JP4032462B2 - UV optics - Google Patents

UV optics Download PDF

Info

Publication number
JP4032462B2
JP4032462B2 JP26524297A JP26524297A JP4032462B2 JP 4032462 B2 JP4032462 B2 JP 4032462B2 JP 26524297 A JP26524297 A JP 26524297A JP 26524297 A JP26524297 A JP 26524297A JP 4032462 B2 JP4032462 B2 JP 4032462B2
Authority
JP
Japan
Prior art keywords
optical element
transmittance
loss
treatment
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26524297A
Other languages
Japanese (ja)
Other versions
JPH10158035A (en
Inventor
宏樹 神保
明子 守屋
典男 小峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP26524297A priority Critical patent/JP4032462B2/en
Publication of JPH10158035A publication Critical patent/JPH10158035A/en
Application granted granted Critical
Publication of JP4032462B2 publication Critical patent/JP4032462B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Description

【0001】
【発明の属する技術分野】
本発明は、400nm以下、好ましくは300nm以下の特定波長帯域で、レンズやミラ−等の光学系に使用される光学素子、例えば光リソグラフィ−用光学素子に関するものであり、またその製造方法に関する。
【0002】
【従来の技術】
従来、シリコン等のウエハ上に集積回路の微細パターンを露光・転写する光リソグラフィ技術においては、ステッパーと呼ばれる露光装置が用いられる。
このステッパーの光源は、近年のLSIの高集積化に伴ってg線(436nm)からi線(365nm)、さらにはKrF(248nm)やArF(193nm)エキシマレ−ザ−へと短波長化が進められている。
【0003】
一般に、ステッパーの照明系あるいは投影レンズとして用いられるレンズ素材は、i線では主に高透過率化した多成分の光学ガラスが、KrF及びArFエキシマレ−ザ−では従来の光学ガラスにかえて合成石英ガラスやCaF2(蛍石)等のフッ化物単結晶が用いられている。
これらの光学素子には、一般的に、使用する波長域での透過率が99.5%以上であることが要求される。
【0004】
また、光学素子に要求される品質として、特に、表面損失の低減も重要項目である。
【0005】
【発明が解決しようとする課題】
300nm以下の短波長域の光学素子において、その表面損失を0.5%以下に抑えるには、従来の研磨方法、洗浄方法では、対処できないことがわかってきた。本発明者らは、長年に渡りその原因を鋭意研究してきた結果以下の事が解ってきた。
【0006】
▲1▼表面損失は、表面粗さに起因する散乱以外の損失がある。
▲2▼研磨剤などの金属残存物の吸収に起因する表面損失がある。
長年に渡り、本発明者らは、上記で述べた事を検証する為の実験を行ってきた。
まず、▲1▼に関して、表面粗さと透過率の関係を確かめた。図1、2にそれぞれ測定波長248nm及び193nmでの表面粗さと、試験的に作製した光学素子(φ60×t10mm平行平板)の透過率測定値との関係を示す。測定サンプルとしては、すべて同一条件で製造された合成石英ガラスを用いた。尚、表面粗さは光学干渉方式の表面粗さ計を用いた。
【0007】
透過率は、ある程度表面粗さ、つまり表面散乱損失に依存しているが、他の因子が透過率値に影響を与えていることがわかる。
この事実から、透過率測定に影響を与える因子として、表面散乱以外に、吸収による損失の影響が大きい事が判明した。この原因は、残留不純物や残留応力による構造欠陥によると考えられている。
【0008】
しかしながら、CeO2などの金属不純物がほとんど検出されず、かつ表面粗さも1ÅRMS以下であっても、理論透過率より0.5%以上も透過率が低いことがあり、問題となる。
そこで、本発明は、この問題を解決し、400nm、好ましくは300nm以下の紫外線波長域で用いられる透過率の高い光学素子を提供することを目的とする。
【0009】
【課題を解決するための手段】
そこで、本発明者らは、まず、光学素子の表面状態を調べた。
通常の表面分析方法、例えばESCA、蛍光X線分析装置では、感度の点で問題があり、光学素子表面に付着する不純物の定量は不可能であった。そのため、全反射蛍光X線分析装置により分析した結果、として、図3にCeO2と248nm透過率の関係を示す。この様に、残留CeO2の多いサンプルほど損失の多い事が解る。これは、研磨剤であるCeO2が微小クラック部に残留しているためと考えられる。
【0010】
しかしながら、表面粗さ、CeO2の付着は透過率を下げる要因の一つであるがそれだけではないこともわかってきた。それは、CeO2などの金属不純物がほとんど検出されず、かつ表面粗さも1ÅRMS以下であっても、理論透過率より0.5%以上も透過率が低いことがあることからも明らかである。
そこで本発明者らは、表面の汚染物はおそらく有機系のガスの吸着によるであろうと推測し実験を行った。
【0011】
まず、CeO2(Ce:50×1010atoms/cm2以下)などの金属不純物がほとんど検出されず、とくにかつ表面粗さも1ÅRMS以下で193.4nm透過率90.55%の光学素子(φ60×10mm)を、数日間にわたりクリーンルーム内で保管後表面にパーティクルが実質的に存在しないことを確認後透過率を測定した。193.4nmの透過率は約24Hrで90.13%に、さらに2日後には、89.92%にまで低下していた。
【0012】
このサンプルの、表面には、保管前と後で、表面に存在する金属不純物に優位さは確認できなかった。
これらの実験から、本発明者らは、表面に付着する有機系の不純物であると推測した。ただし、仮にその汚れが有機系であり、洗浄にて除去したとしても、使用中に再付着し、光学素子の透過率低下の原因となる可能性がある。
【0013】
これらの問題点を、解決しないことには、光リソグラフィ−用の光学素子の要求仕様を満たすことができない。
そこで、本発明は、表面に有機系不純物が存在せず、かつ有機系ガスの吸着が実質的にないことを特徴とする紫外用光学素子を提供する。
本発明者らは、有機系の不純物の付着に関して、さらに実験を行った。
【0014】
上述のクリ−ンル−ム内で保管する実験を行ったサンプルについて、昇温脱離ガス分析装置で、H2O、炭化水素に相当する質量数のピ−クを分析を行った。その結果、クリ−ンル−ム内の保持時間が増えることで、H2O、炭化水素が増えることを確認した。これは、透過率低下の原因が、表面金属不純物と共に有機系の不純物が関与していることがわかる。また、特に有機系の不純物の付着は、クリ−ンル−ムといえども建材などから放出される雰囲気中のガス状有機物が問題となる。
【0015】
本発明者らは、さらに、様々な洗浄法をためし、透過率測定、不純物分析等の表面分析を行った処、酸処理したサンプルを長時間保管しても、透過率が低下せず、表面に有機系の汚れが付着しづらい事を見出した。
これは、例えば、石英ガラスの場合、ガラス表面の≡Si・、≡Si−O・等の表面欠陥をHF処理し、≡Si−H、≡Si−O−Hの様にHで終端、または≡Si−F、≡Si−O−Fの様にFで終端する事で、欠陥を低減し電気的に有機系のガス物質と結合しづらくした効果と考える。つまり、物理吸着、化学結合による吸着を防止することができる。また、HF処理以外の酸処理、例えば硫酸と過酸化水素水との1:1混合液でも同様の効果が得られる。
【0016】
さらに、熱処理による表面の脱ガス効果を調べた。その結果、HF処理前後に熱処理を行うことでさらに付着物を防止する効果がみられた。ただし、熱処理の際の雰囲気は、実質上金属不純物が存在せず、有機系のガスが存在しないことが必要である。また、HF処理前の熱処理では、100℃以上で処理しないと効果が得られず、900℃以上では、熱変形が起こり、表面結晶化(失透)する可能性があるので望ましくない。また、HF処理後の熱処理においても、1000℃以上で熱処理すると、終端された≡Si−H、≡Si−O−H構造が反応によりH2Oとして、または終端された≡Si−F、≡Si−O−F構造が反応によりHF、あるいはF2として放出され、再び表面欠陥を生成する事がある。
【0017】
そこで、本発明は、光学素材の表面をHF処理する前、またはHF処理後、100℃以上1000℃以下の温度で熱処理することを特徴とする紫外用光学素子の製造方法を提供する。
なお、熱処理時の上限温度は、光学素子の材料によって好適な範囲が示される。
【0018】
例えば、石英ガラスの場合、500℃より高い温度では、石英ガラスが変形する恐れがあり、500℃以下であることが好ましい。
また、蛍石の場合、300℃より高い温度では、クラックが入る恐れがあるため、300℃以下であることが好ましい。
さらに、多成分系の光学ガラスの場合、組成により異なるが、400℃より高い温度では変形する恐れがあり、400℃以下であることが好ましい。
【0019】
なお、光学素材の研磨、洗浄工程の後、薄膜形成工程を経るような光学素子の製造方法の場合には、その工程が熱処理を兼用することも可能である。この場合も、処理温度が上記の範囲内が好ましい。
また、実際に紫外用光学素子として使用する場合には、有機系不純物だけでなく、研磨表面の微小クラック部に存在すると考えられる金属不純物の除去についても検討しなければならない。そこで、CeO2等の通常使用する研磨剤で所定の曲面及び平面を形成後、仕上げ研磨として、SiO2微粒子で表面一層を研磨することで金属不純物の付着を防止できる。
【0020】
さらに、HF処理を行って有機系不純物を精密に洗浄した後でも、光学部品の運搬中などに、表面に有機系の汚れ、例えば、梱包材や人の手からの汚染物が付着することがある。これについては、光学素子を光学系の治具に設置直前に、IPA液及びIPAベ−パ乾燥後、Hgランプを用いたUV洗浄やKrF、ArFエキシマレ−ザを用いたエキシマクリ−ニングを行うことで除去可能であることを見出した。なお、HF処理、加熱処理を行っていない光学素子も、これらの洗浄処理によって一時的に有機系の汚れは除去されるが、表面の欠陥により、汚れが再付着する。これを防止するためには、HF処理、加熱処理は必須である。
【0021】
こうして得られた光学素子は、不純物の吸着がなく、高透過率を達成できるものであるが、上述したように表面粗さも表面損失に影響を与えるため、表面損失0.5%以上を実現するには、表面粗さを10ÅRMS以下にすることが好ましい。
【0022】
【発明の実施の形態】
以下、実施例により、本発明を詳しく説明する。試料には、光学的に同一の品質の石英ガラスを使用した。サンプル形状は、約φ60×t10mmの研磨した平行平板を用いた。その各サンプルの平行平板の平行度は5±1秒、面精度は3±0.5λ(λ=546 nm)である。45個用意し、以下に示す同一条件で各3ヶずつ、本発明の光学素子製造法について条件を変えて、193.4nmの透過率を測定し評価した。比較のため、各処理条件は一定にして行っている。その結果を、まとめたものを表1.に示した。表中の○印はその処理を行ったことを示し、×印は行わなかったことを示す。
【0023】
【表1】

Figure 0004032462
【0024】
また、表面粗さはヘテロダイン干渉計をもちいた光学式の測定装置で測定し、ÅRMSで示した。仕上げ研磨は、CeO2で研磨後、コロイダルSiO2微粒子を使用して研磨を行った。HF処理は、10%HF水溶液を用い、約1分間光学素子を浸漬後、超純水でリンス処理、IPA浸漬、IPAベーパ乾燥を行っている。加熱処理は、実質的に金属不純物、有機系ガスのないクリーンな雰囲気で、約200℃で10分間処理を行った。UV処理は、運搬時の影響を排除する目的で行っている。光源としては、Hgランプを用い、185nm、254nmの照射強度は、それぞれ1mW/cm2、10mW/cm2である。この処理は、UV光で表面の極表層の有機物を分解し、185nm輝線で生成したオゾン、さらに254nm輝線でオゾンから分解した活性酸素により、分解した有機物を、H2O、CO2ガスとして除去する方法である。
【0025】
【実施例1】
本発明の光学素子作製法で光学素子Iを作製し、193.4nmの内部透過率を測定した。UV照射直後は99.86%であり、クリ−ンル−ム内に240時間保持後その透過率は、99.84%でほとんど低下しない。この数値は、内部散乱損失を考慮すると、表面損失は、両面で0.05%以下である。表面損失が小さいため、特にエキシマレ−ザリソグラフィ−には適する。例えば、ArFエキシマステッパの光学素子は、照明レンズ系、投影レンズ系併せて100点近いが、薄膜性能に起因する反射損失以外の工程汚染による表面損失を、光学系全体で約10%以下にすることができる。これは、単にスル−プットだけでなく、結像性能においても十分な性能が期待できる数値である。但し、実際には、他の損失原因、モニター用光学系、開口絞り等も存在するため、光学系全体の素るーぷっとは90%よりも低い数値となっている。
【0026】
【実施例2】
実施例1の光学素子Iと同一の作製法で、表面粗さを5ÅRMSに加工した光学素子J及び表面粗さを10ÅRMSに加工した光学素子Hを作製した。
光学素子JのUV照射直後は99.80%であり、クリ−ンル−ム内に240時間保持後その透過率は、99.80%でほとんど低下しない。
【0027】
光学素子HのUV照射直後は99.72%であり、クリ−ンル−ム内に240時間保持後その透過率は、99.71%でほとんど低下しない。
光学素子J、Hともに、光学素子Iよりやや透過率が低いのは、表面粗さに起因する、散乱損失が原因と考える。
光学素子Jは、内部散乱損失を考慮すると、表面損失は、0.1%以下である。表面損失が比較的小さいため、特にエキシマレ−ザリソグラフィ−には適する。例えば、ArFエキシマステッパの光学素子は、照明レンズ系、投影レンズ系併せて100点近いが、光学系全体の表面損失は約10%である。これは、スル−プットだけでなく、結像性能においても十分な性能が期待できる数値であるが、これ以上損失が大きくなると性能に悪影響がでる。望ましくは、表面粗さを、5ÅRMS以下にする必要がある。
【0028】
【実施例3】
本発明の光学素子Iの作製法に対し、HF処理を除いて、光学素子Eを作製し、193.4nmの内部透過率を測定した。UV照射直後は99.65%であり、クリ−ンル−ム内に240時間保持後その透過率は、99.25%であった。
HF処理を行っていないため、金属不純物、有機系の不純物の除去及び表面欠陥の低減が不十分である。
【0029】
【実施例4】
本発明の光学素子Iの作製法に対し、加熱処理を除いて、光学素子Fを作製し、193.4nmの内部透過率を測定した。UV照射直後は99.76%であり、クリ−ンル−ム内に240時間保持後その透過率は、99.74%であった。
加熱処理を行っていないため、有機系の不純物の除去及び表面欠陥の低減がやや不十分である。
【0030】
【実施例5】
本発明の光学素子Iの作製法に対し、UV処理を行わないで、光学素子Gを作製し、193.4nmの内部透過率を測定した。加工完了後、IPA浸漬+IPAベ−パ乾燥直後で99.80%であり、クリ−ンル−ム内に240時間保持後その透過率は、99.78%であった。
【0031】
光学素子Iと比較すると、有機系不純物除去がやや不十分であるため、若干透過率が低いが、エキシマレ−ザリソグラフィ−用としては使用可能である。
【0032】
【実施例6】
光学素子Gの作製法と同様の手順で、加熱処理を先に行い、HF処理を後で行い、193.4nmの内部透過率を測定した。この光学素子をG’と呼ぶ。加工完了後、IPA浸漬+IPAベ−パ乾燥直後で99.82%であり、クリ−ンル−ム内に240時間保持後その透過率は、99.78%であった。
【0033】
光学素子G同様、光学素子Iと比較すると、有機系不純物除去ががやや不十分であるため、若干透過率が低いが、エキシマレ−ザリソグラフィ−用としては使用可能である。
【0034】
【実施例7】
光学素子Iの作製法で作製されたφ30×t3mmの基板を用い、さらに光学素子Gの作製法と同様の手順で、両面反射防止コ−トした光学素子Kを作製した。この場合、コ−ト製膜工程で150〜300℃に加熱している事で、本発明の加熱工程を代用している。193.4nmの透過率を測定した。加工完了後、IPA浸漬+IPAベ−パ乾燥直後で99.80%であり、クリ−ンル−ム内に240時間保持後その透過率は、99.75%であった。この素子は、反射防止コ−トされているが、設計上片面0.05%の反射損失を有する。また、サンプル厚が薄いため、内部吸収/内部散乱をほぼ無視できるため、反射損失以外の表面損失は両面で、0.15%である。放置による、損失の増加が基板だけの状態よりやや大きいのは、薄膜の表面積が基板表面積より大な為と推測する。
【0035】
有機系がやや不十分であるため、表面損失を有するが、エキシマレ−ザリソグラフィ−用としては使用可能である。
【0036】
【実施例8】
光学素子Iの作製法で作製されたφ30×t3mmの基板を用い、さらに光学素子G’の作製法と同様の手順で、両面反射防止コ−トした光学素子K’を作製した。この場合、コ−ト製膜工程で150〜300℃に加熱している事で、本発明の加熱工程を代用している。193.4nmの透過率を測定した。加工完了後、IPA浸漬+IPAベ−パ乾燥直後で99.80%であり、クリ−ンル−ム内に240時間保持後その透過率は、99.75%であった。この素子は、反射防止コ−トされているが、設計上片面0.05%の反射損失を有する。また、サンプル厚が薄いため、内部吸収/内部散乱をほぼ無視できるため、反射損失以外の表面損失は両面で、0.15%である。放置による、損失の増加が基板だけの状態よりやや大きいのは、薄膜の表面積が基板表面積より大な為と推測する。
【0037】
有機系がやや不十分であるため、表面損失を有するが、エキシマレ−ザリソグラフィ−用としては使用可能である。
【0038】
【実施例9】
光学素子Iの作製法で作製されたφ30×t3mmの基板を用い、さらに光学素子Iの作製法と同様の手順で、両面反射防止コ−トした光学素子Lを作製した。この場合、コ−ト製膜工程で150〜300℃に加熱している事で、本発明の加熱工程を代用している。193.4nmの透過率を測定した。加工完了後、IPA浸漬+IPAベ−パ乾燥直後で99.85%であり、クリ−ンル−ム内に240時間保持後その透過率は、99.80%であった。この素子は、反射防止コ−トされているが、設計上片面0.05%の反射損失を有する。また、サンプル厚が薄いため、内部吸収/内部散乱をほぼ無視できるため、反射損失以外の表面損失は両面で、0.05%である。
【0039】
この表面状態は極めて良好で、表面損失の値は、非常に低い。エキシマレ−ザリソグラフィ−用としては使用可能である。
【0040】
【比較例1】
従来の光学素子作製法で光学素子Aを作製し、193.4nmの内部透過率を測定した。UV照射直後は98.95%であり、クリ−ンル−ム内に240時間保持後その透過率は、98.25%となった。表面損失が大きいため、特にエキシマレ−ザリソグラフィ−には不適である。例えば、ArFエキシマステッパの光学素子は、照明レンズ系、投影レンズ系併せて100点近いため、表面損失だけで全体の透過率は約17%になってしまう。これでは、単にスル−プットだけでなく、結像性能にも影響を及ぼす。
【0041】
【比較例2】
従来の光学素子作製法に加えHF処理のみを行った。この光学素子Bは、UV照射直後の193.4nmは、99.45%、クリ−ンル−ム内240時間保持後の透過率は99.38%であった。HF処理の効果で、透過率は良くなるが特に、SiO2微粒子仕上げ研磨を行っていないため、金属不純物が残留していると考えられる。HF処理時間を長くすれば、除去可能であれば、長時間のHF処理は、表面にキズなどを発生させ、表面粗さの悪化をも招くため、得策ではない。
【0042】
【比較例3】
従来の光学素子の製造法に加えSiO2仕上げ研磨のみを行った。この光学素子Cは、UV照射直後の193.4nmは、99.56%、で比較的良好であるが、クリ−ンル−ム内240時間保持後の透過率は99.15%になってしまう。SiO2微粒子仕上げ研磨の効果で、透過率は良くなるが、特に、HF処理を行っていないため、金属不純物、有機系の不純物の除去及び表面欠陥の低減が不十分である。
【0043】
【比較例4】
従来の光学素子の製造法に加え加熱のみを行った。この光学素子Dは、UV照射直後の193.4nmは、99.15%と表面損失が大きく、クリ−ンル−ム内240時間保持後の透過率は98.58%になってしまう。加熱処理の効果で、やや透過率は良くなるが、特に、HF処理を行っていないため、金属不純物、有機系の不純物除去及び表面欠陥の低減が不十分である。
【0044】
【発明の効果】
本発明による光学素子作製方法により、表面損失を低減した光リソグラフィ−用光学素子の製造が可能となった。本発明は、特に、300nm以下の紫外域の光源を使用する、KrF、ArFエキシマレ−ザ−ステッパ用の照明系、及び投影レンズの性能を向上するために必須の技術である。
【図面の簡単な説明】
【図1】 表面粗さと透過率(248.3nm)の関係をプロットしたグラフである。
【図2】 表面粗さと透過率(193.4nm)の関係をプロットしたグラフである。
【図3】 セリウム不純物と透過率(248.3nm)の関係をプロットしたグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical element used in an optical system such as a lens or a mirror in a specific wavelength band of 400 nm or less, preferably 300 nm or less, for example, an optical element for photolithography, and also relates to a manufacturing method thereof.
[0002]
[Prior art]
Conventionally, an exposure apparatus called a stepper is used in an optical lithography technique that exposes and transfers a fine pattern of an integrated circuit onto a wafer such as silicon.
The light source of this stepper has been shortened from g-line (436 nm) to i-line (365 nm), and further to KrF (248 nm) and ArF (193 nm) excimer lasers with the recent high integration of LSI. It has been.
[0003]
In general, the lens material used for the illumination system or projection lens of a stepper is a multi-component optical glass mainly having high transmittance for i-line, and synthetic quartz instead of the conventional optical glass for KrF and ArF excimer lasers. Fluoride single crystals such as glass and CaF 2 (fluorite) are used.
These optical elements are generally required to have a transmittance of 99.5% or more in the wavelength range to be used.
[0004]
In addition, as a quality required for the optical element, reduction of surface loss is also an important item.
[0005]
[Problems to be solved by the invention]
In an optical element having a short wavelength region of 300 nm or less, it has been found that conventional polishing methods and cleaning methods cannot cope with suppressing the surface loss to 0.5% or less. As a result of intensive studies on the cause over many years, the present inventors have found the following.
[0006]
(1) Surface loss includes losses other than scattering due to surface roughness.
(2) There is surface loss due to absorption of metal residues such as abrasives.
Over the years, the inventors have conducted experiments to verify the above.
First, regarding (1), the relationship between surface roughness and transmittance was confirmed. FIGS. 1 and 2 show the relationship between the surface roughness at the measurement wavelengths of 248 nm and 193 nm, and the measured transmittance of the optical element (φ60 × t10 mm parallel plate) produced experimentally. As a measurement sample, synthetic quartz glass manufactured under the same conditions was used. For the surface roughness, an optical interference type surface roughness meter was used.
[0007]
Although the transmittance depends to some extent on the surface roughness, that is, the surface scattering loss, it can be seen that other factors influence the transmittance value.
From this fact, it has been found that the influence of loss due to absorption is great in addition to surface scattering as a factor affecting the transmittance measurement. This cause is thought to be due to structural defects due to residual impurities and residual stress.
[0008]
However, even if metal impurities such as CeO 2 are hardly detected and the surface roughness is 1 Å RMS or less, the transmittance may be lower by 0.5% or more than the theoretical transmittance, which is a problem.
Therefore, the present invention aims to solve this problem and provide an optical element having a high transmittance used in an ultraviolet wavelength region of 400 nm, preferably 300 nm or less.
[0009]
[Means for Solving the Problems]
Therefore, the inventors first examined the surface state of the optical element.
Conventional surface analysis methods such as ESCA and X-ray fluorescence analyzers have problems in terms of sensitivity, and it is impossible to quantify impurities adhering to the optical element surface. Therefore, as a result of analysis by a total reflection fluorescent X-ray analyzer, FIG. 3 shows the relationship between CeO 2 and 248 nm transmittance. In this way, it can be seen that the sample with more residual CeO 2 has more loss. This is presumably because CeO 2 which is an abrasive remains in the micro crack portion.
[0010]
However, it has also been found that surface roughness and CeO 2 adhesion are one of the factors that lower the transmittance, but not only. This is also clear from the fact that the transmissivity may be lower by 0.5% or more than the theoretical transmissivity even when metal impurities such as CeO 2 are hardly detected and the surface roughness is 1 μM RMS or less.
Therefore, the present inventors conducted experiments by assuming that the surface contaminants were probably due to the adsorption of organic gases.
[0011]
First, almost no metal impurities such as CeO 2 (Ce: 50 × 10 10 atoms / cm 2 or less) are detected, and in particular, an optical element (φ60 × 60 × 193.4 nm transmittance of 90.55% with a surface roughness of 1 μm RMS or less. 10 mm) was stored in a clean room for several days, and after confirming that particles were not substantially present on the surface, the transmittance was measured. The transmittance at 193.4 nm was reduced to 90.13% at about 24 hours, and further to 89.92% after two days.
[0012]
The surface of this sample could not confirm the superiority of metal impurities present on the surface before and after storage.
From these experiments, the present inventors speculated that they are organic impurities adhering to the surface. However, even if the dirt is organic, it can be reattached during use and cause a reduction in the transmittance of the optical element.
[0013]
If these problems are not solved, the required specifications of optical elements for optical lithography cannot be satisfied.
Therefore, the present invention provides an ultraviolet optical element characterized in that no organic impurities are present on the surface and organic gas is not substantially adsorbed.
The present inventors conducted further experiments on the adhesion of organic impurities.
[0014]
Above chestnut - Nru - for samples subjected to store experiment in arm, in Atsushi Nobori spectroscopy apparatus, H 2 O, the mass number of the peak corresponding to the hydrocarbon - were analyzed click. As a result, it was confirmed that H 2 O and hydrocarbons increased as the retention time in the clean room increased. This indicates that the cause of the decrease in transmittance is that organic impurities are involved together with the surface metal impurities. In particular, the adhesion of organic impurities causes a problem of gaseous organic matter in the atmosphere released from building materials, even in clean rooms.
[0015]
The present inventors further tried various cleaning methods, performed transmittance analysis, surface analysis such as impurity analysis, even if the acid-treated sample was stored for a long time, the transmittance did not decrease, It was found that organic stains were difficult to adhere to the surface.
For example, in the case of quartz glass, surface defects such as ≡Si · and ≡Si-O · on the glass surface are treated with HF, and terminated with H like ≡Si-H and ≡Si-O-H, or By terminating with F like ≡Si—F and ≡Si—O—F, it is considered to be the effect of reducing defects and making it difficult to electrically couple with organic gas substances. That is, adsorption due to physical adsorption or chemical bonding can be prevented. The same effect can be obtained by acid treatment other than HF treatment, for example, a 1: 1 mixture of sulfuric acid and hydrogen peroxide.
[0016]
Furthermore, the effect of degassing the surface by heat treatment was investigated. As a result, the effect which prevents a deposit | attachment by seeing heat processing before and after HF process was seen. However, the atmosphere during the heat treatment needs to be substantially free of metal impurities and organic gas. Further, the heat treatment before the HF treatment is not desirable unless it is treated at 100 ° C. or higher, and if it is 900 ° C. or higher, thermal deformation occurs and surface crystallization (devitrification) may occur. Also in the heat treatment after the HF treatment, when the heat treatment is performed at 1000 ° C. or higher, the terminated ≡Si—H, ≡Si—O—H structure is converted into H 2 O by reaction, or terminated ≡Si—F, ≡ The Si—O—F structure may be released as HF or F 2 by the reaction, and surface defects may be generated again.
[0017]
Therefore, the present invention provides a method for producing an ultraviolet optical element, characterized in that the surface of an optical material is heat-treated at a temperature of 100 ° C. to 1000 ° C. before or after the HF treatment.
In addition, the upper limit temperature at the time of heat processing shows a suitable range with the material of an optical element.
[0018]
For example, in the case of quartz glass, quartz glass may be deformed at a temperature higher than 500 ° C., and is preferably 500 ° C. or lower.
Further, in the case of fluorite, cracking may occur at a temperature higher than 300 ° C., and therefore it is preferably 300 ° C. or lower.
Furthermore, in the case of a multicomponent optical glass, although it changes with compositions, there exists a possibility that it may deform | transform at the temperature higher than 400 degreeC, and it is preferable that it is 400 degrees C or less.
[0019]
In the case of an optical element manufacturing method that undergoes a thin film forming step after the polishing and cleaning steps of the optical material, the step can also be combined with heat treatment. Also in this case, the treatment temperature is preferably within the above range.
In addition, when actually used as an optical element for ultraviolet rays, not only organic impurities but also removal of metal impurities that are considered to be present in the minute cracks on the polished surface must be considered. Therefore, after forming a predetermined curved surface and a flat surface with a commonly used abrasive such as CeO 2 , the surface layer is polished with SiO 2 fine particles as finish polishing, thereby preventing the adhesion of metal impurities.
[0020]
Furthermore, even after carrying out HF treatment and cleaning organic impurities precisely, organic dirt such as packing materials or contaminants from human hands may adhere to the surface during transportation of optical components. is there. For this, immediately after the optical element is placed on the jig of the optical system, after the IPA liquid and IPA vapor drying, UV cleaning using an Hg lamp and excimer cleaning using a KrF or ArF excimer laser are performed. And found that it can be removed. It should be noted that, even in an optical element that has not been subjected to HF treatment or heat treatment, organic stains are temporarily removed by these cleaning treatments, but the stains are reattached due to surface defects. In order to prevent this, HF treatment and heat treatment are essential.
[0021]
The optical element thus obtained has no adsorption of impurities and can achieve a high transmittance. However, since the surface roughness also affects the surface loss as described above, a surface loss of 0.5% or more is realized. For this, the surface roughness is preferably 10 Å RMS or less.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail by way of examples. As a sample, quartz glass having the same optical quality was used. As the sample shape, a polished parallel plate of about φ60 × t10 mm was used. The parallelism of the parallel plate of each sample is 5 ± 1 second, and the surface accuracy is 3 ± 0.5λ (λ = 546 nm). Forty-five were prepared, and three each under the same conditions shown below were measured and evaluated for transmittance at 193.4 nm by changing the conditions for the optical element manufacturing method of the present invention. For comparison, each processing condition is made constant. The results are summarized in Table 1. It was shown to. A circle in the table indicates that the process was performed, and a cross indicates that the process was not performed.
[0023]
[Table 1]
Figure 0004032462
[0024]
The surface roughness was measured with an optical measuring device using a heterodyne interferometer and indicated by Å RMS. In the final polishing, after polishing with CeO 2 , polishing was performed using colloidal SiO 2 fine particles. In the HF treatment, a 10% HF aqueous solution is used, and after immersing the optical element for about 1 minute, rinse treatment, IPA immersion, and IPA vapor drying are performed with ultrapure water. The heat treatment was performed at about 200 ° C. for 10 minutes in a clean atmosphere substantially free of metal impurities and organic gases. The UV treatment is performed for the purpose of eliminating the influence during transportation. An Hg lamp is used as the light source, and the irradiation intensity at 185 nm and 254 nm is 1 mW / cm 2 and 10 mW / cm 2 , respectively. This treatment decomposes organic substances on the surface surface layer with UV light, and removes the decomposed organic substances as H 2 O and CO 2 gas by ozone generated by 185 nm emission line and active oxygen decomposed from ozone by 254 nm emission line. It is a method to do.
[0025]
[Example 1]
Optical element I was prepared by the optical element manufacturing method of the present invention, and the internal transmittance at 193.4 nm was measured. Immediately after UV irradiation, it is 99.86%, and after being kept in the clean room for 240 hours, the transmittance is 99.84% and hardly decreases. In consideration of the internal scattering loss, the surface loss is 0.05% or less on both sides. Since the surface loss is small, it is particularly suitable for excimer laser lithography. For example, the optical element of the ArF excimer stepper has nearly 100 points for both the illumination lens system and the projection lens system, but the surface loss due to process contamination other than the reflection loss due to the thin film performance is reduced to about 10% or less for the entire optical system. be able to. This is a numerical value that can be expected not only for throughput but also for imaging performance. However, in practice, there are other causes of loss, an optical system for monitoring, an aperture stop, and the like, so the overall optical system has a value lower than 90%.
[0026]
[Example 2]
An optical element J having a surface roughness processed to 5 ÅRMS and an optical element H having a surface roughness processed to 10 ÅRMS were manufactured by the same manufacturing method as that of the optical element I of Example 1.
Immediately after UV irradiation of the optical element J, it is 99.80%, and after being kept in the clean room for 240 hours, its transmittance hardly decreases at 99.80%.
[0027]
Immediately after UV irradiation of the optical element H, it is 99.72%, and after being kept in the clean room for 240 hours, its transmittance is 99.71% and hardly decreases.
The reason why the transmittance of the optical elements J and H is slightly lower than that of the optical element I is considered to be due to the scattering loss due to the surface roughness.
The optical element J has a surface loss of 0.1% or less in consideration of the internal scattering loss. Since the surface loss is relatively small, it is particularly suitable for excimer laser lithography. For example, the optical element of the ArF excimer stepper has nearly 100 points for both the illumination lens system and the projection lens system, but the surface loss of the entire optical system is about 10%. This is a numerical value that can be expected not only for the throughput but also for the imaging performance, but if the loss is further increased, the performance is adversely affected. Desirably, the surface roughness should be 5 Å RMS or less.
[0028]
[Example 3]
In contrast to the manufacturing method of the optical element I of the present invention, an optical element E was manufactured except for HF treatment, and an internal transmittance of 193.4 nm was measured. Immediately after UV irradiation, it was 99.65%, and after being kept in the clean room for 240 hours, the transmittance was 99.25%.
Since HF treatment is not performed, removal of metal impurities and organic impurities and reduction of surface defects are insufficient.
[0029]
[Example 4]
In contrast to the manufacturing method of the optical element I of the present invention, an optical element F was manufactured except for heat treatment, and an internal transmittance of 193.4 nm was measured. Immediately after UV irradiation, it was 99.76%, and after being kept in the clean room for 240 hours, the transmittance was 99.74%.
Since heat treatment is not performed, removal of organic impurities and reduction of surface defects are somewhat insufficient.
[0030]
[Example 5]
In contrast to the method for manufacturing the optical element I of the present invention, an optical element G was manufactured without performing UV treatment, and an internal transmittance of 193.4 nm was measured. After the completion of processing, it was 99.80% immediately after IPA immersion + IPA vapor drying, and its transmittance after holding for 240 hours in the clean room was 99.78%.
[0031]
Compared with the optical element I, the removal of organic impurities is slightly insufficient, so that the transmittance is slightly low, but it can be used for excimer laser lithography.
[0032]
[Example 6]
In the same procedure as the manufacturing method of the optical element G, the heat treatment was performed first, the HF treatment was performed later, and the internal transmittance at 193.4 nm was measured. This optical element is called G ′. After the completion of processing, it was 99.82% immediately after IPA immersion + IPA vapor drying, and its transmittance after holding for 240 hours in the clean room was 99.78%.
[0033]
Similar to the optical element G, compared with the optical element I, the removal of organic impurities is slightly insufficient, so that the transmittance is slightly low, but it can be used for excimer laser lithography.
[0034]
[Example 7]
An optical element K having a double-sided antireflection coating was prepared by using the substrate of φ30 × t3 mm produced by the production method of the optical element I and further by the same procedure as the production method of the optical element G. In this case, the heating process of the present invention is substituted by heating to 150 to 300 ° C. in the coating film forming process. The transmittance at 193.4 nm was measured. After the completion of processing, it was 99.80% immediately after IPA immersion + IPA vapor drying, and its transmittance was 99.75% after being kept in the clean room for 240 hours. This element is anti-reflection coated, but has a reflection loss of 0.05% on one side by design. Further, since the sample thickness is thin, internal absorption / internal scattering can be almost ignored, and therefore the surface loss other than the reflection loss is 0.15% on both sides. The reason why the increase in loss due to neglect is slightly larger than the state of the substrate alone is presumed to be because the surface area of the thin film is larger than the surface area of the substrate.
[0035]
Although the organic system is slightly insufficient, it has a surface loss, but it can be used for excimer laser lithography.
[0036]
[Example 8]
Using the substrate of φ30 × t3 mm produced by the production method of the optical element I, an optical element K ′ having a double-side antireflection coating was produced in the same procedure as the production method of the optical element G ′. In this case, the heating process of the present invention is substituted by heating to 150 to 300 ° C. in the coating film forming process. The transmittance at 193.4 nm was measured. After the completion of processing, it was 99.80% immediately after IPA immersion + IPA vapor drying, and its transmittance was 99.75% after being kept in the clean room for 240 hours. This element is anti-reflection coated, but has a reflection loss of 0.05% on one side by design. Further, since the sample thickness is thin, internal absorption / internal scattering can be almost ignored, and therefore the surface loss other than the reflection loss is 0.15% on both sides. The reason why the increase in loss due to neglect is slightly larger than the state of the substrate alone is presumed to be because the surface area of the thin film is larger than the surface area of the substrate.
[0037]
Although the organic system is slightly insufficient, it has a surface loss, but it can be used for excimer laser lithography.
[0038]
[Example 9]
An optical element L with a double-sided antireflection coating was prepared by using the substrate of φ30 × t3 mm produced by the production method of the optical element I and further by the same procedure as the production method of the optical element I. In this case, the heating process of the present invention is substituted by heating to 150 to 300 ° C. in the coating film forming process. The transmittance at 193.4 nm was measured. After the completion of processing, it was 99.85% immediately after IPA immersion + IPA vapor drying, and after being kept in the clean room for 240 hours, the transmittance was 99.80%. This element is anti-reflection coated, but has a reflection loss of 0.05% on one side by design. Further, since the sample thickness is thin, internal absorption / internal scattering can be almost ignored, so that the surface loss other than the reflection loss is 0.05% on both sides.
[0039]
This surface condition is very good and the value of the surface loss is very low. It can be used for excimer laser lithography.
[0040]
[Comparative Example 1]
Optical element A was prepared by a conventional optical element manufacturing method, and the internal transmittance at 193.4 nm was measured. Immediately after UV irradiation, it was 98.95%. After being kept in the clean room for 240 hours, the transmittance was 98.25%. Since the surface loss is large, it is not particularly suitable for excimer laser lithography. For example, since the optical elements of the ArF excimer stepper are close to 100 points for both the illumination lens system and the projection lens system, the overall transmittance is about 17% with only surface loss. This affects not only the throughput but also the imaging performance.
[0041]
[Comparative Example 2]
In addition to the conventional optical element manufacturing method, only HF treatment was performed. This optical element B had 99.45% at 193.4 nm immediately after UV irradiation, and 99.38% transmittance after being kept in the clean room for 240 hours. Although the transmittance is improved due to the effect of the HF treatment, it is considered that metal impurities remain particularly because the SiO 2 fine particle finish polishing is not performed. If the HF treatment time is lengthened, if it can be removed, the long-time HF treatment is not a good measure because it causes scratches on the surface and causes deterioration of the surface roughness.
[0042]
[Comparative Example 3]
In addition to the conventional optical element manufacturing method, only SiO 2 finish polishing was performed. This optical element C is relatively good at 99.56% at 193.4 nm immediately after UV irradiation, but the transmittance after holding for 240 hours in the clean room is 99.15%. . The transmittance is improved by the effect of the SiO 2 fine particle finish polishing, but in particular, since no HF treatment is performed, removal of metal impurities and organic impurities and reduction of surface defects are insufficient.
[0043]
[Comparative Example 4]
In addition to the conventional manufacturing method of an optical element, only heating was performed. This optical element D has a large surface loss of 99.15% at 193.4 nm immediately after UV irradiation, and the transmittance after being kept in the clean room for 240 hours becomes 98.58%. Although the transmittance is slightly improved due to the effect of the heat treatment, in particular, since the HF treatment is not performed, removal of metal impurities and organic impurities and reduction of surface defects are insufficient.
[0044]
【The invention's effect】
The optical element manufacturing method according to the present invention makes it possible to manufacture an optical element for optical lithography with reduced surface loss. The present invention is an indispensable technique for improving the performance of an illumination system for a KrF, ArF excimer laser stepper, and a projection lens that uses a light source in the ultraviolet region of 300 nm or less.
[Brief description of the drawings]
FIG. 1 is a graph plotting the relationship between surface roughness and transmittance (248.3 nm).
FIG. 2 is a graph plotting the relationship between surface roughness and transmittance (193.4 nm).
FIG. 3 is a graph plotting the relationship between cerium impurities and transmittance (248.3 nm).

Claims (3)

400nm以下の特定波長で用いられる紫外用光学素子において、波長193.4nmでの内部透過率が99.5%以上であり、光が入射する表面及び出射する表面に有機系不純物が存在せず、かつ有機系ガスの吸着が実質的にないことを特徴とする紫外用光学素子。  In the ultraviolet optical element used at a specific wavelength of 400 nm or less, the internal transmittance at a wavelength of 193.4 nm is 99.5% or more, and there are no organic impurities on the surface on which light is incident and the surface on which light is emitted, An ultraviolet optical element characterized by substantially not adsorbing organic gas. 請求項1に記載の紫外用光学素子において、該光学素子が高純度合成石英ガラス材料からなることを特徴とする紫外用光学素子。  The ultraviolet optical element according to claim 1, wherein the optical element is made of a high-purity synthetic quartz glass material. 請求項1に記載の紫外用光学素子において、前記光が入射する表面及び出射する表面の表面粗さが10Å以下であることを特徴とする紫外用光学素子。  2. The ultraviolet optical element according to claim 1, wherein the surface on which the light enters and the surface on which the light exits have a surface roughness of 10 mm or less.
JP26524297A 1996-09-30 1997-09-30 UV optics Expired - Lifetime JP4032462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26524297A JP4032462B2 (en) 1996-09-30 1997-09-30 UV optics

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-259948 1996-09-30
JP25994896 1996-09-30
JP26524297A JP4032462B2 (en) 1996-09-30 1997-09-30 UV optics

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007177847A Division JP4650460B2 (en) 1996-09-30 2007-07-06 Method for manufacturing ultraviolet optical element

Publications (2)

Publication Number Publication Date
JPH10158035A JPH10158035A (en) 1998-06-16
JP4032462B2 true JP4032462B2 (en) 2008-01-16

Family

ID=26544373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26524297A Expired - Lifetime JP4032462B2 (en) 1996-09-30 1997-09-30 UV optics

Country Status (1)

Country Link
JP (1) JP4032462B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101139266B1 (en) * 2002-12-03 2012-05-15 가부시키가이샤 니콘 Contaminant removing method and device, and exposure method and apparatus
JP2011170092A (en) * 2010-02-18 2011-09-01 Fujifilm Corp Optical element and method of manufacturing the same
JP2017216389A (en) * 2016-06-01 2017-12-07 信越石英株式会社 Silica glass member for hermetic seal of ultraviolet smd type led element
EP3467885A4 (en) * 2016-06-01 2020-01-22 Shin-Etsu Quartz Products Co., Ltd. Silica glass member for hermetic sealing of ultraviolet smd led element and method for manufacturing quarts glass member for ultraviolet led
JP6623968B2 (en) * 2016-08-03 2019-12-25 信越化学工業株式会社 Window material for optical element package, optical element package, manufacturing method thereof, and optical element package

Also Published As

Publication number Publication date
JPH10158035A (en) 1998-06-16

Similar Documents

Publication Publication Date Title
US5983672A (en) Method for manufacturing optical components for use in the ultraviolet region
JP5349697B2 (en) Reflective optical element and method of operating an EUV lithographic apparatus
US20090017257A1 (en) Processing method of glass substrate, and highly flat and highly smooth glass substrate
TW200407680A (en) Lithographic projection apparatus, device manufacturing method and device manufactured thereby
US7763399B2 (en) Removal of ionic residues or oxides and prevention of photo-induced defects, ionic crystal or oxide growth on photolithographic surfaces
TWI409235B (en) A method of removing debris from the surface of a glass substrate
JP3445120B2 (en) Exposure apparatus and device manufacturing method
JP2010507904A (en) Method for removing foreign matter from substrate surface
JP4032462B2 (en) UV optics
JP4650460B2 (en) Method for manufacturing ultraviolet optical element
JP4688966B2 (en) Mask blank manufacturing method and transfer mask manufacturing method
JP4051474B2 (en) Method for measuring transmittance of optical member for ultraviolet
JP2821074B2 (en) Manufacturing method of optical member for UV resistant laser
JPH10279322A (en) Heat treatment of quartz glass and heat treating apparatus therefor
JP3572425B2 (en) Sample for measuring transmittance, method for preparing the sample, and method for measuring transmittance
JPH1120034A (en) Manufacture of optical member, optical member, and projection aligner using optical member
JP3823408B2 (en) Optical element manufacturing method and optical element cleaning method
JP2001342041A (en) Optical part and its cleansing method
JP2001293442A (en) Method for cleaning optical device
JP2001201608A (en) Method for forming optical thin film, optical element and exposure system
JP2002323751A (en) Pellicle
JP4566547B2 (en) Mask blank manufacturing method and transfer mask manufacturing method
JP2003238208A (en) Method for washing optical element material, method for producing optical element with the optical element material, optical element, optical system having the optical element, optical instrument, aligner, and method for producing device
EP1710623B1 (en) Method of cleaning a substrate surface from a crystal nucleus
JPH0430519A (en) Treating apparatus of surface of substrate

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040917

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070703

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term