JPS5852830A - High withstand voltage semiconductor device and manufacture thereof - Google Patents

High withstand voltage semiconductor device and manufacture thereof

Info

Publication number
JPS5852830A
JPS5852830A JP56149546A JP14954681A JPS5852830A JP S5852830 A JPS5852830 A JP S5852830A JP 56149546 A JP56149546 A JP 56149546A JP 14954681 A JP14954681 A JP 14954681A JP S5852830 A JPS5852830 A JP S5852830A
Authority
JP
Japan
Prior art keywords
film
oxide film
silicon oxide
silicon
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56149546A
Other languages
Japanese (ja)
Other versions
JPS644665B2 (en
Inventor
Yasuhiro Mochizuki
康弘 望月
Akio Mimura
三村 秋男
Tatsuya Kamei
亀井 達弥
Masahiro Okamura
岡村 昌弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56149546A priority Critical patent/JPS5852830A/en
Publication of JPS5852830A publication Critical patent/JPS5852830A/en
Publication of JPS644665B2 publication Critical patent/JPS644665B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To manufacture a semiconductor device having high withstand voltage, high reliability and moreover having the high current amplification factor according to an extremely simple passivation process by a method wherein windows are opened at the prescribed parts of a passivation film having three layers structure using etchants corresponding respectively to a silicon oxide film and to a polycrystalline silicon film. CONSTITUTION:The silicon oxide film 15 at the part to expose the main rectification junction Jc on the surface is etched to be removed with the mixed liquid of fluoric acid and ammonium fluoride at first, and moreover etching is performed with the mixed liquid of fluoric acid and nitric acid to remove the distortion layer on the surface of a silicon single crystal substrate 10. A silicon oxide film 17 is etched similarly with the mixed liquid of fluoric acid and ammonium fluoride, then a polycrystalline silicon film 16 is etched with the mixed liquid of fluoric acid, nitric acid and acetic acid, and the silicon oxide film 15 is etched once more with the liquid mentioned above. Accordingly etching of the polycrystalline silicon film 16 with the mixed liquid of fluoric acid, nitric acid and acetic acid can be stopped by the silicon oxide film 15 existing thereunder, and contact holes 18, 19 can be opened applying no damage to the silicon single crystal substrate 10, especially to high concentration diffusion layers 12, 13.

Description

【発明の詳細な説明】 本発明は高耐圧半導体装置とその製法に係シ、特に多結
晶シリコン膜を用いた信頼性の高いバンシベーション構
造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high voltage semiconductor device and its manufacturing method, and particularly to a highly reliable bancivation structure using a polycrystalline silicon film.

シリコン半導体素子のpn接合の表面保護膜として多結
晶シリコン膜を用いたパッシベーション法がある。多結
晶シリコン膜として酸素や窒素をドープして抵抗率を高
めた半絶縁性多結晶シリコン膜は、歪の発生が少なくて
表面準位密度が低く。
There is a passivation method using a polycrystalline silicon film as a surface protection film for a pn junction of a silicon semiconductor element. A semi-insulating polycrystalline silicon film that is doped with oxygen or nitrogen to increase its resistivity generates less strain and has a low surface state density.

外部電荷の影響を遮蔽して高信頼性であり、量産性も良
く、各種の半導体素子に適用される。しかし多結晶シリ
コン膜によるパッシベーション法は、プロセス的には選
択エツチングが困難であること、素子特性面ではトラン
ジスタの電流増幅率hFEの低下の問題点がある。即ち
、多結晶シリコン膜のバツ7ベーション工程後にコンタ
クトホール形成のだめの選択エツチングが必要であるが
、多結晶シリコン膜はシリコン単結晶基体(半導体素子
)と同様のエッチャントが必要なため単結晶基体との境
界でエツチングを停止することが難しい。エツチング量
が多過ぎても少な過ぎても電極のコンタクト不良を引起
こす。このため多結晶シリコン膜の組成及びエツチング
方法の両者の面から検討されているが、素子特性上鏝も
有効なドーパント濃度の低い多結晶シリコン膜の選択エ
ツチング方法は極めて難しい。一方1.トランジスタの
電流増幅率hFEの低下は、エミッタ接合の表面のパッ
シベーション膜中のリーク電流が大きいために起こる。
It is highly reliable by shielding the influence of external charges, has good mass productivity, and is applied to various semiconductor devices. However, the passivation method using a polycrystalline silicon film has problems in that selective etching is difficult in terms of process and in terms of device characteristics, the current amplification factor hFE of the transistor is reduced. That is, selective etching is required to form contact holes after the bubbling process of the polycrystalline silicon film, but since the polycrystalline silicon film requires the same etchant as the silicon single crystal substrate (semiconductor element), it is not suitable for single crystal substrates. It is difficult to stop etching at the boundary. Too much or too little amount of etching will cause electrode contact failure. For this reason, both the composition of the polycrystalline silicon film and the etching method have been studied, but it is extremely difficult to selectively etch a polycrystalline silicon film with a low dopant concentration that is effective even with a trowel in view of device characteristics. On the other hand 1. The decrease in the current amplification factor hFE of the transistor is caused by the large leakage current in the passivation film on the surface of the emitter junction.

この対策として、エミッタ接合のパッシベーションは熱
酸化膜を利用する方法や多結晶シリコン膜を除去してか
ら気相反応でシリコン酸化膜を被覆する方法等が提案さ
れているが、上記の多結晶シリコン膜の選択エツチング
の問題と絡ってプロセス的に繁雑となっている。
As a countermeasure for this, methods have been proposed for passivation of the emitter junction, such as using a thermal oxide film or removing the polycrystalline silicon film and then covering it with a silicon oxide film using a gas phase reaction. The process is complicated due to the problem of selective etching of the film.

本発明の目的は、高耐圧高信頼性の特徴を有し、しかも
高電流増幅率で製造プロセスが容易な多結晶シリコン膜
でパッシベーションした高耐圧半導体装置とその製法を
提供するにある。
An object of the present invention is to provide a high voltage semiconductor device passivated with a polycrystalline silicon film, which is characterized by high voltage resistance and high reliability, has a high current amplification factor, and is easy to manufacture, and a method for manufacturing the same.

本発明の特徴とするところは、拡散工程の完了したシリ
コン単結晶基体において主整流接合が表面に露出する部
分のシリコン酸化膜を除去し、コンタクト領域及びエミ
ッタ接合が表面に露出する部分はシリコン酸化膜を残し
てから多結晶シリコン膜及びシリコン酸化膜を順次シリ
コン単結晶基体表面に形成し、シリコン酸化膜、多結晶
シリコンおよびシリコン酸化膜を通して所定位置にコン
タクトホールを設け、露出したシリコン単結晶基体に電
極をコンタクトすることにある。
The present invention is characterized by removing the silicon oxide film in the portion where the main rectifying junction is exposed to the surface of the silicon single crystal substrate after the diffusion process is completed, and removing the silicon oxide film in the portion where the contact region and the emitter junction are exposed to the surface. After leaving the film, a polycrystalline silicon film and a silicon oxide film are sequentially formed on the surface of the silicon single crystal substrate, and contact holes are formed at predetermined positions through the silicon oxide film, polycrystalline silicon, and silicon oxide film, and the exposed silicon single crystal substrate is The purpose is to contact the electrode with the

以下本発明を実施例を示す図面に基づいて詳細に説明す
る。
The present invention will be described in detail below based on drawings showing embodiments.

第1図(a)は耐圧が1600Vでnpnプレーナ型ト
ランジスタを得るための拡散工程が完了した状態の断面
模式図である。抵抗率が90〜1000m、厚さが28
0μmのシリコン単結晶基体10に、高濃度コレクタ用
のリン拡散層11、深さが35μmのベース用ポロン拡
散層12、深さが10μmのエミッタ用リン拡散層13
を形成したものである。ベース層12の周囲には耐圧を
保持する主整流接合Jc の逆バイアス時の電界強度を
低減させるためのp+ ガードリング層14が形成しで
ある。シリコン単結晶基体10の表面は拡散の熱処理に
よりシリコン酸化膜15が形成されている。
FIG. 1(a) is a schematic cross-sectional view of a state in which the diffusion process for obtaining an npn planar transistor with a breakdown voltage of 1600V has been completed. Resistivity is 90-1000m, thickness is 28
A silicon single crystal substrate 10 with a thickness of 0 μm has a phosphorus diffusion layer 11 for a highly concentrated collector, a poron diffusion layer 12 for a base with a depth of 35 μm, and a phosphorus diffusion layer 13 for an emitter with a depth of 10 μm.
was formed. A p+ guard ring layer 14 is formed around the base layer 12 to reduce the electric field strength during reverse bias of the main rectifying junction Jc which maintains a breakdown voltage. A silicon oxide film 15 is formed on the surface of the silicon single crystal substrate 10 by diffusion heat treatment.

第1図(b)は主整流接合Jc が表面に露出する部分
のシリコン酸化膜15をフッ酸フフ化アンモニウム混合
液でエツチング除去し、更にシリコン単結晶基体10の
表面の歪層を取除くためフッ酸硝酸混合液でエツチング
した状態を示す。ここでシリコン酸化膜15を除去する
領域は、主整流接合Jc の逆バイアス時に空乏層が広
がる領域の端部が表面に露出する領域である。
In FIG. 1(b), the part of the silicon oxide film 15 where the main rectifying junction Jc is exposed to the surface is etched away using a mixed solution of ammonium fluoride and fluoride, and the strained layer on the surface of the silicon single crystal substrate 10 is further removed. The state shown is etched with a hydrofluoric acid/nitric acid mixture. The region where the silicon oxide film 15 is removed is a region where the end of the region where the depletion layer expands when the main rectifying junction Jc is reverse biased is exposed to the surface.

第1図(C)は、上記シリコン単結晶基体10の表面に
多結晶シリコン膜16及びシリコン酸化膜17を順次形
成し焼しめた状態を示す。ここで多結晶シリコン膜16
は630〜640Cでモノシランと亜酸化窒素を用いた
気相反応で形成し、酸素を20%(原子比)含み、厚さ
は約0.5.umである。シリコン酸化膜17は380
〜410Cでモノシランと酸素を用いた気相反応で形成
し、厚さは約0.2μmである。多結晶シリコン16と
シリコン酸化膜17は同一の気相反応装置で連続して形
成できる。焼しめは950C130分間窒素気流中とし
た。
FIG. 1C shows a state in which a polycrystalline silicon film 16 and a silicon oxide film 17 are sequentially formed on the surface of the silicon single crystal substrate 10 and baked. Here, polycrystalline silicon film 16
is formed by a gas phase reaction using monosilane and nitrous oxide at 630-640C, contains 20% (atomic ratio) of oxygen, and has a thickness of about 0.5. It is um. The silicon oxide film 17 is 380
It is formed by a gas phase reaction using monosilane and oxygen at ~410C, and has a thickness of about 0.2 μm. Polycrystalline silicon 16 and silicon oxide film 17 can be successively formed in the same gas phase reactor. The baking process was performed at 950C for 130 minutes in a nitrogen stream.

第1図(d)はエミッタ電極及びベース電極用にシ  
 。
Figure 1(d) shows the pattern for the emitter and base electrodes.
.

リコン酸化膜17−多結晶シリコン膜16−シリコン酸
化膜15の3層をホトエツチングし、コンタクトホール
18,19’i形成した状態を示す。
The three layers of silicon oxide film 17, polycrystalline silicon film 16 and silicon oxide film 15 are photo-etched to form contact holes 18 and 19'i.

t f −/ IJコン酸化膜172ii−フッ酸・フ
ッ化アンモニウム混合液(1:6の容量比)で、次に多
結晶シリコン膜をフッ酸・硝酸・酢酸混合液(1:2:
6の容量比)で、更にもう一度シリコン酸化膜15を前
記の液でエツチングした。この方法により、フッ酸・硝
酸・酢酸混合液による多結晶シリコン膜16のエツチン
グは下のシリコン酸化膜15で停止でき、シリコン単結
晶基体10、特に高濃度拡散層12.13には損傷を与
えずコンタクトホール18,19窓開けができた。
t f - / IJ Con Oxide Film 172ii - Hydrofluoric acid/ammonium fluoride mixed solution (capacity ratio of 1:6), then polycrystalline silicon film was treated with hydrofluoric acid/nitric acid/acetic acid mixed solution (1:2:
The silicon oxide film 15 was etched once again with the above solution at a capacitance ratio of 6). With this method, the etching of the polycrystalline silicon film 16 by the hydrofluoric acid/nitric acid/acetic acid mixture can be stopped at the underlying silicon oxide film 15, without damaging the silicon single crystal substrate 10, especially the high concentration diffusion layers 12 and 13. I was able to open contact holes 18 and 19.

第1図(e)はリフトオフ法によりベース電極20及び
エミッタ電極21を形成した状態を示す。電極材料はク
ロム・ニッケル・銀を順次連続して蒸着し、その後47
5C窒素気流中で熱処理しシンタリングとリフトオフし
た。
FIG. 1(e) shows a state in which a base electrode 20 and an emitter electrode 21 are formed by the lift-off method. The electrode materials are chromium, nickel, and silver deposited in sequence, and then 47
Heat treatment was performed in a 5C nitrogen stream for sintering and lift-off.

以下、従来の組立て工程と同様にペレタイズ、ヒートシ
ンクへのマウント、エミッタ電極及ヒヘース電極の半田
付け、パッケージングの工程を経てトランジスタができ
あがる。
Thereafter, as in the conventional assembly process, the transistor is completed through pelletizing, mounting on a heat sink, soldering of emitter electrodes and heat sink electrodes, and packaging.

第2図は上記トランジスタのコレクタ電流Icと電流増
幅率hFEの関係を示す。曲線人は本発明によるもの、
曲線Bは半導体基体の表面全面即ちエミッタ接合も多結
晶シリコン膜でパッシベーションした従来法によるもの
である。従来法ではhrgは大幅に低下しているが、本
発明になる半導体装置では、熱酸化膜−リンガラス膜パ
ッシベーションのものと同様のhFKが得られた。また
本発明になるトランジスタはコレクタ・エミッタ耐圧B
VCEOは温度150C、リーク電流0.1 m Aで
1850V、150C11000時間の直流1600V
のブロッキングテストでもリーク電流の変動はなかった
FIG. 2 shows the relationship between the collector current Ic of the transistor and the current amplification factor hFE. The curved person is according to the present invention,
Curve B is based on the conventional method in which the entire surface of the semiconductor substrate, that is, the emitter junction is also passivated with a polycrystalline silicon film. In the conventional method, the hrg was significantly lowered, but in the semiconductor device of the present invention, hFK similar to that of the thermal oxide film-phosphorus glass film passivation was obtained. Further, the transistor according to the present invention has a collector-emitter breakdown voltage of B
VCEO is 1850V at temperature 150C and leakage current 0.1 mA, DC 1600V at 150C 11000 hours.
There was no change in leakage current even in the blocking test.

第3図は本発明になる耐圧が600vのブレーナ型サイ
リスタ30の断面模式図を示す。従来のブレーナ型サイ
リスタと同様の拡散工程全完了し、Pエミッタ層31、
nベース層32、Pベース層33、nエミツタ層34を
形成した後、拡散工程で形成された熱酸化膜35の一部
を除去し、その上に多結晶シリコン膜36.シリコン酸
化膜37を形成した。ここで主整流接合は逆方向及び順
方向の両者の耐圧を保持する38及び39であシ。
FIG. 3 shows a schematic cross-sectional view of a Brener-type thyristor 30 having a withstand voltage of 600 V according to the present invention. The diffusion process similar to that of the conventional Brenna type thyristor has been completed, and the P emitter layer 31,
After forming the n base layer 32, the p base layer 33, and the n emitter layer 34, a part of the thermal oxide film 35 formed in the diffusion process is removed, and a polycrystalline silicon film 36. A silicon oxide film 37 was formed. Here, the main rectifying junctions are 38 and 39 that maintain voltage resistance in both the reverse and forward directions.

この接合の逆バイアス時の空乏層が広がる領域が表面に
露出する部分に直接多結晶シリコン膜36が堆積しであ
る。一方、nエミツタ層34とpベース層33の接合4
0の表面は、シリコン酸化膜35・多結晶シリコン膜3
6−シリコン酸化膜37の3層構造である。カソード及
びゲート電極41.42は3Ji構造のパッシベーショ
ン膜をホトエツチングした後、アルミニウム蒸着膜をリ
フトオフ法で形成した。
A polycrystalline silicon film 36 is deposited directly on the portion where the region where the depletion layer spreads during reverse bias of this junction is exposed to the surface. On the other hand, the junction 4 between the n emitter layer 34 and the p base layer 33
The surface of 0 is a silicon oxide film 35/polycrystalline silicon film 3
6-It has a three-layer structure of silicon oxide film 37. The cathode and gate electrodes 41 and 42 were formed by photoetching a passivation film having a 3Ji structure, and then forming an aluminum vapor deposition film by a lift-off method.

第4図は第3図に示したブレーナ型サイリスタのゲート
トリガ電流の分布を示す。a群のグラフは本発明による
ものであり、高感度でしかもばらつきが小さい。b群の
グラフは比較のため従来法に従ってシリコン単結晶基体
の表面全面を直接多結晶シリコン膜でパッシベーション
したものである。サイリスタのゲート感度が悪くしかも
ばらつきが大きい。これはパッシベーション膜中のリー
ク電流のため感度が悪くなり、またコンタクトホール形
成のため多結晶シリコン膜をエツチングする際終点が明
確に判定できないためpペース層表面のエツチングにば
らつきが生じただめである。
FIG. 4 shows the distribution of gate trigger current of the Brainer type thyristor shown in FIG. The graph of group a is based on the present invention, and has high sensitivity and small variation. For comparison, the graph of group b is a graph in which the entire surface of a silicon single crystal substrate was directly passivated with a polycrystalline silicon film according to a conventional method. Thyristor gate sensitivity is poor and variation is large. This is because the sensitivity deteriorates due to leakage current in the passivation film, and also because the end point cannot be clearly determined when etching the polycrystalline silicon film to form contact holes, resulting in variations in etching on the surface of the p-paste layer. .

以上説明したように本発明によれば、高耐圧高信頼でし
かも高電流増幅率の半導体装置を、極め−Uu+iなパ
ッシベーションプロセスで製造できる。
As described above, according to the present invention, a semiconductor device with high breakdown voltage, high reliability, and high current amplification factor can be manufactured using an extremely -Uu+i passivation process.

同、本発明は第1図、第3図に示したトランジスタ、サ
イリスタの各層の導電型を反転させても同様な効果が得
られる。
Similarly, in the present invention, the same effect can be obtained even if the conductivity type of each layer of the transistor and thyristor shown in FIGS. 1 and 3 is reversed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(e)は本発明の一実施例になる高耐圧
半導体装置を製造工程毎に示す断面模式図、第2図は第
1図に示す高耐圧半導体装置の特性と従来法になる半導
体装置の特性の比較図、第3図は本発明の他の実施例に
なる高耐圧半導体装置を示す断面模式図、第4図は第3
図に示す高耐圧半導体装置と従来法になる半導体装置の
特性の比較図である。 10・・・シリコン単結晶基体、11・・・高濃度コレ
クタ用リン拡散層、12・・・ベース用ボロン拡散層。 13・・・エミッタ用リン拡散層、14・・・p+ガー
ドリング層、15・・・シリコン酸化膜、16・・・多
結晶シリコン膜、17・・・シリコン酸化膜、18.1
9・・・コンタクトホール、20・・・ベースi[極、
21・・・エミッタ電極、 Jc  ・・・主整流接合
。 鵠 tn ′1/J 2 図 n t         /         /Dコ
レ77電流rccA) 第 J 図 1、!! 口 υ
FIGS. 1(a) to (e) are schematic cross-sectional views showing each manufacturing process of a high-voltage semiconductor device according to an embodiment of the present invention, and FIG. 2 shows the characteristics of the high-voltage semiconductor device shown in FIG. FIG. 3 is a cross-sectional schematic diagram showing a high voltage semiconductor device according to another embodiment of the present invention, and FIG.
FIG. 2 is a comparison diagram of the characteristics of the high voltage semiconductor device shown in the figure and the conventional semiconductor device. DESCRIPTION OF SYMBOLS 10...Silicon single crystal base, 11...High concentration phosphorus diffusion layer for collector, 12...Boron diffusion layer for base. 13... Phosphorus diffusion layer for emitter, 14... P+ guard ring layer, 15... Silicon oxide film, 16... Polycrystalline silicon film, 17... Silicon oxide film, 18.1
9... Contact hole, 20... Base i [pole,
21... Emitter electrode, Jc... Main rectifier junction.鵠 tn '1/J 2 Figure n t / /D Kore 77 current rccA) No. J Figure 1,! ! mouth υ

Claims (1)

【特許請求の範囲】 1、耐圧を保持する主整流接合カー主表面に露出したシ
リコン単結晶基体、上記シリコン単結晶基体の上記主整
流接合の露出部%−fl(いて設けられl第1のシリコ
ン酸化膜、上記−・11二ン酉゛化膜および上記主整流
接合の露出部上VCU、ktられた多結11・1シリコ
ン膜、上記多結晶シリコ〉ν上に設置jりれた第2のシ
リコン酸化膜、上記第1のシリコン酸化膜、多結晶シリ
コン膜および塀・2のシリコン酸化膜の3層構造のパシ
ベーション膜の所定部分に窓開けして上記シリコン単結
晶基体を露出せしめ、ここから電極をコンタクトしてい
ることを特徴とする高耐圧半導体装置。 2、 シリコン単結晶基体にその一主表面に耐圧を保持
する主整流接合が露出するように不純物を拡散する工程
、上記主整流接合の露出部を除いて第1のシリコン酸化
膜を設ける工程、上記主整流接合の露出部および第1の
シリコン酸化膜上に多結晶シリコン膜を設ける工程、上
記多結晶シリコン膜上に第2のシリコン酸化騰を設ける
工程、上記第1のシリコン酸化膜、多結晶シリコン膜お
よび第2のシリコン酸化膜の3層構造のパシベーション
膜の所定部分をシリコン酸化膜および多結晶シリコン膜
のそれぞれに対するエラチャントラ用いて窓開けする工
程、上記窓開けにより露出した上記シリコン単結晶基体
に電極をコンタクトする工程とからなることを特徴とす
る高耐圧半導体装置の製法。
[Claims] 1. A silicon single crystal substrate exposed on the main surface of the main rectifying junction that maintains withstand voltage, an exposed portion %-fl of the main rectifying junction of the silicon single crystal substrate; Silicon oxide film, the above-mentioned -.11 dielectric film and the exposed part of the main rectifying junction VCU, the kt polycrystalline 11.1 silicon film, the above-mentioned polycrystalline silicon〉ν opening a window in a predetermined portion of a passivation film having a three-layer structure consisting of the silicon oxide film No. 2, the first silicon oxide film, the polycrystalline silicon film, and the silicon oxide film No. 2 to expose the silicon single crystal substrate; A high breakdown voltage semiconductor device characterized by contacting an electrode from here. 2. A step of diffusing impurities into a silicon single crystal substrate so that a main rectifying junction that maintains a breakdown voltage is exposed on one main surface of the silicon single crystal substrate. a step of providing a first silicon oxide film except for the exposed portion of the rectifying junction; a step of providing a polycrystalline silicon film on the exposed portion of the main rectifying junction and the first silicon oxide film; Step 2 of providing a silicon oxide film, a predetermined portion of the passivation film having a three-layer structure of the first silicon oxide film, a polycrystalline silicon film, and a second silicon oxide film, to each of the silicon oxide film and the polycrystalline silicon film. 1. A method for manufacturing a high voltage semiconductor device, comprising the steps of: opening a window using an Elachantra; and contacting an electrode to the silicon single crystal substrate exposed by the window opening.
JP56149546A 1981-09-24 1981-09-24 High withstand voltage semiconductor device and manufacture thereof Granted JPS5852830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56149546A JPS5852830A (en) 1981-09-24 1981-09-24 High withstand voltage semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56149546A JPS5852830A (en) 1981-09-24 1981-09-24 High withstand voltage semiconductor device and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS5852830A true JPS5852830A (en) 1983-03-29
JPS644665B2 JPS644665B2 (en) 1989-01-26

Family

ID=15477509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56149546A Granted JPS5852830A (en) 1981-09-24 1981-09-24 High withstand voltage semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5852830A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61248481A (en) * 1985-04-25 1986-11-05 Nippon Denso Co Ltd Manufacture of semiconductor device
EP0756319A2 (en) * 1995-07-28 1997-01-29 Motorola, Inc. Reduced stress isolation for SOI devices and a method for fabricating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130171A (en) * 1975-05-07 1976-11-12 Sony Corp Semiconductor device
JPS57113257A (en) * 1981-01-06 1982-07-14 Oki Electric Ind Co Ltd Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130171A (en) * 1975-05-07 1976-11-12 Sony Corp Semiconductor device
JPS57113257A (en) * 1981-01-06 1982-07-14 Oki Electric Ind Co Ltd Manufacture of semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61248481A (en) * 1985-04-25 1986-11-05 Nippon Denso Co Ltd Manufacture of semiconductor device
EP0756319A2 (en) * 1995-07-28 1997-01-29 Motorola, Inc. Reduced stress isolation for SOI devices and a method for fabricating
EP0756319A3 (en) * 1995-07-28 1998-01-07 Motorola, Inc. Reduced stress isolation for SOI devices and a method for fabricating
US6627511B1 (en) 1995-07-28 2003-09-30 Motorola, Inc. Reduced stress isolation for SOI devices and a method for fabricating

Also Published As

Publication number Publication date
JPS644665B2 (en) 1989-01-26

Similar Documents

Publication Publication Date Title
US3184823A (en) Method of making silicon transistors
WO2023045393A1 (en) Tvs chip and production method therefor
WO2020220666A1 (en) Manufacturing process for diode chip having electrodes on same side and shallow trench
WO2020220665A1 (en) Manufacturing process for four-diode integrated chip
US2945286A (en) Diffusion transistor and method of making it
US3303071A (en) Fabrication of a semiconductive device with closely spaced electrodes
JPS6135705B2 (en)
US3271636A (en) Gallium arsenide semiconductor diode and method
JPS5852830A (en) High withstand voltage semiconductor device and manufacture thereof
US3376172A (en) Method of forming a semiconductor device with a depletion area
JPS6212669B2 (en)
JP3300530B2 (en) Method of manufacturing mesa-type semiconductor device
JPS59132661A (en) Schottky barrier type semiconductor device
JPS5925280A (en) Photo input mos transistor
JPS6136935A (en) Manufacture of semiconductor device
JPS5951150B2 (en) Manufacturing method for inverted mesa semiconductor device
RU795311C (en) Method of manufacturing transistor structures
JPS58199869A (en) Etching method
JPS59100563A (en) Manufacture of mesa type semiconductor device
JPS5877235A (en) Manufacture of semiconductor device
JPS61124149A (en) Semiconductor device and manufacture thereof
JPS6043653B2 (en) Manufacturing method of semiconductor device
JPS62112379A (en) Semiconductor device
JPS60117681A (en) Semiconductor device
JPH05144800A (en) Manufacture of semiconductor device