JPS6043653B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPS6043653B2
JPS6043653B2 JP5344678A JP5344678A JPS6043653B2 JP S6043653 B2 JPS6043653 B2 JP S6043653B2 JP 5344678 A JP5344678 A JP 5344678A JP 5344678 A JP5344678 A JP 5344678A JP S6043653 B2 JPS6043653 B2 JP S6043653B2
Authority
JP
Japan
Prior art keywords
semiconductor substrate
diffusion
wafer
oxide film
thermal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5344678A
Other languages
Japanese (ja)
Other versions
JPS54144885A (en
Inventor
且成 庄村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP5344678A priority Critical patent/JPS6043653B2/en
Publication of JPS54144885A publication Critical patent/JPS54144885A/en
Publication of JPS6043653B2 publication Critical patent/JPS6043653B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Thyristors (AREA)

Description

【発明の詳細な説明】 本発明はサイリスタを得る場合に適した半導体装置の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device suitable for obtaining a thyristor.

一般にサイリスタを得る場合、第1図aに示す如きN
導電型ウェハ(asgrownwafer)1に対し、
Gaの封管拡散を行なうことにより、第1図をに示す如
くP型層2、3を形成する。
Generally, when obtaining a thyristor, N
For conductive type wafer (asgrownwafer) 1,
By performing sealed tube diffusion of Ga, P-type layers 2 and 3 are formed as shown in FIG.

その際、ウェハ表面は露出されたまゝであるから、封管
自体、不純物源としてのGaその他に、不要な不純物が
存在すると、該不純物がGaと共にウェハ1内に侵入し
、小数キャリアのライフタイムの低下が生じたり、PN
接合部に耐圧劣化が生じたりするおそれがある。また、
第1図をの工程後には、通常ウェハ1の片面をケミカル
エッチングすることにより、P型層2の表面側を削り取
る工程が行なわれる。これは、次に第1図cに示す如く
P型層2にN1厘拡散層4を形成した際、所望の電気的
特性(スイッチング感度等)を得るためであり、上記P
型層2のエッチング量のコントロールには、かなりの正
確さが要求されている。しかしながら上記エッチングは
、通常P型層3の表面を耐酸性のテープまたはワックス
等で覆い、P型層2をエッチングすることで行なわれる
が、上記テープまたはワックス等による被覆膜は10μ
程度もあり、しかも軟質性であるため、ダイヤルゲージ
でエッチング量を測定する際に誤差を生じることがあり
、問題である。 本発明は上記事情に鑑みてなされたも
ので、半導体基体(ウェハ)に不要な不純物が侵入しな
いようにGaの封管拡散が行なえ、またこの封管拡散後
の半導体基体のエッチングが正確に行なえるようにする
ことにより、従来の問題点を除去することができる半導
体装置の製造方法を提供しようとするものである。
At this time, the wafer surface remains exposed, so if unnecessary impurities are present in the sealed tube itself, Ga as an impurity source, or other impurities, the impurities will enter the wafer 1 along with the Ga, and the lifetime of the minority carriers will be reduced. or a decrease in PN
There is a risk that breakdown voltage deterioration may occur at the joint. Also,
After the step shown in FIG. 1, a step of scraping off the front side of the P-type layer 2 by chemically etching one side of the wafer 1 is usually performed. This is to obtain the desired electrical characteristics (switching sensitivity, etc.) when the N1 diffusion layer 4 is formed on the P-type layer 2 as shown in FIG. 1c.
Controlling the amount of etching of the mold layer 2 requires considerable accuracy. However, the above-mentioned etching is usually performed by covering the surface of the P-type layer 3 with acid-resistant tape or wax, etc., and etching the P-type layer 2, but the coating film with the tape or wax is 10 μm thick.
Moreover, since it is soft, errors may occur when measuring the amount of etching with a dial gauge, which is a problem. The present invention was made in view of the above circumstances, and it is possible to carry out sealed tube diffusion of Ga to prevent unnecessary impurities from entering the semiconductor substrate (wafer), and to perform accurate etching of the semiconductor substrate after this sealed tube diffusion. The present invention aims to provide a method for manufacturing a semiconductor device that can eliminate the problems of the conventional method.

以下図面を参照して本発明の一実施例を説明する。 An embodiment of the present invention will be described below with reference to the drawings.

まず第2図aに示すように、N型ウェハ(asgrow
nwafer)11を高温熱酸化することによ・り、ウ
ェハ11の表面全面にSi0。膜12を形成する。その
後このウェハを、第3図に示す如き石英管13内にGa
と共に封じ込み、加熱する封管拡散で、第2図bに示す
如くP型拡散層14,15を形成する。この拡散層形成
が可能であるのは、GaがSiO2膜12を容易に通過
できるためである。SlO2膜12の厚さは3μ程度で
よく、P型層14,15の表面濃度は2×1019cm
′″3程度で、高濃度拡散(1×10i7cm−3以下
の低濃度拡散とは異なる)が行なわれたことになる。な
お第3図において16は拡散源としてのGal7を付着
させたS1板、18は石英ボート、19は拡散源として
のGaを付着させたダミーウェハである。次に第4図a
に示す如く、P型層15側のSlO2膜(熱酸化膜)1
2の表面を、耐酸性のチテープ、ワックス、レジスト等
よりなる被覆19で覆い、P型層14側表面のSiO2
膜12をエッチング除去してP型層14の表面を露出さ
せる。
First, as shown in Figure 2a, an N-type wafer (asgrow
By subjecting the wafer (nwafer) 11 to high-temperature thermal oxidation, Si0 is deposited on the entire surface of the wafer 11. A film 12 is formed. Thereafter, this wafer was placed in a quartz tube 13 as shown in FIG.
P-type diffusion layers 14 and 15 are formed as shown in FIG. 2b by sealing and heating together with diffusion in a sealed tube. This diffusion layer formation is possible because Ga can easily pass through the SiO2 film 12. The thickness of the SlO2 film 12 may be about 3μ, and the surface concentration of the P-type layers 14 and 15 is 2×1019 cm.
It means that high-concentration diffusion (different from low-concentration diffusion of 1×10i7cm-3 or less) was performed at about 3'. , 18 is a quartz boat, and 19 is a dummy wafer on which Ga is attached as a diffusion source.
As shown, the SlO2 film (thermal oxide film) 1 on the P-type layer 15 side
The surface of SiO2 on the P-type layer 14 side is covered with a coating 19 made of acid-resistant tape, wax, resist, etc.
The film 12 is etched away to expose the surface of the P-type layer 14.

次に第4図bに示す如く、被覆19を除去してから、P
型層15の表面のSiO2膜12をプロテクタとして、
P型層14の表面部を例えば一点鎖線上の個所までケミ
カルエッチングするものである。上記方法によれば、次
のような利点が具備される。
Next, as shown in FIG. 4b, after removing the coating 19,
Using the SiO2 film 12 on the surface of the mold layer 15 as a protector,
The surface portion of the P-type layer 14 is chemically etched, for example, to a point on the dashed line. According to the above method, the following advantages are provided.

まずGaの封管拡散によりP型層14,15を形成する
際、SiO2膜12が不要な不純物に対するプロテクタ
となるため、ウェハ11内には,Gaのみが拡散され、
従つて少数キャリアのライフタイムの低下が防止できる
と共にPN接合部の耐圧劣下等も防止できる。実験によ
れば、第1図の方法で得た構成の場合、ライフタイムが
100μSであつたものが、第2図の方法ではライフタ
イ.ムが200〜300μsになり、大巾な改善が行な
われた。特に最近は、パワーサイリスタを構成するウェ
ハ径が60〜150φと大径化される傾向にあるため、
第1図の如き方法ではP型層14,15を形成する際に
、Ga以外の不純物が侵入するおそれが増大するが、第
2図の方法ではそのおそれがほとんどなくなるものであ
る。また従来はダミーウェハ19をボート18上に多数
枚並べて拡散を行なわせたが、第2図の方法ではSiO
2膜12でプロテクトしてGa拡散を行なわせるから、
ダミーウェハ19の数が減り、その代りに拡散ウェハ1
1の数が増えて、生産性が向上する。また第4図bの片
面エッチング時に、ダイヤルゲージを用い・てエッチン
グ量を測定するが、プロテクタとしてのSiO2膜12
は3μ程度と大巾に薄手でかつ硬質であるから、測定誤
差が生じるおそれが減少し、従つて電気的特性(スイッ
チング感度等)を良好に保持することができるものであ
る。なお、本発明は上記実施例のみに限定されるもので
はなく、例えば第2図bの3層構造を得て後片側のP型
層を除去するようにすれば、整流素子の製造にも適用で
きる等、種々の応用が可能である。以上説明した如く本
発明によれば、熱酸化膜形成後にGaの高濃度の封管拡
散を行なうから、電気的特性が良好となり、また片面に
残存させた熱酸化膜をプロテクタとして他面の基体(ウ
ェハ)をエッチングするから、そのエッチング量を正確
化させ得る等の利点を有した半導体装置の製造方法が提
供できるものである。
First, when forming the P-type layers 14 and 15 by sealed-tube diffusion of Ga, only Ga is diffused into the wafer 11 because the SiO2 film 12 acts as a protector against unnecessary impurities.
Therefore, it is possible to prevent a decrease in the lifetime of minority carriers, and also to prevent a decrease in breakdown voltage of the PN junction. According to experiments, in the case of the configuration obtained using the method shown in FIG. 1, the lifetime was 100 μS, but with the method shown in FIG. The time was reduced to 200 to 300 μs, a significant improvement. Particularly recently, the diameter of the wafers constituting power thyristors has tended to increase to 60 to 150φ.
In the method shown in FIG. 1, there is an increased risk of impurities other than Ga entering when forming the P-type layers 14 and 15, but in the method shown in FIG. 2, this risk is almost eliminated. Conventionally, a large number of dummy wafers 19 were arranged on the boat 18 for diffusion, but in the method shown in FIG.
Since it is protected by two films 12 and Ga is diffused,
The number of dummy wafers 19 is reduced, and instead, diffusion wafer 1
The number of 1's increases and productivity improves. In addition, when etching one side as shown in FIG. 4b, the etching amount is measured using a dial gauge.
Since it is very thin and hard, with a thickness of about 3 μm, the possibility of measurement errors is reduced, and therefore electrical characteristics (switching sensitivity, etc.) can be maintained well. It should be noted that the present invention is not limited to the above-mentioned embodiments, but can also be applied to the manufacture of rectifying elements, for example, by obtaining the three-layer structure shown in FIG. 2b and removing the P-type layer on one side. Various applications are possible. As explained above, according to the present invention, Ga is diffused in a sealed tube with a high concentration after the formation of a thermal oxide film, so that the electrical characteristics are improved. Since the semiconductor device (wafer) is etched, it is possible to provide a method for manufacturing a semiconductor device that has advantages such as being able to accurately etch the amount of etching.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a−cは従来装置の製造工程説明図、第2図A,
bは本発明の一実施例の工程説明図、第3図は同工程に
おける封管拡散工程の説明図、第4図A,bは第2図b
の工程に続く工程説明図である。 11・・・N型ウェハ、12・・・熱酸化膜、13・・
・石英管、14,15・・・P型層。
Figures 1 a-c are explanatory diagrams of the manufacturing process of the conventional device, Figure 2 A,
b is an explanatory diagram of the process of one embodiment of the present invention, FIG. 3 is an explanatory diagram of the sealed tube diffusion step in the same process, and FIGS. 4A and b are diagrams of FIG. 2b.
It is a process explanatory diagram following the process of. 11...N-type wafer, 12...thermal oxide film, 13...
・Quartz tube, 14, 15...P type layer.

Claims (1)

【特許請求の範囲】[Claims] 1 N型の半導体基体の全表面に高温熱酸化膜を形成す
る工程と、前記熱酸化膜が形成された半導体基体にガリ
ウムの封管拡散を行なつてP型の不純物領域を形成する
工程と、前記半導体基体の一方の面の熱酸化膜を除去す
る工程と、前記半導体基体の他方の面に残存する熱酸化
膜をプロテクタとして前記一方の半導体基体面に形成さ
れた上記ガリウムの封管拡散によるP型不純物領域の少
なくとも一部をエッチングする工程と、前記エッチング
を施した半導体基体面にN型の不純物領域を形成する工
程とを具備することを特徴とする半導体装置の製造方法
1. A step of forming a high-temperature thermal oxide film on the entire surface of an N-type semiconductor substrate, and a step of performing sealed tube diffusion of gallium on the semiconductor substrate on which the thermal oxide film is formed to form a P-type impurity region. , a step of removing a thermal oxide film on one surface of the semiconductor substrate, and a sealed tube diffusion of the gallium formed on the one semiconductor substrate surface using the thermal oxide film remaining on the other surface of the semiconductor substrate as a protector. 1. A method of manufacturing a semiconductor device, comprising: etching at least a portion of a P-type impurity region; and forming an N-type impurity region on the etched surface of the semiconductor substrate.
JP5344678A 1978-05-04 1978-05-04 Manufacturing method of semiconductor device Expired JPS6043653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5344678A JPS6043653B2 (en) 1978-05-04 1978-05-04 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5344678A JPS6043653B2 (en) 1978-05-04 1978-05-04 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPS54144885A JPS54144885A (en) 1979-11-12
JPS6043653B2 true JPS6043653B2 (en) 1985-09-30

Family

ID=12943068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5344678A Expired JPS6043653B2 (en) 1978-05-04 1978-05-04 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6043653B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2547096B2 (en) * 1989-09-19 1996-10-23 三田工業株式会社 Image generator

Also Published As

Publication number Publication date
JPS54144885A (en) 1979-11-12

Similar Documents

Publication Publication Date Title
US3994009A (en) Stress sensor diaphragms over recessed substrates
JPS59117271A (en) Semiconductor device having pressure sensing element and manufacture thereof
US3980508A (en) Process of producing semiconductor device
EP0095328A2 (en) Method for manufacturing semiconductor device by controlling thickness of insulating film at peripheral portion of element formation region
JPS577959A (en) Semiconductor device
US3447235A (en) Isolated cathode array semiconductor
JPS61208277A (en) High-efficiency photo detector and manufacture thereof
JPS6043653B2 (en) Manufacturing method of semiconductor device
GB1569931A (en) Manufacture of semiconductor devices
US3874915A (en) Silicon nitride on silicon oxide coatings for semiconductor devices
JPH02105438A (en) Measurement of film thickness of epitaxial growth layer
JPH0366815B2 (en)
JP2576245B2 (en) Manufacturing method of semiconductor pressure sensor
US3788913A (en) Silicon nitride on silicon oxide coatings for semiconductor devices
JPH0645617A (en) Manufacture of single-crystal thin-film member
JPS63271979A (en) Manufacture of semiconductor device
JPS59208731A (en) Manufacture of semiconductor device
JPS59100563A (en) Manufacture of mesa type semiconductor device
JPS5578568A (en) Manufacture of semiconductor device
JPS6136370B2 (en)
JPS55133542A (en) Manufacturing method of mesa-type semiconductor device
JPS61268027A (en) Manufacture of semiconductor device
JPS5852830A (en) High withstand voltage semiconductor device and manufacture thereof
JPH0855999A (en) Semiconductor device
JPS60224267A (en) Mesa type high withstanding voltage transistor