JPH0718012B2 - Surface selection treatment method - Google Patents

Surface selection treatment method

Info

Publication number
JPH0718012B2
JPH0718012B2 JP60254582A JP25458285A JPH0718012B2 JP H0718012 B2 JPH0718012 B2 JP H0718012B2 JP 60254582 A JP60254582 A JP 60254582A JP 25458285 A JP25458285 A JP 25458285A JP H0718012 B2 JPH0718012 B2 JP H0718012B2
Authority
JP
Japan
Prior art keywords
light
substrate
reaction
present
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60254582A
Other languages
Japanese (ja)
Other versions
JPS62116786A (en
Inventor
俊二 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60254582A priority Critical patent/JPH0718012B2/en
Publication of JPS62116786A publication Critical patent/JPS62116786A/en
Publication of JPH0718012B2 publication Critical patent/JPH0718012B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、表面処理を選択的に行なう方法、特に光を用
いて選択精度を高めた表面処理方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for selectively performing surface treatment, and more particularly to a surface treatment method in which light is used to enhance selection accuracy.

(従来の技術) 近年、光を用いたCVDやエツチング等の光励起プロセス
技術が、プロセスの低温化や簡略化をもたらすものとし
て盛んに開発されている。しかしながら従来の光励起プ
ロセス技術はすべて、光照射部に存在する基板上の反応
種と照射光との光化学反応に基づいているため、基板上
の光照射部には堆積やエツチング、ドーピング等の加工
を施し、非照射部には加工を施さないでいた。この選択
性を利用して、基板への光照射をパターン化することに
より、レジストレスの一回のプロセスでパターン化した
薄膜の形成を光励起プロセスで実現しうることが、例え
ば特開昭57−26445に記載された岡林になる発明で提案
され、その有用性が大いに期待される。しかし、このよ
うな従来提案されている光励起プロセス技術は、以下の
理由で必ずしも実用中のレジストプロセスをすべて代替
できる訳ではない。
(Prior Art) In recent years, photo-excited process technologies such as CVD using light and etching have been actively developed to bring about lower temperatures and simplification of processes. However, all of the conventional photoexcitation process technology is based on the photochemical reaction between the reactive species on the substrate existing in the light irradiation section and the irradiation light, and therefore, the processing such as deposition, etching, and doping is performed on the light irradiation section on the substrate. The non-irradiated part was not processed. It is possible to realize the formation of a patterned thin film by a resistless one-time process by a photoexcitation process by patterning light irradiation to a substrate by utilizing this selectivity, for example, Japanese Patent Laid-Open No. The invention was proposed in Okabayashi described in 26445, and its usefulness is highly expected. However, such conventionally proposed photoexcitation process technology cannot necessarily replace all the practical resist processes for the following reasons.

(発明が解決しようとする問題点) まず従来のレジストプロセスにおいては、レジストの有
無による加工の空間的な選択性が非常に高いのに対し、
光励起プロセス、特に光CVDにおいては、基板表面の光
化学反応に加えて、気相中の光化学反応も堆積に寄与す
るから、光照射部周辺にも気相中からの降り積もりに基
づく堆積を生じて選択性が劣化する。例えばSiH4を用い
る絶縁膜のCVDの場合には、以上の要因に加え、さらに
堆積物の構成分子が複数の反応種の化学反応により生ず
るという要因のため、金属やSi等のごとく単一の反応種
の分解反応のみで堆積するのに比べ、関与する反応種間
の気相中での平均衝突距離程度に堆積パターンが照射光
パターンから更に拡がる。
(Problems to be Solved by the Invention) First, in the conventional resist process, the spatial selectivity of processing depending on the presence or absence of resist is very high.
In the photoexcitation process, especially photo-CVD, in addition to the photochemical reaction on the substrate surface, the photochemical reaction in the gas phase also contributes to the deposition, and therefore the deposition around the light irradiation part also occurs due to the accumulation from the gas phase and is selected. Sex deteriorates. For example, in the case of CVD of an insulating film using SiH 4 , in addition to the above factors, the constituent molecules of the deposit are generated by the chemical reaction of a plurality of reactive species. Compared to the deposition by only the decomposition reaction of the reactive species, the deposition pattern further spreads from the irradiation light pattern to the average collision distance in the gas phase between the involved reactive species.

また、従来のレジストプロセスにおいては、レジストに
ポジ形とネガ形があるため、レジスト露光の光照射のパ
ターンと後工程のプロセス、例えばエツチングのパター
ンとを、同一か相補的かに自由に選択しうる利点がある
のに対し、既存の光励起プロセス技術では、光照射部に
のみ加工を施すいわばポジ形のプロセス技術のみが存在
し、従つてプロセスの自由度が狭くなるという欠点があ
つた。
Further, in the conventional resist process, since the resist has a positive type and a negative type, the light irradiation pattern for resist exposure and the post-process, for example, the etching pattern, can be freely selected to be the same or complementary. However, the existing photoexcited process technology has a drawback in that only a so-called positive process technology in which only the light irradiation portion is processed is present, and thus the degree of freedom of the process is narrowed.

そこで、本発明の目的は、以上述べた従来の光励起プロ
セス技術の欠点を除去し、選択性に優れ、光照射部にお
ける光化学反応の誘起を抑止する表面選択処理方法を提
供することにある。
Therefore, an object of the present invention is to eliminate the drawbacks of the conventional photoexcitation process technology described above, to provide a surface selective treatment method having excellent selectivity and suppressing the induction of a photochemical reaction in a light irradiation portion.

(問題点を解決するための手段) 前述の問題点を解決するために本発明が提供する表面選
択処理方法は、基板の表面に吸着して表面化学反応によ
り前記表面に処理を施す気体の雰囲気中で、前記表面の
所望部に選択的に光を照射することにより、前記表面化
学反応に関与する少なくとも一種類の吸着反応種を前記
所望部から脱離させて、前記吸着反応種の関与する表面
化学反応を前記所望部において抑止することを特徴とす
る。
(Means for Solving Problems) In order to solve the above-mentioned problems, a surface selective treatment method provided by the present invention is an atmosphere of a gas which is adsorbed on the surface of a substrate and treated on the surface by a surface chemical reaction. In this, by selectively irradiating a desired portion of the surface with light, at least one kind of adsorption reaction species involved in the surface chemical reaction is desorbed from the desired portion, and the adsorption reaction species is involved. It is characterized in that surface chemical reaction is suppressed at the desired portion.

(発明の作用・原理) 本発明は、以上の方法をとることにより従来技術の問題
点を解決した。従来の光励起プロセス技術では、基板上
の光照射部に存在するCVD材料やエツチヤント等の反応
種に光を照射して光化学反応を起こさせることにより、
光照射領域を選択的に加工した。これに対し、本発明に
おいては、基板上に吸着している反応種を光照射により
選択的に脱離させることにより、光照射部分だけ吸着反
応種の関与する化学反応を抑止し、ひいてはその部分の
加工を止めるから、従来の光励起プロセスでは困難であ
つたネガ形の光励起プロセス技術が可能となる。また、
従来の光励起プロセスでは多くの場合、気相中の光化学
反応により生成した活性種が光照射領域外の基板上に吸
着するので、光照射領域外にも加工が及び、選択性が低
下するのに対し、本発明では、反応に関与する吸着種そ
のものを基板上の光照射部から脱離させるから、基板上
における加工の有無が光照射の有無を忠実に反映して選
択性が飛躍的に高まる。
(Operation / Principle of the Invention) The present invention has solved the problems of the prior art by adopting the above method. In the conventional photoexcitation process technology, by irradiating light to a reactive species such as a CVD material or an etchant present in a light irradiation portion on a substrate to cause a photochemical reaction,
The light irradiation area was selectively processed. On the other hand, in the present invention, by selectively desorbing the reactive species adsorbed on the substrate by light irradiation, the chemical reaction involving the adsorbed reactive species is suppressed only in the light-irradiated portion, and by extension, in that portion. Since the processing is stopped, the negative-type photoexcitation process technology, which has been difficult with the conventional photoexcitation process, becomes possible. Also,
In the conventional photoexcitation process, in many cases, the active species generated by the photochemical reaction in the gas phase are adsorbed on the substrate outside the light irradiation region. On the other hand, in the present invention, since the adsorbed species itself involved in the reaction is desorbed from the light irradiation portion on the substrate, the presence or absence of processing on the substrate faithfully reflects the presence or absence of light irradiation, and the selectivity is dramatically increased. .

吸着種を一括して脱離させる方法としては、基板温度を
高める方法が最も広く知られているが、光照射による脱
離についても最近基礎検討が進みつつあり、例えばサー
フエス・サイエンス・レポート(Surface Science Repo
rts)誌、3巻(p.1〜p.105)に記載のチヤン(T.J.CHU
ANG)氏の論文にその現状の詳しい説明がある。本発明
では、光脱離を生ぜしめる光照射を空間的に選択的に行
ない、さらに吸着種による表面化学反応を光照射部以外
では並行して進行させる。このことにより従来の光励起
プロセスによる薄膜パターンの形成に比べ、はるかに空
間的選択性が向上するうえ、従来の光励起プロセスでは
困難であつたネガ形のプロセスが可能となりプロセスの
自由度が大幅に向上する。
The most widely known method for desorbing adsorbed species at once is to raise the substrate temperature, but desorption by light irradiation has also recently undergone basic studies, for example, the Surf Science Report (Surface). Science Repo
rts magazine, Volume 3 (p.1-p.105)
ANG) 's paper has a detailed explanation of the current situation. In the present invention, light irradiation that causes photodetachment is spatially and selectively performed, and surface chemical reactions due to adsorbed species are allowed to proceed in parallel except in the light irradiation section. As a result, the spatial selectivity is much improved compared to the conventional thin film pattern formation by the photoexcitation process, and the negative-type process, which was difficult with the conventional photoexcitation process, is possible and the process flexibility is greatly improved. To do.

(実施例) 以下図面を参照して、本発明による方法の実施例を説明
する。第1図は本発明の実施例を適用した表面処理装置
の構成図である。
Embodiment An embodiment of the method according to the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of a surface treatment apparatus to which an embodiment of the present invention is applied.

光入射用の窓5を有する反応セル6の内部に設置された
基板7を、弁10を通してガス供給系9から導入した反応
ガスの雰囲気にさらす。基板7は、基板7の表面におい
て、反応ガスの吸着種が所望の表面反応を生じうるよう
適当な温度に保たれている。このとき、この吸着種を光
脱離させるのに適した波長で発振するレーザ1の出射光
を、反射鏡2とレンズ4を介して基板7に照射する。選
択的な照射を行なうために所望の照射パターンを有する
マスク3の像をレンズ4により基板7の表面に結像させ
る。
The substrate 7 installed inside the reaction cell 6 having the window 5 for light incidence is exposed to the atmosphere of the reaction gas introduced from the gas supply system 9 through the valve 10. The substrate 7 is kept at an appropriate temperature so that the adsorbed species of the reaction gas can cause a desired surface reaction on the surface of the substrate 7. At this time, the substrate 7 is irradiated with the emitted light of the laser 1 which oscillates at a wavelength suitable for desorbing the adsorbed species through the reflecting mirror 2 and the lens 4. An image of the mask 3 having a desired irradiation pattern is formed on the surface of the substrate 7 by the lens 4 in order to perform selective irradiation.

第2図は、第1図の装置を用いてその実施例の方法によ
り選択的な成膜を行なう場合の基板部分の概略図であ
る。マスクパターンを基板7に転与したパターン化照射
光20を照射した部分では反応ガスの基板への吸着が抑え
られ、未照射部分に堆積膜21を堆積させることができ
る。堆積膜21のエツジ部分の分解能は、従来方法による
ものよりはるかに高い。
FIG. 2 is a schematic view of a substrate portion when selective film formation is performed by the method of the embodiment using the apparatus of FIG. Adsorption of the reaction gas to the substrate is suppressed in the portion irradiated with the patterned irradiation light 20 in which the mask pattern is transferred to the substrate 7, and the deposited film 21 can be deposited on the unirradiated portion. The resolution of the edge portion of the deposited film 21 is much higher than that of the conventional method.

具体的な例として、SiO2膜の形成の場合を、より詳しく
述べる。反応ガスとしてはテトラ・エトキシ・シラン
(TEOS.Si(OC2H5)4)を用いる。750℃程度の熱CVDでSiO2
膜が一括成膜されることは良く知られている。この反応
は気相及び表面での分解反応で、SiO2が析出する。本実
施例では、この際、SiとOの振動状態を共鳴的に励起す
る約1070cm-1や約800cm-1の波数の光をパターン化して
照射して、一旦吸着したSiO2を光照射部から脱離せしめ
て、光照射パターンを忠実に反映したパターン化したSi
O2膜を形成する。
As a specific example, the case of forming a SiO 2 film will be described in more detail. Tetra ethoxy silane (TEOS.Si (OC 2 H 5 ) 4 ) is used as the reaction gas. SiO 2 by thermal CVD at about 750 ℃
It is well known that a film is formed in a batch. This reaction is a decomposition reaction in the gas phase and on the surface, and SiO 2 is deposited. In this embodiment, this time, by irradiating by patterning the light of wave number of about 1070 cm -1 and about 800 cm -1 to resonantly excite a vibration state of Si and O, the light irradiation portion of SiO 2 which once adsorbed And patterned Si that faithfully reflects the light irradiation pattern.
Form an O 2 film.

次に、SiH4を反応ガスとした場合のSi膜の形成の例で
は、通常の場合に、400℃程度の熱CVDやプラズマCVD
で、SiHやSiH2のラジカルが生成して基板7に吸着し、
水素引き抜き反応を介してSi膜が形成される。本実施例
ではさらに、例えばSiHの振動吸収波数に当る約1970cm
-1の共鳴赤外光をパターン化して照射することによりSi
Hを照射領域から脱離し、また同様にSiH2も脱離させ
て、照射領域の成膜を抑止する。
Next, in the example of forming a Si film when SiH 4 is used as a reaction gas, in a normal case, thermal CVD or plasma CVD at about 400 ° C.
Then, SiH and SiH 2 radicals are generated and adsorbed on the substrate 7,
A Si film is formed through the hydrogen abstraction reaction. Further, in this embodiment, for example, the vibration absorption wave number of SiH is about 1970 cm.
-1 by patterning and irradiating the resonance infrared light
H is desorbed from the irradiation region and SiH 2 is also desorbed in the same manner to suppress film formation in the irradiation region.

一方、CVDではなく、エツチングに本発明を適用した実
施例を次に述べる。Si基板を反応ガスSF6を用いてエッ
チングできることは良く知られているが、SF6はその振
動モードである約950cm-1の波数の光を照射することに
より基板7から脱離させられるので、CVDの場合と同
様、照射した部分を除いてエツチングが進行する。この
ときの基板7の状態を第3図に示す。
On the other hand, an example in which the present invention is applied to etching instead of CVD will be described below. It is well known that the Si substrate can be etched by using the reaction gas SF 6 , but since SF 6 is desorbed from the substrate 7 by irradiating the vibration mode of light with a wave number of about 950 cm −1 , As in the case of CVD, etching progresses except the irradiated part. The state of the substrate 7 at this time is shown in FIG.

さらに第1図の実施例は酸化等の表面改質にも適用でき
る。Siを酸素雰囲気中で加熱することにより良質の熱酸
化膜が形成できることは良く知られている。一方、この
場合の反応ガスであるO2は、185nmの水銀ランプからの
光で脱離することも知られているので、上記の熱酸化中
に185nmの光を基板にパターン化して照射することによ
り、光照射部の酸化を抑止したパターンが形成できる。
このプロセスはポリシリコンの配線を形成するプロセス
を大幅に短縮することができる。
Furthermore, the embodiment of FIG. 1 can be applied to surface modification such as oxidation. It is well known that a good thermal oxide film can be formed by heating Si in an oxygen atmosphere. On the other hand, it is also known that O 2 which is a reaction gas in this case is desorbed by light from a 185 nm mercury lamp, so it is necessary to pattern and irradiate the substrate with 185 nm light during the above thermal oxidation. As a result, it is possible to form a pattern in which oxidation of the light irradiation portion is suppressed.
This process can greatly shorten the process for forming polysilicon wiring.

以上のエツチング工程と、CVD工程とを組み合わせれ
ば、エツチング除去した部分を、別のCVD材料で埋め込
めるのは当然である。
If the above etching process and the CVD process are combined, it is natural that the portion removed by etching can be embedded with another CVD material.

本発明と従来の光励起プロセスとを併用して、ネガ形プ
ロセスと、ポジ系プロセスとの両方を活用する実施例を
第4図を参照して説明する。まず従来の光励起プロセス
でマスクパターン転写による直接CVDで基板7上に例え
ば金属からなる堆積膜21を形成する。この場合のCVD材
料としてはM0(CO)6を用いパターン化照射光20としては
マスクパターンを転写したKrFエキシマレーザ光を用い
うる。次いで本発明を適用して堆積膜21のない部分に別
の堆積膜を堆積させる。このとき、LSI等のプレーナプ
ロセスでは成膜等を平担化する必要が高く、上記の金属
の堆積膜21に対応する平担化堆積膜22としては絶縁膜を
用いる必要がある。その場合には反応ガスとして先に例
を示したTEOSを用い、レーザ1を例えばNd:YAGレーザ光
と色素レーザ光との差周波の発生を可能にするレーザシ
ステムに切り換えてSiO2の振動準位に共鳴する約1070cm
-1や約800cm-1の光を、上記の金属堆積用と同一のマス
クを通して基板7に照射する。金属堆積と絶縁堆積での
照射光の波長の違いによるレンズ4の色収差により若干
の焦点調整は必要となるものの、ほとんど同一の光学系
で2つのプロセスを反応ガスと光源の切換えだけで可能
となる利点が生まれる。もちろん2つの引き続くプロセ
スで使用するパターン化照射光を同一の波長で用いうる
場合には、単に反応ガスの切換えだけで一切の機械的調
整なしにプロセスを進め得ることはもちろんである。
An embodiment in which the present invention and the conventional photoexcitation process are used together to utilize both the negative process and the positive process will be described with reference to FIG. First, a deposition film 21 made of, for example, a metal is formed on the substrate 7 by direct CVD by mask pattern transfer by a conventional photoexcitation process. In this case, M 0 (CO) 6 may be used as the CVD material, and KrF excimer laser light with a mask pattern transferred may be used as the patterned irradiation light 20. Then, the present invention is applied to deposit another deposited film on the portion where the deposited film 21 is not present. At this time, it is highly necessary to flatten the film formation in a planar process of LSI or the like, and it is necessary to use an insulating film as the flattening deposited film 22 corresponding to the above-mentioned metal deposited film 21. In that case, the above-mentioned TEOS is used as the reaction gas, and the laser 1 is switched to a laser system capable of generating a difference frequency between the Nd: YAG laser light and the dye laser light, and the oscillation level of SiO 2 is adjusted. About 1070 cm
−1 or about 800 cm −1 light is applied to the substrate 7 through the same mask as that for metal deposition described above. Although some focus adjustment is required due to the chromatic aberration of the lens 4 due to the difference in the wavelength of the irradiation light between metal deposition and insulating deposition, two processes can be performed by switching the reaction gas and the light source with almost the same optical system. Benefits are born. Of course, if the patterned irradiation light used in the two subsequent processes can be used at the same wavelength, it is of course possible to proceed with the process without any mechanical adjustment simply by switching the reaction gas.

以上、本発明の実施例をいくつかの場合について詳しく
述べ、本発明による利点を明確化したが、本発明が以上
の実施例にとどまらず、本発明の趣旨を逸脱しない範囲
で変形が可能なことは言うまでもない。
Although the embodiments of the present invention have been described in detail with respect to some cases and the advantages of the present invention have been clarified, the present invention is not limited to the above embodiments, and modifications can be made without departing from the spirit of the present invention. Needless to say.

例えば、以上の実施例ではパターン化した照射光を一種
類だけ用いた場合を示したが、他の光を必要に応じて一
括照射しうることや、同時に複数の光を同一のマスクを
通して転写して用いうをことは言うまでもない。また実
施例では、光脱離用の光としては、吸着種を振動的に励
起する赤外光を用いる場合を述べたが、本発明の光励起
脱離は、電子的励起によつても可能なことは言うまでも
なく、そのことに対応して、紫外光や真空紫外光を用い
得ることも自明である。
For example, in the above examples, the case where only one kind of patterned irradiation light was used was shown, but other lights can be collectively irradiated as needed, and a plurality of lights can be simultaneously transferred through the same mask. Needless to say, it is used. Further, in the examples, as the light for photodesorption, the case of using infrared light that vibratically excites the adsorbed species was described, but the photoexcitation desorption of the present invention can also be performed by electronic excitation. Needless to say, correspondingly, it is obvious that ultraviolet light or vacuum ultraviolet light can be used.

(発明の効果) 以上に詳しく説明したように、本発明によれば、選択性
に優れ、光照射部における光化学反応の誘起を抑止する
表面選択処理方法が提供できる。
(Effects of the Invention) As described in detail above, according to the present invention, it is possible to provide a surface selective treatment method having excellent selectivity and suppressing the induction of a photochemical reaction in a light irradiation part.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例を適用する表面処理装置の構成
図、第2図は本発明を成膜に適用する実施例により表面
処理が施される基板の断面図、第3図は本発明をエツチ
ングに適用する実施例により表面処理が施される基板の
断面図、第4図は本発明の方法と従来の光励起プロセス
技術の表面処理方法とを併用して2種類の膜をパターン
化して平担に成膜した基板の断面図である。 1…レーザ、2…反射鏡、3…マスク、4…レンズ、5
…窓、6…反応セル、7…基板、9…ガス供給系、10…
弁、20…パターン化照射光、21…堆積膜、22…平担化堆
積膜。
FIG. 1 is a block diagram of a surface treatment apparatus to which an embodiment of the present invention is applied, FIG. 2 is a cross-sectional view of a substrate which is surface-treated by an embodiment to which the present invention is applied to film formation, and FIG. FIG. 4 is a cross-sectional view of a substrate which is surface-treated according to an embodiment in which the invention is applied to etching. It is sectional drawing of the board | substrate which formed the film flatly. 1 ... Laser, 2 ... Reflector, 3 ... Mask, 4 ... Lens, 5
... window, 6 ... reaction cell, 7 ... substrate, 9 ... gas supply system, 10 ...
Valve, 20 ... patterned irradiation light, 21 ... deposited film, 22 ... flattened deposited film.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭56−108880(JP,A) 特開 昭52−70991(JP,A) 特開 昭52−127765(JP,A) 特開 昭55−141568(JP,A) 特開 昭59−129773(JP,A) 特開 昭59−129774(JP,A) ─────────────────────────────────────────────────── --- Continued from the front page (56) References JP-A-56-108880 (JP, A) JP-A-52-70991 (JP, A) JP-A-52-127765 (JP, A) JP-A-55- 141568 (JP, A) JP 59-129773 (JP, A) JP 59-129774 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基板の表面に吸着して表面化学反応により
前記表面に処理を施す気体の雰囲気中で、前記表面の所
望部に選択的に光を照射することにより、前記表面化学
反応に関与する少なくとも一種類の吸着反応種を前記所
望部から脱離させて、前記吸着反応種の関与する表面化
学反応を前記所望部において抑止することを特徴とする
表面選択処理方法。
1. Participation in the surface chemical reaction by selectively irradiating a desired part of the surface with light in an atmosphere of a gas which is adsorbed on the surface of the substrate and treats the surface by a surface chemical reaction. The surface selective treatment method, wherein at least one kind of adsorption reaction species to be desorbed is desorbed from the desired portion to suppress the surface chemical reaction involving the adsorption reaction species in the desired portion.
JP60254582A 1985-11-13 1985-11-13 Surface selection treatment method Expired - Lifetime JPH0718012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60254582A JPH0718012B2 (en) 1985-11-13 1985-11-13 Surface selection treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60254582A JPH0718012B2 (en) 1985-11-13 1985-11-13 Surface selection treatment method

Publications (2)

Publication Number Publication Date
JPS62116786A JPS62116786A (en) 1987-05-28
JPH0718012B2 true JPH0718012B2 (en) 1995-03-01

Family

ID=17267037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60254582A Expired - Lifetime JPH0718012B2 (en) 1985-11-13 1985-11-13 Surface selection treatment method

Country Status (1)

Country Link
JP (1) JPH0718012B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2968657B2 (en) * 1992-02-18 1999-10-25 日本電気株式会社 Thermal CVD method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108880A (en) * 1980-01-30 1981-08-28 Fujitsu Ltd Selectively etching method for silicon oxide film

Also Published As

Publication number Publication date
JPS62116786A (en) 1987-05-28

Similar Documents

Publication Publication Date Title
EP0168768B1 (en) Dry etching process and apparatus
US5344522A (en) Pattern forming process and process for preparing semiconductor device utilizing said pattern forming process
US4643799A (en) Method of dry etching
JPH0691014B2 (en) Semiconductor device manufacturing equipment
JPH07273023A (en) Method of application of photoresist
JPH0718012B2 (en) Surface selection treatment method
JPS6041229A (en) Manufacture of semiconductor device and manufacturing equipment thereof
JPS61228633A (en) Formation of thin film
JPH11292551A (en) Production of synthetic quartz glass and synthetic quartz glass produced thereby
JPS61216449A (en) Method and apparatus for forming pattern thin-film
JP2770578B2 (en) Photo CVD method
JP2968657B2 (en) Thermal CVD method
JP2840419B2 (en) Light treatment method and light treatment device
JPS62272540A (en) Manufacture of semiconductor
JP2890693B2 (en) Optical reversal CVD method
JPH0555186A (en) Surface processing method
JPS6167920A (en) Photochemical reaction device
JPS63110A (en) Formation of thin film
JP2670465B2 (en) Fine processing method
JPH0578846A (en) Photo-cvd device
JPH0628235B2 (en) Method for forming bit pattern of thin film device
JPS6142141A (en) Selective photo chemical reaction apparatus
JPS5967623A (en) Processing method for semiconductor device
JP2765259B2 (en) Thermal CVD method
JP3627187B2 (en) Method for forming fine pattern and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term