JPS62105427A - Manufacture of glass-coated semiconductor chip - Google Patents

Manufacture of glass-coated semiconductor chip

Info

Publication number
JPS62105427A
JPS62105427A JP24602385A JP24602385A JPS62105427A JP S62105427 A JPS62105427 A JP S62105427A JP 24602385 A JP24602385 A JP 24602385A JP 24602385 A JP24602385 A JP 24602385A JP S62105427 A JPS62105427 A JP S62105427A
Authority
JP
Japan
Prior art keywords
glass
groove
forming
substrate
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24602385A
Other languages
Japanese (ja)
Other versions
JPH0262944B2 (en
Inventor
Yasuo Sakaba
泰男 酒葉
Tsuneo Arai
新井 恒夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP24602385A priority Critical patent/JPS62105427A/en
Publication of JPS62105427A publication Critical patent/JPS62105427A/en
Publication of JPH0262944B2 publication Critical patent/JPH0262944B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To reduce the unnecessary use of glass material to no avail as well as to decrease the generation of poor characteristics in reverse direction such as the deterioration in bias and the like by a method wherein a glass-coated layer is not formed on all over the main surface of a semiconductor substrate, and the glass-coated layer is formed only on the surface and the circumferential part of a groove. CONSTITUTION:SiO2 films 12 and 13 are formed by thermal oxidization on the main surface of a silicon substrate 1 consisting of an N<+> type substrate region 2, an N-type region 3 and a P<+> type region 4. A deep groove 6 reaching the N<+> type region 2 is formed in a shallow groove 14, and a P-N junction 5 is exposed. Then, a glass-coated layer 7 is formed on the surface of the grooves 6 and 14 by performing an electrophotoretic method. Subsequently, the circumferential part of the glass-coated layer 7 is removed by performing a selective etching using the mixed acid of hydrofluoric acid and hydrochloric acid, and at the same time, the SiO2 film 12 is also removed by etching, and an aperture 8 to be used for electrode is formed. Then, Ni electrodes 9 and 10 are formed in the aperture part 8 on the remaining part 7a of the glass-coated layer 7 and the lower surface of the substrate 1 by performing an electroless plating method. Then, the substrate 1 is cut along a groove 15 which functions as a marker line, and it is separated into diode chips 11c.

Description

【発明の詳細な説明】 〔産業上の第11用分野] 本発明は、溝sK蕗由するpn接合をガラス被徨したダ
イオードチップ等のガラス被榎半導体チップの製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Eleventh Industrial Field] The present invention relates to a method of manufacturing a glass-covered semiconductor chip such as a diode chip in which a pn junction extending through a groove sK is covered with glass.

〔従来の技術〕[Conventional technology]

ガラス被覆ダイオードチップの代表的な製造方法として
m7図に示す方法と、第8図に示−「方法とが知ら4て
いる。第7図に示す方法では、第7図図囚示す如<、n
  型基板領域(2)の上にエピタキシャル成長法でn
型領域(3)ヲ設けたシリコン基板…を用意する。次に
、硼素を拡散ざぜてn型領域(41を形成し、更にライ
フタイムキラーとして金な拡散させる。Cれにより、高
速スイッチング特性ン有する整流ダイオードを榴成でき
るp −n−n  二りm造の基板中が得らjる。三層
構造が形成された後の各領域の厚みは、p 型@域(4
)が20μm、n型領域(3;が20μm、n  型基
板領域(21が240μmである。このタイオードでは
Typical manufacturing methods for glass-covered diode chips include the method shown in Figure 7 and the method shown in Figure 8. n
n on the type substrate region (2) by epitaxial growth.
A silicon substrate provided with a mold region (3) is prepared. Next, boron is diffused to form an n-type region (41), and gold is further diffused as a lifetime killer. After the three-layer structure is formed, the thickness of each region is equal to that of the p-type region (4
) is 20 μm, the n-type region (3; is 20 μm, and the n-type substrate region (21) is 240 μm. In this diode.

リーチスルー降伏(逆電圧EJJ加時に、pn接合(5
;から王としてn型領域(3)に伸びる空乏1−がn 
型領域(2)に到達することによって@発、ざ才する降
伏埃象)で耐Fトか却定されるようにn型領域(3)の
比抵抗と厚み令・設訂している。
Reach-through breakdown (when reverse voltage EJJ is applied, p-n junction (5
The depletion 1- extending from ; to the n-type region (3) as a king is n
The specific resistance and thickness of the n-type region (3) are set so that the resistance to F is determined by the breakdown dust phenomenon that occurs upon reaching the type region (2).

次に、第7図(B+に示す如く、弗酸−硝酸系の混酸ン
用いたエツチングにより、n 型領域(21に達する溝
(61を形成1〜.この溝(6)の側壁にp +1接合
+51ケ露出させる。
Next, as shown in FIG. 7 (B+), a groove (61) reaching the n-type region (21) is formed by etching using a hydrofluoric acid-nitric acid mixture. Junction +51 pieces are exposed.

次に%第7図1etに示す如く、溝(61をもてるシリ
コン基板(1)の−力の主表面十K PbO糸パッシベ
ーションガラスからなるガラス被覆層(71を老成する
Next, as shown in FIG. 7, a glass coating layer (71) made of passivation glass made of PbO thread is grown on the main surface of the silicon substrate (1) having grooves (61).

なお、ガラス被覆層(7)は、平坦T・ない面に対して
も比較的均一な厚さのガラス層ケ形成1・きるm気泳動
法(溶液中vcM濁【またガラス粉末に電荷ケ帯びさせ
、溶液中に配したシリコン基板ンー力の電極にして溶液
中に電界ケ発牛さ+!″、もよ5ど両顎メッキのように
ガラス粉末をシリコン基板に付着させる方法)を用い又
ガラス粉末ケ基板+1.lに付着させ、その後、熱処理
を施してガラス粉末ン焼成することにより形成する。
In addition, the glass coating layer (7) is formed by a method of forming a glass layer with a relatively uniform thickness even on a flat or non-flat surface. Then, an electric field is generated in the solution using a silicon substrate placed in a solution as an electrode. It is formed by attaching a glass powder to a substrate, followed by heat treatment and firing of the glass powder.

次に、第7図の)K示す如く、弗酸と塩酸の混酸によジ
ガラス被檀Ml(717<エツチングして、電極用の開
口+81を形成する。
Next, as shown in FIG. 7), the diglass substrate M1 (717) is etched with a mixed acid of hydrofluoric acid and hydrochloric acid to form an opening +81 for the electrode.

次に、第7図IE+に示す如く、基板(1)のシリコン
露出面に無電界メッキ法によt) Ni @極19+ 
001を形成する。その後、溝5(61の底部で基板t
xtを切断して、ダイオードチップ+1la)Y5’2
成させる。
Next, as shown in FIG. 7 IE+, Ni @pole 19+ is applied to the exposed silicon surface of the substrate (1) by electroless plating.
001 is formed. Then, at the bottom of the groove 5 (61), the substrate t
Cut xt and diode chip +1la) Y5'2
make it happen

−万、第8図に示す別の従来方法においては。- 10,000, in another conventional method shown in FIG.

筐す、第8図面に示す如く、第7図(んの場合と同様に
、n 型基板@埴(21とn型領智(3)とp 型領域
(4)とから成るシリコン基板Ill馨用意し、pUo
熱酸化によるS 40.膜021(13)を形成する。
As shown in FIG. Prepare, pUo
S by thermal oxidation 40. A film 021 (13) is formed.

次に、#!8図(Blに示す如く、第7図(81ど同様
fc溝(6)馨設ける。
next,#! As shown in Figure 8 (Bl), the fc groove (6) is provided as in Figure 7 (81).

次に、#!8m8図に示す如く、ガラス被覆層(7)ケ
′R4気泳動法で形成する。電気泳動法では、給縁膜で
ある8i0.膜a′L!Ja漕の土にはt号とんとガラ
ス粉末は付着しないので、@(61に選択的にガラス被
覆層(7)が形成される。なお、溝(6夛に隣接するS
in、膜口(の周辺部にも電気泳動法における端部電界
集中効架により、ガラス被覆層(71が形成さjる。
next,#! As shown in Figure 8m8, the glass coating layer (7) is formed by the R4 pneumophoresis method. In the electrophoresis method, 8i0. Membrane a′L! Since the glass powder does not adhere to the soil in the Ja row, a glass coating layer (7) is selectively formed on the groove (61).
In addition, a glass coating layer (71) is also formed around the membrane opening (71) by an end electric field concentration effect frame in the electrophoresis method.

次に、第8図の)K示す如く、弗酸系のエツチング液に
より、Ji!i1辺部馨残して8701膜07JYエツ
チング除去1.て電極用の一口(81を形成する。この
時。
Next, as shown in Figure 8), Ji! Remove 8701 film 07JY by etching leaving 1 side edge 1. At this time, form a hole (81) for the electrode.

基板illの下面のSin、膜α滲も除去する。Sin and film α leakage on the lower surface of the substrate ill are also removed.

次に、第8mmに示す如く、電極馨形成し、しかる抜溝
(6)において切劫分馴し、ダイオードチップ(llb
)馨完成さぜる。
Next, as shown in the 8th mm, an electrode hole is formed, the cutting groove (6) is adjusted, and a diode chip (llb) is formed.
) Kaoru is completed.

〔発明が解決しようとする問題漬〕[The problem that the invention attempts to solve]

とCろで、第7図の従来方法においては、n型領域の上
面にはガラス被覆層(7)が厚く形成ざjるが、パッシ
ベーション膜として重要な溝(6)の表面にはガラス被
覆層(7)が相対的に薄く形成さ′t12てし筐う。こ
のため、ピンホール等のない十分な厚さのガラス被覆層
(71を溝(61に形成するためには、n型領域(4)
の上面には必要周上のガラス被覆層(7)音形成してし
すうことになる。従って、ガラス材料がむだになると共
にガラス核種の作業時間が延びてし筐う。
In the conventional method shown in FIG. 7, a thick glass coating layer (7) is formed on the upper surface of the n-type region, but a glass coating layer (7) is not formed on the surface of the groove (6), which is important as a passivation film. The layer (7) is formed to be relatively thin. Therefore, in order to form the glass coating layer (71) into a groove (61) with a sufficient thickness without pinholes, the n-type region (4) must be
A glass coating layer (7) is formed around the required circumference on the upper surface. Therefore, the glass material is wasted and the working time for the glass nuclide is extended.

−刀、第8図の従来フッ法によ才1は、第、7図の方法
の間粗汀解決ざjる。1−7か1.なから、紀8図の方
法で作表しまたチップ1llb3 k便用したダイオー
ド製品では、逆亀圧団加中に耐圧が劣化する均象(」ソ
下、バイアス劣化という)が発生しやすいことが判明し
た。バイアス劣化は1.逆電圧団加時にpn接合(51
から伸びる空乏層がn 型領域(21に到達する前に降
伏するように設#i′さねた非リーチスルー降伏タイプ
の製品よりもり〜チスルー降伏タイプの製品において、
顕著に観察さjた。ソた、n型領域(41が浅い場合に
多く発生した。
- The sword, according to the conventional method of Fig. 8, is roughly resolved between the methods of Fig. 7. 1-7 or 1. Therefore, in diode products that are tabulated using the method shown in Fig. 8, and that use chip 1llb3k, symmetry (hereinafter referred to as bias deterioration) is likely to occur, in which the withstand voltage deteriorates during application of reverse turtle pressure. found. Bias deterioration is 1. When a reverse voltage group is added, a p-n junction (51
In a reach-through breakdown type product, the depletion layer extending from the n-type region (21) is designed to break down before reaching the n-type region (21).
It was clearly observed. Sota, n-type region (41 often occurred when shallow).

そこで本発明の目的は、逆方向特性及び信頼性の優れた
ガラス被種牛導体チップ全容易に製造す()方法を提供
するCとにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for easily manufacturing a glass conductor chip having excellent reverse direction characteristics and reliability.

〔藺租点を解決するための手段〕[Means to resolve disputes]

上述の如き間趙点を解決し、土泥目的を達成するための
本発明に係わるガラス被覆半導体チップの製造方法は、
半導体基鈑に少なくとも且つのpn接合を形成し、且つ
この半導体基板上の絶縁膜音形成する工程と、前記半導
体基板の一力の主表面に、前記pn接合を露出戸ぜる深
さに溝(〆形成し。
A method for manufacturing a glass-coated semiconductor chip according to the present invention in order to solve the above-mentioned problems and achieve the objectives of the present invention is as follows:
A step of forming at least one pn junction on a semiconductor substrate and forming an insulating film on the semiconductor substrate, and forming a groove at a depth to expose the pn junction on one main surface of the semiconductor substrate. (form the finale.

月つCの溝の形成前又は後においてCの溝の周縁部の前
記絶縁膜な除去する工程と、前記溝の表面及び前記絶縁
膜が除去された前記溝の周縁部に市鉋泳動@により前記
絶縁膜よりも厚い保護用ガラス被積層を形成1石工程と
、前記溝に囲1flている領域の薊記ガラス被檀層の一
部及び前記ilP!縁膜な同時又は別々に除去すること
により、前日ピガラス核種)−の残部に囲筺jた開ロケ
形成する工程と。
Before or after the formation of the groove C, the insulating film is removed from the periphery of the groove C, and the surface of the groove and the periphery of the groove from which the insulating film has been removed are coated with a horizontal plane. A protective glass layer thicker than the insulating film is formed in one step, and a part of the glass layer surrounding the groove and the ilP! A step of forming an open locus enclosed in the remainder of the previous day's pygalus nuclide by simultaneously or separately removing the membrane.

前記開口によって露出さおだ前記半導体基板の表面に電
極な形成する工程と、前ト溝又はこの溝よジも外側にお
いて前記牛導体基孜ケ切断する工程と4−含む。
4. A step of forming an electrode on the surface of the semiconductor substrate exposed by the opening, and a step of cutting the conductor substrate outside the front groove or the groove.

〔作 用] 上記本発明の方法では、ガラス被a層を半導体基板の一
部の主表面の全面には形成しないので。
[Function] In the method of the present invention described above, the glass covering a layer is not formed over the entire main surface of a part of the semiconductor substrate.

第7図の従来7J法と比べて、ガラス材料のむだが少な
く、ガラス核種の作業時間も短い。しかも、溝のMll
縁部に絶縁膜が存在しないので、第8因の従来方法に比
べて、バイアス劣化等の逆方向特性不良の発生が少t「
い。
Compared to the conventional 7J method shown in FIG. 7, there is less waste of glass material and the working time for glass nuclides is shorter. Moreover, Mll of the groove
Since there is no insulating film on the edge, there is less occurrence of reverse characteristic defects such as bias deterioration compared to the conventional method of factor 8.
stomach.

〔実施例〕〔Example〕

次に、第1図〜第5図を参照して本発明の実施例に係わ
るガラス核種ダイオードチップの製造方法を説明する。
Next, a method for manufacturing a glass nuclide diode chip according to an embodiment of the present invention will be described with reference to FIGS. 1 to 5.

筐す、第1図人1に示す如<、  n  型基板細線(
21とn型領域(3)とp 型領域(41とから成るシ
リコン基板il+の一部及び他方の主表面に熱酸化のS
in、膜0Z03を有するものを、第8図偽)と内1M
!に形成てる。
As shown in Figure 1, the n-type board thin wire (
21, an n-type region (3), and a p-type region (41), and the other main surface is thermally oxidized with S.
In, those with membrane 0Z03 are shown in Figure 8 (false) and inner 1M.
! It is formed in

次に、第1図(Blに示すよりに、弗酸−硝酸系の混酸
を用いたエツチングによって、基板(11の土面に浅い
溝a明を形成すると同時に基板(11の下面に洩いマー
カライン用@a階を形成する。土面の溝旧!は。
Next, as shown in Figure 1 (Bl), shallow grooves were formed on the soil surface of the substrate (11) by etching using a mixed acid of hydrofluoric acid and nitric acid, and at the same time, leakage markers were placed on the bottom surface of the substrate (11). Form the floor @a for the line.The groove on the soil surface is old!

p+型@ 埴(41の一部を除去をしているが、 8i
0.膜u力を除去することを目的とてるものであるから
、pn接合(5)を露出さぞないように十分に浅く形成
されている。なお、Cのmatuは810.膜Q41を
島状に残存させるために環状に形成されている。下面の
@a〜は、基板(11を複数のチップに切断するときの
マーカラインを与オるものである。
p+ type @ Hani (part of 41 has been removed, but 8i
0. Since the purpose is to remove the film U force, it is formed sufficiently shallow so as not to expose the pn junction (5). Furthermore, the matu of C is 810. It is formed in an annular shape so that the film Q41 remains in an island shape. @a~ on the bottom surface provides a marker line when cutting the substrate (11) into a plurality of chips.

次に、第1図(O及び第2図に示す如く、弗酸−硝酸系
の混酸を用いたエツチングによって、浅い溝■の中にn
 型領域(21に違する深い溝(6;を形成し、pn接
合(5;を露出さぜる。溝i61041051はシリコ
ンウェハ中の個々のダイオードチップの区画に対応する
ように網状に形成されている。従って、5iO1膜O2
は島状に残存し、溝+61(141によって環状に四筐
打ている。
Next, as shown in FIG. 1 (O) and FIG.
A deep groove (6) different from the mold region (21) is formed to expose the pn junction (5). Therefore, 5iO1 film O2
remains in the form of an island, with grooves +61 (141) forming a circular ring.

次に、第1図のIK示す如く、溝(6)■の表面士にガ
ラス被a層(7;を電気泳動法により形成する。第8図
(Oと同じ<、StO,膜Q21の土には、その周辺部
を除いてはほとんどガラス被積層(7)は形成さjない
。電気泳動法でガラス粉末を付着さゼるJ稈におい”c
、 #Mとしてはイングロビルアルコールが使用され、
ガラス粉床に電荷を付与する電解質としてはアンモニア
筐たは専用の界面活性剤が使用される。
Next, as shown in FIG. 1, a glass coating layer (7) is formed on the surface of the groove (6) by electrophoresis. Almost no glass layer (7) is formed except in the surrounding area.
, Inglobil alcohol is used as #M,
An ammonia casing or a dedicated surfactant is used as the electrolyte to charge the glass powder bed.

次に、第1図(袖に示す如く、弗酸と塩酸の混酸により
ガラス被積層(71の周に部分(一部)を選択的にエツ
チング除去し、同時yc、8i0.膜aZもすべてエツ
チング除去して%電極用の開口(8;を形JiWてる。
Next, as shown in Fig. 1 (sleeve), a portion (part) of the periphery of the glass laminated layer (71) was selectively etched away using a mixed acid of hydrofluoric acid and hydrochloric acid, and at the same time, all of the yc, 8i0, and film aZ were also etched. Remove the opening (8) for the electrode.

Cハと同時に基板+IIの下面のS+0.膜(13)も
エツチング除去する。
At the same time as S+0 on the bottom surface of substrate +II. The film (13) is also etched away.

次に、第1図jp+及び第3図に示す如<、!li板+
11の土面のガラス被檀層(71の残部(7a)の開口
(81内と。
Next, as shown in Fig. 1 jp+ and Fig. 3, <,! li board +
The opening (within 81) of the glass covered layer (remaining part (7a) of 71) on the soil surface of No. 11.

基板(1;の下面とに無′fM界メッキ法によりNi電
極(91a情を形成し、その後、マーカラインと(7て
の溝ローに沿って基板(1)を切断し1個々のダイオー
ドチップ(llc)に分離する。
A Ni electrode (91a) was formed on the bottom surface of the substrate (1) by a fM fieldless plating method, and then the substrate (1) was cut along the marker line and the groove rows (7) to form individual diode chips. Separate into (llc).

ダイオードチップ(IIC)を第1図〜m3図の方法で
作製すると、ガラス粉末を溝(6)とその周縁部にのみ
付着させるので、ガラス材料のむだが少なく、ガラス粉
末を付着させるだめの作業時間が旬い。筐た。ガラス被
積層残部(7a)の周縁即ち開口(8)の周縁部の厚さ
が第7図の従来方法の場合よりは薄くなるので、開口(
81の′!′f#度及び杓状性において第7図の従来方
法より勝っている。呼だ、 Sin。
When the diode chip (IIC) is manufactured by the method shown in Figs. 1 to 3, glass powder is attached only to the groove (6) and its periphery, so there is less waste of glass material, and there is no work required to attach the glass powder. The time is right. It was a cabinet. The thickness of the periphery of the glass remaining portion (7a), that is, the periphery of the opening (8) is thinner than in the conventional method shown in FIG.
81'! It is superior to the conventional method shown in FIG. 7 in terms of 'f# degree and ladle-likeness. Call me, Sin.

mG力が残存していないので、逆方向不良が少なくな!
lls%にバイアス劣化が大幅に減少し、特性面及び信
頼性の面で第8図の従来例より明らかに優jている。
Since there is no mG force remaining, there are fewer defects in the reverse direction!
Bias deterioration is significantly reduced to 12%, and it is clearly superior to the conventional example shown in FIG. 8 in terms of characteristics and reliability.

逆方向不良が減少する理由は明確に&ま4!11ってい
ないが1次のように考えている。第8図(Dの一部を拡
大図示する第4図の従来例のダイオードチップ(iib
)の場合、Sin、膜0力はシIノフンに比べて熱膨張
係数が一桁程度小さいため、S10.膜a力とp+型領
領域141界面付近には、 (t”Iらの熱膨張係数の
違いに伴り残留歪が存在する。この残留歪は、SrO,
膜0力の端部112a)に集中して生じ、11翰の近辺
でシリコン結晶に対てる残留φの影響が残寸り、残留歪
の影響がpn接合寸で及ぶと逆方向不良モードとなって
埃わする。斬に、領域(Itilがシリコン結晶の主表
面と1111面との境界角部に位置するために、シリコ
ン結晶か残留歪の影堺を受けや丁〈。
The reason for the decrease in reverse direction defects is not clearly defined, but it is thought to be of the first order. FIG. 8 (The conventional diode chip of FIG. 4 showing an enlarged view of a part of D (iib)
), since the thermal expansion coefficient of Sin and membrane zero force is about an order of magnitude smaller than that of Sinofun, S10. There is residual strain near the interface between the film a force and the p+ type region 141 due to the difference in thermal expansion coefficients of (t''I, etc.).This residual strain is
It occurs concentrated at the edge 112a) where the film has zero force, and the influence of residual φ on the silicon crystal remains in the vicinity of the 11th wire, and when the influence of residual strain reaches the pn junction dimension, it becomes a reverse failure mode. It's dusty. In particular, since the region (Itil) is located at the corner of the boundary between the main surface of the silicon crystal and the 1111 plane, the silicon crystal is exposed to the influence of residual strain.

pn接合(51に残留歪の影響が及ぶ確率が高い。[2
かも、特性変動に影響の大きいpn接合(5)の露出部
(5a)を含む溝(6)の表面が810.膜の端部(1
2a)に近いため、残留φの影響が及ぶ確率が高い。寸
だ、8市鵞膜Oa中に存在するNaイオン等のグラス電
荷による′#市ポテンシャルの影響も、溝(6)の表面
に及びや丁〈、逆方向不良モードの一因となる。
There is a high probability that residual strain will affect the pn junction (51) [2
In addition, the surface of the groove (6) including the exposed portion (5a) of the p-n junction (5), which has a large effect on characteristic fluctuations, is 810. The edge of the membrane (1
Since it is close to 2a), there is a high probability that the influence of residual φ will be exerted. In fact, the influence of the potential caused by glass charges such as Na ions present in the 8-layer Oa also affects the surface of the groove (6), contributing to the reverse failure mode.

−万、第1図(bの一笥iを拡大図示する第25図のダ
イオードチップ(IIC)の場合、 Srow膜021
は除去ざjている。従って、手記残留歪や電荷の悪評≦
書はなく、その分、逆方向不良モードの発生は少tr(
なる。
- In the case of the diode chip (IIC) in Figure 25, which shows an enlarged view of part i in Figure 1 (b), the Srow film 021
is being removed. Therefore, the negative reputation of residual distortion and electric charge≦
Therefore, the occurrence of reverse direction failure mode is less tr(
Become.

〔変形例〕[Modified example]

不発明け上述の実施例に限定されるものでなく。 The invention is not limited to the embodiments described above.

例夕げ次の変形例が可能−t、cものである。For example, the following variants are possible.

lal  *Q4Jを形成してp 型餉砿(41寸でエ
ツチングせずに、##Q41に相当する部分のSin、
膜ozのみを第6図に示す如くエツチングで除法して、
Cの部分と溝(6)の表面とにガラス被棲層の残部(7
a)を設け、第6図に示すようにダイオードチップ(l
id)を作製してもよい。たたしこの場合、 8rOH
展(12+のエツチングを?T10!ilの形成工程と
同時に行うcとができないので、I!I!(15+を形
成する場合には、7オトエツチングの工程(]オドレジ
スト塗布、Iil!光、埃像、エツチング、フォトレジ
スト除去といった一連の選択エツチングの工程)が1回
追加されることになる。
lal * Form Q4J and make a p type porcelain (without etching at 41 cm,
Only the film oz was removed by etching as shown in Figure 6.
The remainder of the glass encrusting layer (7
a) and a diode chip (l) as shown in FIG.
id) may be created. In the case of Tashiko, 8rOH
Since it is not possible to perform the etching of 12+ at the same time as the formation process of T10!il, when forming I!I! A series of selective etching steps (image, etching, photoresist removal) will be added once.

(bl  溝(I41のエツチング工程あるいは第6図
に示す如く溝041に対応するようにS 102勝(1
21をエツチング除去するJ柳は、深い溝(61の形成
工程の後工程とし2てもよい。
(bl groove (I41 etching process or S102 win (1) corresponding to groove 041 as shown in Figure 6)
The etching process 21 may be performed as a post-step process for forming the deep grooves 61.

+CI  シリコン基&+1+としてエピタキシ丁ルウ
エバを使用した例を示したが、n型基板にp型佃域十 とn型領域を不純物拡散で形成してp−n−n”の三層
ダイオード構造を作與してもよい。
+CI Although we have shown an example of using an epitaxial rubber as the silicon base &+1+, it is also possible to form a p-n-n" three-layer diode structure by forming a p-type region and an n-type region on an n-type substrate by impurity diffusion. You may give it.

(di  ダイオード以外のトランジスタやサイリスタ
にも本発明を適用することができる15寸たり一チスル
ー降伏で耐圧が規定さtているタイプの半導体チップの
場合に本発明は顕著な改!効JJが得ら4ているが、リ
ーチスルー降伏に至る罰にアバランシェ降伏を起C丁非
リーチスルー降伏タイプの半導体チップにも適用できる
(The present invention can be applied to transistors and thyristors other than diodes.In the case of a type of semiconductor chip whose breakdown voltage is specified by a single-chip breakdown in 15 cm, the present invention has a remarkable improvement effect JJ. However, it can also be applied to non-reach-through breakdown type semiconductor chips, in which avalanche breakdown is used to punish reach-through breakdown.

〔発明の効果〕〔Effect of the invention〕

上述から明らかな如く1本発明によりは、バイアス劣化
等の逆方向不良の発生率が大幅に少なくなる。筐だ、逆
方向特性及び信頼性の優れたガラス被株半導体チップを
高い生産性と製造歩留りを有してjM造するCとができ
る。
As is clear from the above, according to the present invention, the incidence of reverse direction failures such as bias deterioration is significantly reduced. It is possible to manufacture glass-backed semiconductor chips with excellent reverse characteristics and reliability with high productivity and manufacturing yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図1Al〜(ト)は本発明の1実施例に係わるガラ
ス被精ダイオードチップの製造工程を四囲−[るための
断面図、 第2図は第1図(C+ K対応する二り権における基板
表面を示す平面図。 第3図は第1図(ト)のダイオードチップの平面図。 第4図及び第す図は作用効果を説明するために第8図の
)及び第1図IP’lの−81を拡大して失々示て断面
図。 第6図は本発明の変彰例に係わるガラス被覆ダイオード
チップを示す断面1g1、 第7図IAINの1は従来のガラス核種ダイオードチッ
プの製造工程を旺明−4″るだめの断面図。 第8図区)〜の1は従来の別のガラス被精ダイオードチ
ップの製造工程を説明するための断面図である。 (lし・・基板、(3)・・・n型gi緘、(4)・・
・p型領域、(51・・pn接合、(6)・・溝、(7
)・・・ガラス被積層、(8)・・開口。 (9)・・・1極、 a′、!J・・S iO,膜、■
・・浅い溝。 代  理  人   高  野  則  次味 第2図 第3因 第4図 第5図 綜 1)           U 味
1A to 1G are cross-sectional views for explaining the manufacturing process of a glass diode chip according to an embodiment of the present invention, and FIG. FIG. 3 is a plan view of the diode chip of FIG. 1 (G). FIG. 4 and FIG. A sectional view partially showing an enlarged view of -81 of 'l. FIG. 6 is a cross section 1g1 showing a glass-coated diode chip according to a modification of the present invention, and FIG. 7 IAIN is a cross-sectional view of a conventional glass nuclide diode chip manufacturing process. Figures 8) to 1 are cross-sectional views for explaining the manufacturing process of another conventional glass diode chip. )・・
・P-type region, (51...pn junction, (6)...groove, (7
)... Glass laminated, (8)... Opening. (9)...1 pole, a',! J...S iO, membrane, ■
...shallow groove. Agent Norihiro Takano Tsugumi 2nd figure 3rd cause 4th figure 5th figure 1) U taste

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板に少なくとも1つのpn接合を形成し
、且つこの半導体基板上に絶縁膜を形成する工程と、 前記半導体基板の一方の主表面に、前記pn接合を露出
させる深さに溝を形成し、且つこの溝の形成前又は後に
おいてこの溝の周縁部の前記絶縁膜を除去する工程と、 前記溝の表面及び前記絶縁膜が除去された前記溝の周縁
部に電気泳動法により前記絶縁膜よりも厚い保護用ガラ
ス被覆層を形成する工程と、前記溝に囲まれている領域
の前記ガラス被覆層の一部及び前記絶縁膜を同時又は別
々に除去することにより、前記ガラス被覆層の残部に囲
まれた開口を形成する工程と、 前記開口によつて露出された前記半導体基板の表面に電
極を形成する工程と、 前記溝又はこの溝よりも外側において前記半導体基板を
切断する工程と を含むことを特徴とするガラス被覆半導体チップの製造
方法。
(1) Forming at least one pn junction on a semiconductor substrate and forming an insulating film on the semiconductor substrate, and forming a groove in one main surface of the semiconductor substrate to a depth that exposes the pn junction. and removing the insulating film at the periphery of the groove before or after forming the groove; The glass coating layer is formed by forming a protective glass coating layer that is thicker than the insulating film, and simultaneously or separately removing a portion of the glass coating layer in the area surrounded by the groove and the insulating film. forming an electrode on the surface of the semiconductor substrate exposed by the opening; and cutting the semiconductor substrate at the groove or outside the groove. A method for manufacturing a glass-coated semiconductor chip, comprising:
(2)前記溝を形成し、且つ前記絶縁膜を除去する工程
は、 前記pn接合を露出させない深さを有する浅い溝を形成
することによつて前記絶縁膜を島状に残存させるように
前記絶縁膜を除去する工程と、前記浅い溝の中に前記p
n接合を露出させる深さを有する深い溝を形成する工程
と を含むものである特許請求の範囲第1項記載のガラス被
覆半導体チップの製造方法。
(2) The step of forming the groove and removing the insulating film includes forming a shallow groove having a depth that does not expose the pn junction so that the insulating film remains in an island shape. a step of removing the insulating film, and adding the p-p into the shallow trench.
2. The method of manufacturing a glass-covered semiconductor chip according to claim 1, further comprising the step of forming a deep groove having a depth that exposes the n-junction.
(3)前記溝を形成し、且つ前記絶縁膜を除去する工程
は、 前記絶縁膜を島状に残存させるように前記絶縁膜のみを
除去する工程と、 前記絶縁膜を除去した領域内に前記pn接合を露出させ
るように溝を形成する工程と を含むものである特許請求の範囲第1項記載のガラス被
覆半導体チップの製造方法。
(3) The step of forming the groove and removing the insulating film includes: removing only the insulating film so that the insulating film remains in an island shape; 2. The method of manufacturing a glass-covered semiconductor chip according to claim 1, further comprising the step of forming a groove so as to expose a pn junction.
JP24602385A 1985-11-01 1985-11-01 Manufacture of glass-coated semiconductor chip Granted JPS62105427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24602385A JPS62105427A (en) 1985-11-01 1985-11-01 Manufacture of glass-coated semiconductor chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24602385A JPS62105427A (en) 1985-11-01 1985-11-01 Manufacture of glass-coated semiconductor chip

Publications (2)

Publication Number Publication Date
JPS62105427A true JPS62105427A (en) 1987-05-15
JPH0262944B2 JPH0262944B2 (en) 1990-12-27

Family

ID=17142295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24602385A Granted JPS62105427A (en) 1985-11-01 1985-11-01 Manufacture of glass-coated semiconductor chip

Country Status (1)

Country Link
JP (1) JPS62105427A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287229A (en) * 1988-05-12 1989-11-17 Tanaka Kikinzoku Kogyo Kk Method for recovering noble metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287229A (en) * 1988-05-12 1989-11-17 Tanaka Kikinzoku Kogyo Kk Method for recovering noble metal

Also Published As

Publication number Publication date
JPH0262944B2 (en) 1990-12-27

Similar Documents

Publication Publication Date Title
JPS59117271A (en) Semiconductor device having pressure sensing element and manufacture thereof
JPH05175537A (en) Photo diode array and manufacture thereof
US4524376A (en) Corrugated semiconductor device
JPH0728044B2 (en) Method for manufacturing glass-covered semiconductor chip
JPS62105427A (en) Manufacture of glass-coated semiconductor chip
JPS6097659A (en) Semiconductor integrated circuit
JP2000294805A (en) Schottky barrier diode and its manufacture
JPS6347972A (en) Semiconductor device
JPS584815B2 (en) Manufacturing method of semiconductor device
JPS59150471A (en) Semiconductor device
JPH0855999A (en) Semiconductor device
JPS61121341A (en) Manufacture of glass passivation type semiconductor device
JPS5842278A (en) Manufacture of semiconductor element pellet
JPS59208731A (en) Manufacture of semiconductor device
JP3070705B2 (en) Semiconductor device
JPH02202032A (en) Semiconductor device and manufacture thereof
JPS60171768A (en) Planar semiconductor device
JPS5951150B2 (en) Manufacturing method for inverted mesa semiconductor device
JPH0677237A (en) Manufacture of planar type diode
JPS61288467A (en) Semiconductor device and manufacture thereof
JPS6043653B2 (en) Manufacturing method of semiconductor device
JPH0414266A (en) High breakdown strength planar type semiconductor element and its manufacture
JPS63182873A (en) Manufacture of photodiode array
JPS60776B2 (en) semiconductor equipment
JPS5812337A (en) Manufacture of semiconductor device