JPH0430519A - Treating apparatus of surface of substrate - Google Patents

Treating apparatus of surface of substrate

Info

Publication number
JPH0430519A
JPH0430519A JP13754890A JP13754890A JPH0430519A JP H0430519 A JPH0430519 A JP H0430519A JP 13754890 A JP13754890 A JP 13754890A JP 13754890 A JP13754890 A JP 13754890A JP H0430519 A JPH0430519 A JP H0430519A
Authority
JP
Japan
Prior art keywords
substrate
energy
distribution
surface treatment
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13754890A
Other languages
Japanese (ja)
Inventor
Shigeji Sugino
林志 杉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13754890A priority Critical patent/JPH0430519A/en
Publication of JPH0430519A publication Critical patent/JPH0430519A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PURPOSE:To give a substantially uniform energy density distribution on the surface of a substrate by a construction wherein a buffer plate giving correction to energy applied to one main surface of the substrate to be subjected to surface treatment is disposed between the one main surface of the substrate and an energy radiation source. CONSTITUTION:A reaction vessel 1 is made of stainless steel and a surface treatment gas introduction port 2 and an exhaust port 3 are formed in the opposite end thereof, while a glass window 1a is fitted in the upper part thereof. A substrate 5 to be subjected to surface treatment is mounted on a substrate holder 4 located in the central part inside the reaction vessel 1. Energy is applied to one main surface of the substrate 5 through the glass window 1a from an energy radiation source 6 of an ultraviolet light source or an infrared light source disposed outside the reaction vessel 1. A buffer plate 7 is disposed between the glass window 1a and the one main surface of the substrate 5, so as to give a change to the distribution of the energy applied to the one main surface of the substrate 5. The buffer plate 7 is provided with a distributed minute indentation 10 for scattering the energy in accordance with the distribution of the incident energy, so that the distribution of the transmitted energy be uniform substantially within one main surface of the substrate 5.

Description

【発明の詳細な説明】 〔概要〕 基板表面処理装置に係り、特にドライプロセスによる半
導体基板表面処理装置に関し 基板表面を均一に処理するため、処理すべき基板面内の
温度分布を−様にする手段を備えた基板表面処理装置の
提供を目的とし 表面処理すべき基板を収容し2表面処理ガス導入口と排
気口を備えた反応容器と、該反応容器の外部に配置され
、該反応容器の透明部を通して前記基板の一生面にエネ
ルギーを照射するエネルギー放射源と、前記基板の一生
面と前記エネルギー放射源間に配置され、前記基板の一
生面に照射されるエネルギーに補正を与える緩衝板とを
有する基板表面処理装置により構成する。
[Detailed Description of the Invention] [Summary] This invention relates to a substrate surface processing apparatus, particularly a semiconductor substrate surface processing apparatus using a dry process, in which the temperature distribution within the surface of the substrate to be processed is made uniform in order to uniformly process the substrate surface. The purpose of the present invention is to provide a substrate surface treatment apparatus equipped with a reaction vessel that accommodates a substrate to be surface treated and is equipped with two surface treatment gas inlets and an exhaust port, and a an energy radiation source that irradiates the entire surface of the substrate with energy through a transparent portion; and a buffer plate that is disposed between the entire surface of the substrate and the energy radiation source and corrects the energy irradiated to the entire surface of the substrate. The substrate surface treatment apparatus is constructed by a substrate surface processing apparatus having

また、前記エネルギー放射源が紫外光源、或いは赤外光
源である基板表面処理装置により構成する。
Further, the substrate surface processing apparatus is configured such that the energy radiation source is an ultraviolet light source or an infrared light source.

また、前記緩衝板は入射するエネルギー分布に応じた厚
さ分布を有し、或いは入射するエネルギー分布に応じて
エネルギーを散乱する微細な凹凸の分布を有し、或いは
入射するエネルギー分布に応じてエネルギーの大きい部
分に吸収膜を有し透過エネルギー分布が前記基板の一生
面内でほぼ−様となる基板表面処理装置により構成する
Further, the buffer plate has a thickness distribution according to the incident energy distribution, or has a fine unevenness distribution that scatters energy according to the incident energy distribution, or has an energy distribution according to the incident energy distribution. The substrate surface treatment apparatus has an absorbing film in a large portion of the substrate, and the transmitted energy distribution is approximately -like over the lifetime of the substrate.

〔産業上の利用分野〕[Industrial application field]

本発明は基板表面処理装置に係り、特にドライプロセス
による半導体基板表面処理装置に関する。
The present invention relates to a substrate surface treatment apparatus, and more particularly to a semiconductor substrate surface treatment apparatus using a dry process.

大規模集積回路(LSI)の製造において、半導体基板
洗浄工程のはだす役割は極めて大きい。
In the manufacture of large-scale integrated circuits (LSI), the semiconductor substrate cleaning process plays an extremely important role.

近年、LSI製造工程の多様化に伴い、基板洗浄を含む
基板表面処理のドライプロセス化が強く望まれている。
In recent years, with the diversification of LSI manufacturing processes, there has been a strong desire for a dry process for substrate surface treatment including substrate cleaning.

〔従来の技術〕[Conventional technology]

最近、半導体基板表面のドライ洗浄技術の一つとして、
ハロゲン活性種を用い、半導体基板表面を薄くエツチン
グすると同時に表面の汚染物質である重金属元素やアル
カリ元素等を気相にして除去する技術がある。
Recently, as a dry cleaning technology for the surface of semiconductor substrates,
There is a technique that uses active halogen species to thinly etch the surface of a semiconductor substrate and at the same time remove contaminants such as heavy metal elements and alkali elements from the surface in a vapor phase.

第6図はこのドライ洗浄技術に用いる基板表面処理装置
の従来例を説明するための図であり、1は反応容器、 
Iaはガラス窓、2は表面処理ガス導入口、3は排気0
.4は基板ホルダ、5は基板6はエネルギー放射源、 
6aはランプを表す。
FIG. 6 is a diagram for explaining a conventional example of a substrate surface treatment apparatus used in this dry cleaning technique, in which 1 is a reaction vessel;
Ia is a glass window, 2 is a surface treatment gas inlet, 3 is an exhaust port
.. 4 is a substrate holder; 5 is a substrate 6 is an energy radiation source;
6a represents a lamp.

表面処理すべき基板5を収容する反応容器1内に表面処
理ガス導入口2からハロゲンガスを導入し、ハロゲン活
性種の生成や基板5表面での反応を促進するため、外部
に配置されたエネルギー放射源6から基板5表面にエネ
ルギーを照射する。
Halogen gas is introduced from the surface treatment gas inlet 2 into the reaction vessel 1 containing the substrate 5 to be surface treated, and an energy source placed outside is used to promote the generation of halogen active species and the reaction on the surface of the substrate 5. Energy is irradiated from the radiation source 6 onto the surface of the substrate 5.

エネルギー放射源6は1例えば紫外光源あるいは赤外光
源である。
The energy radiation source 6 is, for example, an ultraviolet light source or an infrared light source.

ところが2通常、エネルギー放射源6は不均一なエネル
ギー分布をもっており2例えばランプ6aの配置、ガラ
ス窓1aの平坦性等が基板5表面におけるエネルギー密
度分布に敏感に影響する。
However, the energy radiation source 6 usually has a non-uniform energy distribution, and for example, the arrangement of the lamp 6a, the flatness of the glass window 1a, etc. sensitively affect the energy density distribution on the surface of the substrate 5.

基板5表面におけるエネルギー密度分布が不均一である
と、温度の不均一を生じ2表面処理に関わる反応が不均
一になるという問題を生じる。
If the energy density distribution on the surface of the substrate 5 is non-uniform, a problem arises in that the temperature becomes non-uniform and the reaction involved in the second surface treatment becomes non-uniform.

〔発明が解決しようとする課題] 本発明は、上記の問題に鑑み、エネルギー放射源から基
板に照射されるエネルギー密度分布が不均一であっても
、それを補正して、基板表面でほぼ−様なエネルギー密
度分布を与えるような手段を備えた基板表面処理装置を
提供することを目的とする。
[Problems to be Solved by the Invention] In view of the above-mentioned problems, the present invention corrects the non-uniform energy density distribution irradiated from the energy radiation source to the substrate so that almost - It is an object of the present invention to provide a substrate surface treatment apparatus equipped with a means for providing various energy density distributions.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題は1表面処理すべき基板5を収容し表面処理ガ
ス導入口2と排気口3を備えた反応容器1と、該反応容
器1の外部に配置され、該反応容器1の透明部1aを通
して前記基板5の一生面にエネルギーを照射するエネル
ギー放射源6と、前記基板5の一生面と前記エネルギー
放射源6間に配置され、前記基板5の一生面に照射され
るエネルギーに補正を与える緩衝板7とを有する基板表
面処理装置によって解決される。
The above-mentioned problems are as follows: (1) A reaction vessel 1 containing a substrate 5 to be surface-treated and equipped with a surface treatment gas inlet 2 and an exhaust port 3; an energy radiation source 6 for irradiating energy onto the entire surface of the substrate 5; and a buffer disposed between the entire surface of the substrate 5 and the energy radiation source 6 for correcting the energy irradiated onto the entire surface of the substrate 5. The problem is solved by a substrate surface treatment apparatus having a plate 7.

また、前記エネルギー放射源6が紫外光源、或いは赤外
光源である基板表面処理装置によって解決される。
Further, the present invention is solved by a substrate surface processing apparatus in which the energy radiation source 6 is an ultraviolet light source or an infrared light source.

また、前記緩衝板7は入射するエネルギー分布に応じた
厚さ分布を有し、透過エネルギー分布が前記基板5の一
生面内でほぼ一様となる基板表面処理装置によって解決
される。
Further, the buffer plate 7 has a thickness distribution depending on the incident energy distribution, and the problem is solved by a substrate surface treatment apparatus in which the transmitted energy distribution is substantially uniform within the entire surface of the substrate 5.

また、前記緩衝板7は入射するエネルギー分布に応じて
エネルギーを散乱する微細な凹凸10の分布を有し、透
過エネルギー分布が前記基板5の一生面内でほぼ一様と
なる基板表面処理装置によって解決される。
Further, the buffer plate 7 has a distribution of fine unevenness 10 that scatters energy according to the incident energy distribution, and the substrate surface treatment apparatus is used so that the transmitted energy distribution is almost uniform within the entire surface of the substrate 5. resolved.

また、前記緩衝板7は入射するエネルギー分布に応じて
エネルギーの大きい部分に吸収膜11を有し、透過エネ
ルギー分布が前記基板5の一生面内でほぼ一様となる基
板表面処理装置によって解決される。
Further, the buffer plate 7 has an absorbing film 11 at a portion where energy is large according to the incident energy distribution, and the transmitted energy distribution is almost uniform within the entire surface of the substrate 5. Ru.

〔作用〕[Effect]

本発明では1表面処理すべき基板5の一生面とエネルギ
ー放射源6間に、基板5の一生面に照射されるエネルギ
ーに補正を与える緩衝板7を配置している。緩衝板7が
ない時の基板5の一生面内のエネルギー分布に応じて緩
衝板7を設計し、その緩衝板7を付加することにより透
過エネルギー分布が基板5の一生面内でほぼ一様となる
ようにすることができる。
In the present invention, a buffer plate 7 is disposed between the entire surface of the substrate 5 to be subjected to surface treatment and the energy radiating source 6, for correcting the energy irradiated onto the entire surface of the substrate 5. The buffer plate 7 is designed according to the energy distribution within the lifetime of the substrate 5 when there is no buffer plate 7, and by adding the buffer plate 7, the transmitted energy distribution is almost uniform within the lifetime of the substrate 5. You can make it happen.

緩衝板7は入射するエネルギーに対する吸収係数がある
程度大きい材料を選び、厚さを入射するエネルギー強度
分布に応じて変えるようにすれば。
For the buffer plate 7, a material with a relatively large absorption coefficient for incident energy is selected, and the thickness is changed according to the incident energy intensity distribution.

透過エネルギー分布が基板5の一生面内でほぼ一様とな
るようにすることができる。
It is possible to make the transmitted energy distribution substantially uniform throughout the life of the substrate 5.

また、緩衝板7として石英板のような透明板を用い、入
射するエネルギーが大きい部分に微細な凹凸を形成して
エネルギーを散乱させるようにするか、またはその部分
に吸収膜を付加するようにすれば、透過エネルギー分布
が基板5の一生面内でほぼ一様となるようにすることが
できる。
Alternatively, a transparent plate such as a quartz plate may be used as the buffer plate 7, and fine irregularities may be formed in areas where a large amount of incident energy is received to scatter the energy, or an absorbing film may be added to such areas. In this way, the transmitted energy distribution can be made substantially uniform within the entire surface of the substrate 5.

〔実施例〕〔Example〕

第1図は基板表面処理装置の実施例を説明するための図
であり、1は反応容器、 laはガラス窓。
FIG. 1 is a diagram for explaining an embodiment of the substrate surface treatment apparatus, where 1 is a reaction vessel and la is a glass window.

2は表面処理ガス導入0.3は排気口、4は基板ホルダ
、5は基板、6はエネルギー放射源、6jはランプ、7
は緩衝板を表す。
2 is a surface treatment gas introduction port, 3 is an exhaust port, 4 is a substrate holder, 5 is a substrate, 6 is an energy radiation source, 6j is a lamp, 7
represents a buffer plate.

反応容器1は例えばステンレス類で2両端に表面処理ガ
ス導入口2及び排気口3が形成され、また上部にガラス
窓1aが嵌め込まれている。
The reaction container 1 is made of stainless steel, for example, and has a surface treatment gas inlet 2 and an exhaust port 3 formed at both ends, and a glass window 1a fitted in the upper part.

反応容器1内部の中央部の基板ホルダ4に表面処理すべ
き基板5が搭載される。
A substrate 5 to be surface-treated is mounted on a substrate holder 4 at the center inside the reaction vessel 1 .

反応容器1の外部に配置されたエネルギー放射源6から
、ガラス窓1aを通して基板5の一つの主面に、エネル
ギーが照射される。ガラス窓1aと基板5の一つの主面
間に緩衝板7が配置されていて。
Energy is irradiated from an energy radiation source 6 placed outside the reaction vessel 1 onto one main surface of the substrate 5 through the glass window 1a. A buffer plate 7 is arranged between the glass window 1a and one main surface of the substrate 5.

基板5の一つの主面に照射されるエルギーの分布に変化
を与える。
The distribution of energy irradiated onto one main surface of the substrate 5 is changed.

エネルギー放射源6は例えば紫外光源で、ランプ6aは
例えば高圧水銀ランプである。
The energy radiation source 6 is, for example, an ultraviolet light source, and the lamp 6a is, for example, a high-pressure mercury lamp.

エネルギー放射源6は、また、赤外光源で、ランプ6a
は例えば赤外線ランプである。
The energy radiation source 6 is also an infrared light source and includes a lamp 6a.
is an infrared lamp, for example.

基板表面処理の実施例として、St基板表面のドライ洗
浄処理について説明する。
As an example of substrate surface treatment, dry cleaning treatment on the surface of an St substrate will be described.

8インチ径のSi基板5を基板ホルダ4に搭載する。緩
衝板7は厚さIIIIIlの石英板を用い、その板面が
処理すべき基板面から5mm以上離れた位置に平行とな
るように、適当な手段をもって(2)定する。
An 8-inch diameter Si substrate 5 is mounted on the substrate holder 4. The buffer plate 7 is made of a quartz plate having a thickness of III, and is set (2) by appropriate means so that the plate surface is parallel to the surface of the substrate to be processed at a distance of 5 mm or more.

表面処理ガス導入口2から塩素ガスを導入し。Introduce chlorine gas from surface treatment gas inlet 2.

反応容器1内を5〜100Torrの塩素圧力に調整す
る。エネルギー放射源6として高圧水銀ランプを用い、
ガラス窓1a及び緩衝板7を通してSi基板5に紫外線
を照射する。
The pressure inside the reaction vessel 1 is adjusted to a chlorine pressure of 5 to 100 Torr. A high pressure mercury lamp is used as the energy radiation source 6,
The Si substrate 5 is irradiated with ultraviolet light through the glass window 1a and the buffer plate 7.

第2図は緩衝板の第1の実施例を示す斜視図で。FIG. 2 is a perspective view showing a first embodiment of the buffer plate.

9は石英板、10は微細な凹凸を表す。9 represents a quartz plate, and 10 represents minute irregularities.

微細な凹凸10は入射する光を散乱する光学的なきすで
、高圧水銀ランプ直下の光強度の大きい部分に形成され
、光の透過率が約80%となるように調整される。
The fine irregularities 10 are optical scratches that scatter incident light, and are formed directly under the high-pressure mercury lamp in a portion where the light intensity is high, and are adjusted so that the light transmittance is about 80%.

第5図はSi基板5面内の照射エネルギー密度分布を示
す。上記の緩衝板7を用いた実施例では。
FIG. 5 shows the irradiation energy density distribution within the 5-plane of the Si substrate. In the embodiment using the above-mentioned buffer plate 7.

Si基板5面内での照射エネルギー密度分布の変動は3
%以下であった。一方、緩衝板7のない従来例では、2
0%程度の照射エネルギー密度分布の変動が見られた。
The variation in the irradiation energy density distribution within the 5 planes of the Si substrate is 3
% or less. On the other hand, in the conventional example without the buffer plate 7, 2
Fluctuations in the irradiation energy density distribution of approximately 0% were observed.

第3図は緩衝板の第2の実施例を示す斜視図で。FIG. 3 is a perspective view showing a second embodiment of the buffer plate.

9は石英板、11は吸収膜であってシリコン窒化膜を表
す、この例は高圧水銀ランプ直下の光強度の大きい部分
に吸収膜を設けるもので、シリコン窒化膜11の厚さは
0.5μmである。
Reference numeral 9 denotes a quartz plate, and reference numeral 11 denotes an absorbing film, which represents a silicon nitride film. In this example, the absorbing film is provided in a portion directly under a high-pressure mercury lamp where the light intensity is high, and the thickness of the silicon nitride film 11 is 0.5 μm. It is.

このような緩衝板を用いて、Si基板5面内の照射エネ
ルギー密度分布を一様にすることができる。
By using such a buffer plate, the irradiation energy density distribution within the plane of the Si substrate 5 can be made uniform.

第4図は緩衝板の第3の実施例を示す斜視図で8はSi
結晶板を表す。この例はエネルギー放射源6として赤外
光源を用いた場合、効果的なもので、赤外線のSi基板
5上への照射量を補正するため、Si結晶板を緩衝板と
して用いる。
FIG. 4 is a perspective view showing a third embodiment of the buffer plate, and 8 is made of Si.
Represents a crystal plate. This example is effective when an infrared light source is used as the energy radiation source 6, and in order to correct the amount of infrared rays irradiated onto the Si substrate 5, a Si crystal plate is used as a buffer plate.

Si結晶板8の厚い部分8aは赤外線ランプの直下にあ
って赤外線照射強度の大きい部分で、薄い部分8bはそ
れ以外の部分である。厚い部分の厚さは例えば1mm、
Elい部分の厚さは例えば0.2 mmであり、このよ
うな緩衝板を用いることにより、基板5の一生面内の赤
外線照射エネルギー分布を一様にすることができる。
The thick portion 8a of the Si crystal plate 8 is located directly under the infrared lamp and receives high infrared irradiation intensity, and the thin portion 8b is the other portion. For example, the thickness of the thick part is 1 mm,
The thickness of the thin portion is, for example, 0.2 mm, and by using such a buffer plate, the infrared ray irradiation energy distribution within the entire surface of the substrate 5 can be made uniform.

表面処理すべきSi基板5の一生面内の照射エネルギー
密度が一様であるから温度分布も一様となり、均一な表
面処理が可能となる。
Since the irradiation energy density within the entire surface of the Si substrate 5 to be surface-treated is uniform, the temperature distribution is also uniform, making it possible to perform uniform surface treatment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように2本発明によれば、ドライプロセス
による半導体基板の表面処理を全基板面内にわたって均
一に行うことができる。例えばドライ洗浄やドライエツ
チングを一様に行うことができる。
As explained above, according to the two aspects of the present invention, the surface treatment of a semiconductor substrate can be performed uniformly over the entire surface of the substrate by a dry process. For example, dry cleaning and dry etching can be performed uniformly.

本発明は、LSI製造工程をドライプロセス化する上で
、効果を大きいものである。
The present invention is highly effective in converting the LSI manufacturing process into a dry process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は基板表面処理装置の実施例 第2図は緩衝板の第Iの実施例。 第3図は緩衝板の第2の実施例。 第4図は緩衝板の第3の実施例。 第5図は照射エネルギー密度分布。 第6図は基板表面処理装置の従来例 である。 図において。 lは反応容器。 3は排気口。 4は基板ホルダ。 5は基板であってsi基板。 6は加熱源。 6aはランプ。 7は緩衝板。 8はSi結晶板。 8aは厚い部分。 8b!、を薄い部分。 9は石英板。 IOは微細な凹凸。 11は吸収膜であってシリコン窒化膜 6 エキル土゛ゝ放射;原 %板表面懸理装置の実施例 靜 1 図 第 図 第 図 始4図 基鈑面内1f[置 第5図 基板表面E理装置の従来例 第6図 Figure 1 is an example of a substrate surface treatment device. FIG. 2 shows the first embodiment of the buffer plate. FIG. 3 shows a second embodiment of the buffer plate. FIG. 4 shows a third embodiment of the buffer plate. Figure 5 shows the irradiation energy density distribution. Figure 6 shows a conventional example of substrate surface treatment equipment. It is. In fig. l is a reaction vessel. 3 is the exhaust port. 4 is a board holder. 5 is a substrate, which is a Si substrate. 6 is a heating source. 6a is a lamp. 7 is a buffer plate. 8 is a Si crystal plate. 8a is the thick part. 8b! , the thin part. 9 is a quartz plate. IO has minute irregularities. 11 is an absorption film, which is a silicon nitride film. 6 Ekiru Earth Radiation; Hara Example of % plate surface suspension device Silence 1 figure No. figure No. figure First 4 figures 1F within the base surface Figure 5 Conventional example of substrate surface E-processing equipment Figure 6

Claims (1)

【特許請求の範囲】 〔1〕表面処理すべき基板(5)を収容し、表面処理ガ
ス導入口(2)と排気口(3)を備えた反応容器(1)
と、 該反応容器(1)の外部に配置され、該反応容器(1)
の透明部(1a)を通して前記基板(5)の一主面にエ
ネルギーを照射するエネルギー放射源(6)と、前記基
板(5)の一主面と前記エネルギー放射源(6)間に配
置され、前記基板(5)の一主面に照射されるエネルギ
ーに補正を与える緩衝板(7)とを有することを特徴と
する基板表面処理装置。 〔2〕前記エネルギー放射源(6)が紫外光源であるこ
とを特徴とする請求項1記載の基板表面処理装置。 〔3〕前記エネルギー放射源(6)が赤外光源であるこ
とを特徴とする請求項1記載の基板表面処理装置。 〔4〕前記緩衝板(7)は入射するエネルギー分布に応
じた厚さ分布を有し、透過エネルギー分布が前記基板(
5)の一主面内でほぼ一様となることを特徴とする請求
項1記載の基板表面処理装置。 〔5〕前記緩衝板(7)は入射するエネルギー分布に応
じてエネルギーを散乱する微細な凹凸(10)の分布を
有し、透過エネルギー分布が前記基板(5)の一主面内
でほぼ一様となることを特徴とする請求項1記載の基板
表面処理装置。 〔6〕前記緩衝板(7)は入射するエネルギー分布に応
じてエネルギーの大きい部分に吸収膜(11)を有し、
透過エネルギー分布が前記基板(5)の一主面内でほぼ
一様となることを特徴とする請求項1記載の基板表面処
理装置。
[Scope of Claims] [1] A reaction vessel (1) containing a substrate (5) to be surface treated and equipped with a surface treatment gas inlet (2) and an exhaust port (3)
and arranged outside the reaction vessel (1), the reaction vessel (1)
an energy radiation source (6) that irradiates energy to one main surface of the substrate (5) through the transparent part (1a) of the substrate (5); and an energy radiation source (6) arranged between the one main surface of the substrate (5) and the energy radiation source (6). and a buffer plate (7) for correcting the energy irradiated onto one main surface of the substrate (5). [2] The substrate surface treatment apparatus according to claim 1, wherein the energy radiation source (6) is an ultraviolet light source. [3] The substrate surface treatment apparatus according to claim 1, wherein the energy radiation source (6) is an infrared light source. [4] The buffer plate (7) has a thickness distribution according to the incident energy distribution, and the transmitted energy distribution is different from that of the substrate (
5) The substrate surface treatment apparatus according to claim 1, wherein the surface treatment is substantially uniform within one main surface. [5] The buffer plate (7) has a distribution of fine unevenness (10) that scatters energy according to the incident energy distribution, and the transmitted energy distribution is almost uniform within one main surface of the substrate (5). 2. The substrate surface treatment apparatus according to claim 1, wherein the substrate surface treatment apparatus has the following characteristics. [6] The buffer plate (7) has an absorption film (11) in a portion where energy is large according to the incident energy distribution,
2. The substrate surface treatment apparatus according to claim 1, wherein the transmitted energy distribution is substantially uniform within one main surface of the substrate (5).
JP13754890A 1990-05-28 1990-05-28 Treating apparatus of surface of substrate Pending JPH0430519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13754890A JPH0430519A (en) 1990-05-28 1990-05-28 Treating apparatus of surface of substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13754890A JPH0430519A (en) 1990-05-28 1990-05-28 Treating apparatus of surface of substrate

Publications (1)

Publication Number Publication Date
JPH0430519A true JPH0430519A (en) 1992-02-03

Family

ID=15201276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13754890A Pending JPH0430519A (en) 1990-05-28 1990-05-28 Treating apparatus of surface of substrate

Country Status (1)

Country Link
JP (1) JPH0430519A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222329A (en) * 2011-04-14 2012-11-12 Tokyo Electron Ltd Liquid processing method and liquid processing device
KR20150146440A (en) * 2014-06-23 2015-12-31 도쿄엘렉트론가부시키가이샤 Substrate processing method, substrate processing apparatus, substrate processing system and recording medium
KR20160075344A (en) * 2014-12-19 2016-06-29 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus and substrate processing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222329A (en) * 2011-04-14 2012-11-12 Tokyo Electron Ltd Liquid processing method and liquid processing device
KR20150146440A (en) * 2014-06-23 2015-12-31 도쿄엘렉트론가부시키가이샤 Substrate processing method, substrate processing apparatus, substrate processing system and recording medium
JP2016027617A (en) * 2014-06-23 2016-02-18 東京エレクトロン株式会社 Substrate processing method, substrate processing apparatus, substrate processing system, and storage medium
US11443964B2 (en) 2014-06-23 2022-09-13 Tokyo Electron Limited Substrate processing apparatus and substrate processing system
KR20160075344A (en) * 2014-12-19 2016-06-29 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus and substrate processing method
JP2016119357A (en) * 2014-12-19 2016-06-30 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method
US10591823B2 (en) 2014-12-19 2020-03-17 Tokyo Electron Limited Substrate processing apparatus and substrate processing method

Similar Documents

Publication Publication Date Title
US5178721A (en) Process and apparatus for dry cleaning by photo-excited radicals
JPH0430519A (en) Treating apparatus of surface of substrate
JP2004216321A5 (en)
JPS60216558A (en) Method of surface washing
JP4032462B2 (en) UV optics
JPH04305244A (en) Illuminator and light exciting processing device with the same
JPH06244159A (en) Light-excited gas reactor
JPH03276625A (en) Manufacturing equipment of semiconductor device
JPH0429220B2 (en)
JP2686762B2 (en) Gettering method
JPS5898933A (en) Manufacture of semiconductor device
JPS61210634A (en) Apparatus for treatment in vacuum
JPS6450426A (en) Surface treatment
JPH0729844A (en) Infrared heating method and equipment for semiconductor substrate
JPH0241900B2 (en)
JPS6352411A (en) Heat treatment method and its device
JPH04307734A (en) Ashing apparatus
JP4650460B2 (en) Method for manufacturing ultraviolet optical element
JPH0258822A (en) Apparatus for manufacturing semiconductor device
JPH06132266A (en) Method and apparatus for manufacture of semiconductor device
JPH08139046A (en) Heat treatment equipment
JPH09260251A (en) Manufacture of mask membrane for x-ray lithography use
JPH0533004Y2 (en)
JPS61210360A (en) Resist pattern processing device
JPS59143318A (en) Optical annealing method