIG. 1 is a schematic front view showing the principle of one embodiment of the present invention, FIG. 2 is a schematic front view showing the setting of the crossing angle, and FIG. 3 is a schematic front view showing a conventional method. 2 ... Substrate, 3 ... Reaction chamber, 7 ... Beam splitter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】原料ガスを分解するための紫外単色光をビ
ームスプリツタで分割し光導入窓から反応室内に二方向
から導入して前記光導入窓から離反して設けられた基板
面上で合致するようにその光路を設定し、この二方向か
らの紫外単色光の干渉の結果生ずる明暗のパターンによ
りビツトパターンを形成することを特徴とする光励起C
VD法による薄膜デバイスのビツトパターン形成方法。
1. An ultraviolet monochromatic light for decomposing a raw material gas is split by a beam splitter and introduced into a reaction chamber from a light introducing window in two directions, and on a substrate surface provided away from the light introducing window. Photoexcitation C characterized in that the optical paths are set so as to coincide with each other, and a bit pattern is formed by a light-dark pattern resulting from the interference of ultraviolet monochromatic light from these two directions.
A method for forming a bit pattern of a thin film device by the VD method.
JP59125567A 1984-06-19 1984-06-19 Method for forming bit pattern of thin film device Expired - Lifetime JPH0628235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59125567A JPH0628235B2 (en) 1984-06-19 1984-06-19 Method for forming bit pattern of thin film device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59125567A JPH0628235B2 (en) 1984-06-19 1984-06-19 Method for forming bit pattern of thin film device

Publications (2)

Publication Number Publication Date
JPS614223A JPS614223A (en) 1986-01-10
JPH0628235B2 true JPH0628235B2 (en) 1994-04-13

Family

ID=14913385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59125567A Expired - Lifetime JPH0628235B2 (en) 1984-06-19 1984-06-19 Method for forming bit pattern of thin film device

Country Status (1)

Country Link
JP (1) JPH0628235B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2701767B2 (en) * 1995-01-27 1998-01-21 日本電気株式会社 Vapor phase growth equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599924A (en) * 1982-07-08 1984-01-19 Matsushita Electric Ind Co Ltd Preparation of partial grating
JPS6065588A (en) * 1983-09-21 1985-04-15 Agency Of Ind Science & Technol Manufacture of semiconductor laser

Also Published As

Publication number Publication date
JPS614223A (en) 1986-01-10

Similar Documents

Publication Publication Date Title
JP2538728B2 (en) Gray level mask and method of manufacturing the same
US4608117A (en) Maskless growth of patterned films
JP2634289B2 (en) How to modify the phase shift mask
NL2013299A (en) Photonic activation of reactants for sub-micron feature formation using depleted beams.
JPH0628235B2 (en) Method for forming bit pattern of thin film device
JPS61104614A (en) Formation of deposited film
US5260235A (en) Method of making laser generated I. C. pattern for masking
RU2017191C1 (en) Method of forming of mask masking layer
US4839196A (en) Photochemical film-forming method
JPH0248627B2 (en) HAKUMAKUKEISEIBUHINNOSEIZOHOHOOYOBISOCHI
JP2814998B2 (en) Method and apparatus for forming semiconductor element film
JPS61216449A (en) Method and apparatus for forming pattern thin-film
JP3060528B2 (en) Optical CVD apparatus and optical CVD film forming method
JPS62116786A (en) Selective surface treatment
JPS61132593A (en) Optical cvd process
JPS60220139A (en) Induction of reaction by light
JPS5940523A (en) Manufacture of semiconductor thin film
JPS639186A (en) Illuminating optical device
JPS61234038A (en) Dry etching apparatus
GB2131608A (en) Fabricating semiconductor circuits
JPH0555186A (en) Surface processing method
JPH0722128B2 (en) Method for manufacturing semiconductor device
JPH02170409A (en) Manufacture of semiconductor device
JPS6245033A (en) Dry etching device
JPS6063373A (en) Formation of thin film