JPH02202032A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH02202032A
JPH02202032A JP2168489A JP2168489A JPH02202032A JP H02202032 A JPH02202032 A JP H02202032A JP 2168489 A JP2168489 A JP 2168489A JP 2168489 A JP2168489 A JP 2168489A JP H02202032 A JPH02202032 A JP H02202032A
Authority
JP
Japan
Prior art keywords
layer
substrate
high concentration
diffusion
polysilicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2168489A
Other languages
Japanese (ja)
Other versions
JP2757872B2 (en
Inventor
Yoshiaki Hisamoto
好明 久本
Hiroshi Yamaguchi
博史 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1021684A priority Critical patent/JP2757872B2/en
Priority to DE19904002673 priority patent/DE4002673C2/en
Publication of JPH02202032A publication Critical patent/JPH02202032A/en
Priority to US07/652,221 priority patent/US5246877A/en
Application granted granted Critical
Publication of JP2757872B2 publication Critical patent/JP2757872B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0623Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/74Making of localized buried regions, e.g. buried collector layers, internal connections substrate contacts
    • H01L21/743Making of internal connections, substrate contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76297Dielectric isolation using EPIC techniques, i.e. epitaxial passivated integrated circuit

Abstract

PURPOSE:To enable the electrode regions in high concentration and specified film thickness to be formed by a method wherein the electrode regions are composed of polycrystalline semiconductor layers containing impurity in specified conductivity type in high concentration formed in an active region as well as a diffused layer using the polycrystalline semiconductor layers as diffusion sources. CONSTITUTION:An n<->substrate 21 is etched away using resists 22 as masks so as to form V-type dents 23. Next, when a polysilicon layer 30a containing an n type impurity in high concentration is formed on the n<->substrate 21 including the dents 23 and then an insulating film 2 is formed on the polysilicon layers 30a by thermal diffusion, an n<+> diffused layer 30b is formed simultaneously. Next, after forming an n<-> polysilicon layer 24 on the insulating film 2, the rear surface of the n<->substrate 21 is ground down so that the insulating film 2, the polysilicon layer 30a and the n<+>diffused layer 30b may be exposed to the rear surface of the n<->substrate 21. Through these procedures, a multitude of islands 25 respectively insulated by the insulating film 2 having the electrode regions 30a, 30b in high concentration and specified film thickness may be completed.

Description

【発明の詳細な説明】 〔産業上の利用分野) この発明は高濃度な電極領域を有する半導体装置及びそ
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device having a highly concentrated electrode region and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

第3図は従来の素子分離型複合素子構造の半導体装置を
示す断面図である。同図に示すように、n−ポリシリコ
ン基体1上層部に絶縁ゲート型電界効果トランジスタ1
0A、接合型バイポーラトランジスタIOBがそれぞれ
絶縁I!12により絶縁分離され形成されている。この
絶縁膜2上に所定の膜厚のn+層3が形成され、このn
 層3上にn−層4が形成されている。
FIG. 3 is a sectional view showing a conventional semiconductor device having an element isolation type composite element structure. As shown in the figure, an insulated gate field effect transistor 1 is provided on the upper layer of an n-polysilicon substrate 1.
0A, junction bipolar transistor IOB is insulated I! 12 and is insulated and isolated. An n+ layer 3 having a predetermined thickness is formed on this insulating film 2.
An n-layer 4 is formed on layer 3.

電界効果トランジスタ10Aが形成されている素子形成
領Wt<以下「島」という。)では、0層4の上層部に
pウェル領域5が形成されており、このpウェル領域5
の表面部にn+ソース領域6が選択的に形成されている
The element formation region Wt in which the field effect transistor 10A is formed is hereinafter referred to as an "island". ), a p-well region 5 is formed in the upper layer part of the 0 layer 4, and this p-well region 5
An n+ source region 6 is selectively formed on the surface.

n−層4の表面とn+ソース領域6の表面とで挟まれた
pウェル領域5の表面上には、ゲート酸化膜7を介して
ポリシリコンゲート8が形成されている。また、n 層
3表面にはドレイン電極9が形成され、n+ソース領域
6の表面の一部からn4ン一ス領域6間のpウェル領域
5上にかけてソース電極11が形成され、ポリシリコン
ゲート8上にはゲート電極12が形成されている。これ
らの電極9.11..12はそれぞれパッシベーション
1$18により絶縁されている。
A polysilicon gate 8 is formed on the surface of the p-well region 5 sandwiched between the surface of the n- layer 4 and the surface of the n+ source region 6 with a gate oxide film 7 interposed therebetween. Further, a drain electrode 9 is formed on the surface of the n layer 3, a source electrode 11 is formed from a part of the surface of the n+ source region 6 to the p well region 5 between the n4 source regions 6, and a polysilicon gate 8 is formed. A gate electrode 12 is formed thereon. These electrodes9.11. .. 12 are each insulated by passivation 1$18.

一方、バイポーラトランジスタ10Bの島では、n−1
14の上層部にpベース領域13が形成されている。こ
のpベース領域13の表面部の一部にn+エミッタ領域
14が形成されている。そして、n+エミッタ領域14
上にエミッタ電極15が、pベース領域13上にベース
電極16が、nlS上にコレクタ電極17が形成されて
いる。これらのffm15〜17はそれぞれパッシベー
ション膜18により絶縁されている。
On the other hand, in the island of bipolar transistor 10B, n-1
A p base region 13 is formed in the upper layer portion of the p-base region 14 . An n+ emitter region 14 is formed in a part of the surface of this p base region 13. And n+ emitter region 14
An emitter electrode 15 is formed on top, a base electrode 16 is formed on p base region 13, and a collector electrode 17 is formed on nlS. These ffm15-17 are each insulated by a passivation film 18.

第4図(a)〜((1)は各々第3図で示した半導体装
置における島の形成方法を示す断面図である。
FIGS. 4(a) to 4(1) are cross-sectional views showing a method of forming islands in the semiconductor device shown in FIG. 3, respectively.

以下、同図を参照しつつその形成方法の説明をする。Hereinafter, a method for forming the same will be explained with reference to the same figure.

第4図(a)で示すような単結晶のn 基板21表面に
レジスト22を形成し、同図(b)に示すようにバター
ニングする。そして、バターニングされたレジスト22
をマスクとして、n−基板21エツチングし、同図(C
)に示すようにV字型のくぼみ23を形成する。各くぼ
み23間の距離lが各島間の幅となる。
A resist 22 is formed on the surface of a single-crystal n-type substrate 21 as shown in FIG. 4(a), and patterned as shown in FIG. 4(b). Then, the patterned resist 22
Using this as a mask, the n-substrate 21 was etched as shown in the same figure (C
), a V-shaped depression 23 is formed. The distance l between each depression 23 is the width between each island.

次に、くぼみ23を含むn−基板21の表面上にリン等
のn型の不純物を拡散しn+層3を形成する。その模、
弗酸系の薬品で前処理(n+層3上に形成されたリンガ
ラス層等の除去)を施した模、n+層3上に熱酸化膜等
の絶縁膜2を同図(d)に示すように形成する。
Next, an n-type impurity such as phosphorus is diffused onto the surface of the n- substrate 21 including the depression 23 to form an n+ layer 3. That model,
Figure (d) shows an insulating film 2 such as a thermal oxide film on the n+ layer 3 after pre-treatment with a hydrofluoric acid-based chemical (removal of the phosphorus glass layer etc. formed on the n+ layer 3). Form it like this.

そして、絶縁112上にエピタキシャル成長技術により
n−ポリシリコン層24を同図(e)に示すように形成
する。次に、n−l板21の裏面より研磨し、同図(f
)に示すように、絶縁膜2及びn”113をn−基板2
1裏面に露出させる。
Then, an n-polysilicon layer 24 is formed on the insulator 112 by epitaxial growth technique, as shown in FIG. 4(e). Next, the back side of the n-l plate 21 is polished, and the
), the insulating film 2 and n''113 are connected to the n-substrate 2.
1 Expose on the back side.

その結果、このn−基板21を裏返すと、同図(0)に
示すように、n−ポリシリコン層24を第3図のn ポ
リシリコン基体1とし、残ったn基板21を第3図のn
”層4とし、絶縁膜2により各々が絶縁された複数の島
25が完成する。そして、このようにして得られた島2
5の各々の中に、電界効果トランジスタ10A、バイポ
ーラトランジスタ108等が製造される。
As a result, when this n-substrate 21 is turned over, the n-polysilicon layer 24 becomes the n-polysilicon base 1 of FIG. n
A plurality of islands 25, each insulated by the insulating film 2, are completed.
In each of the transistors 5, a field effect transistor 10A, a bipolar transistor 108, etc. are manufactured.

(発明が解決しようとする課題) ところで、電界効果トランジスタ10Aにおいては、オ
ン抵抗、ドレイン−ソース間の順方向電圧を極力小さく
するため、バイポーラトランジスタ10Bにおいては、
コレクターエミッタ間飽和電圧を極力小さくするため、
ドレイン電極9.コレクタ電極17にそれぞれオーミッ
ク接続されるn+層3を厚く、高濃度に形成する必要が
ある。
(Problem to be Solved by the Invention) By the way, in the field effect transistor 10A, in order to minimize the on-resistance and the forward voltage between the drain and source, in the bipolar transistor 10B,
In order to minimize the collector-emitter saturation voltage,
Drain electrode9. It is necessary to form the n+ layer 3, which is ohmically connected to the collector electrode 17, thick and highly concentrated.

しかしながら、不純物拡散法によって、膜厚が厚く、高
濃度なn” Ji13を形成することは、1つは処理に
時間がかかり過ぎて作業性が悪いという理由、他の1つ
は拡散によって実現できる濃度値に限界がある(およそ
10〜10”0z−3)という理由により、極めて困難
であるという問題点があった。
However, it is difficult to form a thick, highly concentrated n'' Ji13 film using the impurity diffusion method, because one reason is that the process takes too much time and has poor workability, and the other is that it can be achieved by diffusion. The problem is that it is extremely difficult due to the limited density value (approximately 10-10''0z-3).

この発明は上記のような問題点を解決するためになされ
たもので、所望の膜厚で高濃度な電極領域を有する半導
体装置及びその製造方法を得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and aims to provide a semiconductor device having a high concentration electrode region with a desired film thickness, and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

この発明にかかる半導体装置は、半導体基板と、前記半
導体基板上に形成された少なくとも1つの能動領域と、
前記能動領域内に形成された、所定の導電型の不純物を
高濃度に含む多結晶半導体層および該多結晶半導体層の
周囲に形成された前記所定の導電型の拡il!!層より
成る電極領域とを備えている。
A semiconductor device according to the present invention includes a semiconductor substrate, at least one active region formed on the semiconductor substrate,
A polycrystalline semiconductor layer containing a high concentration of impurities of a predetermined conductivity type formed in the active region and an enlarged polycrystalline semiconductor layer of the predetermined conductivity type formed around the polycrystalline semiconductor layer! ! and an electrode region consisting of layers.

一方、この発明にかかる半導体装置の製造方法は、半導
体基板を準備する工程と、前記半導体基板上に能動領域
を形成する工程と、前記能動領域内に所定の導電型の不
純物を高濃度に含む多結晶半導体層を形成する工程と、
前記多結晶半導体層を拡散源として前記所定の導電型の
不純物を拡散し、前記多結晶半導体層の周囲に拡散層を
形成する工程とを備え、前記拡散層は前記多結晶半導体
層とともに電極領域を形成している。
Meanwhile, a method for manufacturing a semiconductor device according to the present invention includes the steps of preparing a semiconductor substrate, forming an active region on the semiconductor substrate, and including impurities of a predetermined conductivity type in the active region at a high concentration. forming a polycrystalline semiconductor layer;
diffusing the impurity of the predetermined conductivity type using the polycrystalline semiconductor layer as a diffusion source to form a diffusion layer around the polycrystalline semiconductor layer, the diffusion layer forming an electrode region together with the polycrystalline semiconductor layer. is formed.

〔作用〕[Effect]

この発明における電極領域は、能動領域に形成された、
所定の導電型の不純物を高濃度に含む多結晶半導体層と
、この多結晶半導体層を拡散源とした拡散により形成可
能な拡散層とからなるため、作業性良く、高濃度にかつ
膜厚を厚く形成することができる。
The electrode region in this invention is formed in the active region.
Consisting of a polycrystalline semiconductor layer containing a high concentration of impurities of a predetermined conductivity type and a diffusion layer that can be formed by diffusion using this polycrystalline semiconductor layer as a diffusion source, it is easy to work with, and it is possible to achieve a high concentration and a thin film. It can be formed thickly.

〔実施例〕〔Example〕

第1図はこの発明の一実施例である素子分離型複合素子
構造の半導体装置を示す断面図である。
FIG. 1 is a sectional view showing a semiconductor device having an element-separated composite element structure, which is an embodiment of the present invention.

同図に示すように、この実施例では、第3図の従来装置
において絶縁II!12の上に所定の膜厚で形成される
n+lIl!13に代えて、n型不純物を高濃度に含ん
だポリシリコンJI130aと、このポリシリコン層3
0aを拡散源とした不純物拡散により得られるn+拡散
層30bとを設けている。なお、他の構成は従来と同じ
であるので説明を省略する。
As shown in the figure, in this embodiment, insulation II! n+lIl! formed on 12 with a predetermined thickness. 13, polysilicon JI130a containing a high concentration of n-type impurities and this polysilicon layer 3
An n+ diffusion layer 30b obtained by impurity diffusion using Oa as a diffusion source is provided. Note that the other configurations are the same as the conventional one, so explanations will be omitted.

第2図(a)〜(a)は各々第1図で示した半導体装置
における島の形成方法を示す断面図である。
FIGS. 2(a) to 2(a) are cross-sectional views showing a method of forming islands in the semiconductor device shown in FIG. 1, respectively.

以下、同図を参照しつつその形成方法の説明をする。Hereinafter, a method for forming the same will be explained with reference to the same figure.

第2図(a)で示すような単結晶のn 基板21表面に
レジスト22を形成し、同図(b)に示すようにバター
ニングする。そして、バターニングされたレジスト22
をマスクとして、n−基板21をエツチングし、同図(
C)に示すようにV字型のくぼみ23を形成する。各く
ぼみ23間の距離lが各島閤の幅となる。
A resist 22 is formed on the surface of a single-crystal n-type substrate 21 as shown in FIG. 2(a), and patterned as shown in FIG. 2(b). Then, the patterned resist 22
Using as a mask, the n-substrate 21 is etched as shown in the figure (
A V-shaped depression 23 is formed as shown in C). The distance l between each depression 23 is the width of each island.

次に、くぼみ23を含むn 基板21の表面上に高濃度
にn型の不純物を含むポリシリコン層30aを数十ミク
ロンの膜厚で形成する。その後、連続的に絶縁膜形成炉
に入れ、ポリシリコン層30a上に絶縁膜2を数ミクロ
ンの膜厚で形成する。
Next, a polysilicon layer 30a containing n-type impurities at a high concentration is formed on the surface of the n-type substrate 21 including the depression 23 to a thickness of several tens of microns. Thereafter, the insulating film 2 is continuously placed in an insulating film forming furnace to form an insulating film 2 with a thickness of several microns on the polysilicon layer 30a.

このとき、ポリシリコン層30a中の不純物の熱拡散に
より、ポリシリコン層30aの周囲のn基板21中に、
同図(d)に示すようにn+拡散層30bが同時に形成
される。
At this time, due to thermal diffusion of impurities in the polysilicon layer 30a, into the n-type substrate 21 around the polysilicon layer 30a,
As shown in FIG. 3(d), an n+ diffusion layer 30b is formed at the same time.

そして、絶縁l!I2上にエピタキシャル成長技術によ
りn ポリシリコン層24を同図(e)に示すように形
成する。次に、n−基板21の裏面より研磨し、同図(
f)に示すように、絶縁膜2.ポリシリコン層30及び
n1拡散層30bをn−基板21裏面に露出させる。
And insulation! An n-polysilicon layer 24 is formed on I2 by epitaxial growth technique, as shown in FIG. 2(e). Next, the back surface of the n-substrate 21 is polished, and the same figure (
As shown in f), the insulating film 2. The polysilicon layer 30 and the n1 diffusion layer 30b are exposed on the back surface of the n- substrate 21.

その結果、このn−基板21を裏返すと、nポリ991
7層24を第1図のn ポリシリコン基体1とし、残っ
たn−基板21を第1図のnJIW4とし、絶縁WA2
により各々が絶縁された複数の島25が完成する。
As a result, when this n-board 21 is turned over, n-poly 991
The 7th layer 24 is the n polysilicon substrate 1 in FIG. 1, the remaining n-substrate 21 is the nJIW4 in FIG. 1, and the insulating WA2
As a result, a plurality of islands 25, each insulated, are completed.

このようにして得られた島25の中に、以下の工程に従
い、電界効果トランジスタ10A、バイポーラトランジ
スタ10Bが製造される。第5図(a)〜(d)は電界
効果トランジスタ10A及びバイポーラトランジスタI
OBの製造方法を示す断面図である。以下、同図を参照
しつつその製造方法の説明をする。まず、弗酸系の薬品
によりnポリシリコン基体1の前処理を行う。次にn 
ポリシリコン基体1の表面上に熱酸化法等により酸化1
131を形成し、写真製版技術により酸化ff131を
選択的にバターニングして窓31aを形成する。そして
、この酸化膜31の窓31aからの不純物拡散により、
島25aのn−層4上層部pつx )Lt領1it!5
を、島25bのn−層4上層部にpベース領域13を同
図(a)に示すようにそれぞれ形成する。
In the thus obtained island 25, a field effect transistor 10A and a bipolar transistor 10B are manufactured according to the following steps. FIGS. 5(a) to 5(d) show a field effect transistor 10A and a bipolar transistor I.
FIG. 3 is a cross-sectional view showing a method for manufacturing an OB. The manufacturing method will be explained below with reference to the same figure. First, the n-polysilicon substrate 1 is pretreated with a hydrofluoric acid-based chemical. Then n
Oxidation 1 is applied to the surface of the polysilicon substrate 1 by a thermal oxidation method or the like.
131 is formed, and the oxidized FF131 is selectively patterned by photolithography to form the window 31a. Then, due to impurity diffusion from the window 31a of this oxide film 31,
Island 25a's n-layer 4 upper layer px) Lt area 1it! 5
A p base region 13 is formed in the upper part of the n- layer 4 of the island 25b, as shown in FIG.

次に、島25aにおける酸化m31を除去し、n エピ
タキシャル基体1表面に熱酸化法等により酸化膜32を
薄く形成し、この酸化wA32上にポリシリコン113
3を形成する。この酸化膜32は島25b上においては
酸化膜31と合体して若干厚くなる。次に、ポリシリコ
ン層33及び酸化111132を選択的にエツチングし
て窓33aを形成する。そして、同図(b)に示すよう
に、ポリシリコン層33の窓33aからn型の不純物を
拡散し、pウェル領域5及びpベース領域13の上層部
にn+ソース領域6及びn 工くツタ領域14を形成す
る。なお、電界効果トランジスタ10Aが2重拡散タイ
プであれば、n+ソース領域6形成前にp型の不純物を
窓33aから拡散する。
Next, the oxide m31 on the island 25a is removed, and a thin oxide film 32 is formed on the surface of the n epitaxial substrate 1 by a thermal oxidation method, etc., and the polysilicon 113 is formed on this oxidized wA32.
form 3. This oxide film 32 is combined with the oxide film 31 on the island 25b and becomes slightly thicker. Next, polysilicon layer 33 and oxide 111132 are selectively etched to form window 33a. Then, as shown in FIG. 3B, n-type impurities are diffused through the window 33a of the polysilicon layer 33, and an n+ source region 6 and an n-type impurity are formed in the upper layer of the p-well region 5 and the p-base region 13. A region 14 is formed. Note that if the field effect transistor 10A is a double diffusion type, p-type impurities are diffused through the window 33a before forming the n+ source region 6.

その慢、ポリシリコン層33を選択的にエツチングして
、同図(C)に示すように、島25aにポリシリコンゲ
ート8を形成する。次に、n−エピタキシャル基体1全
而に酸化膜を形成し、この酸化膜を選択的にエツチング
し、同図(d)に示すように、島25aaよび25bに
パッシベーション膜18を形成する。
After that, the polysilicon layer 33 is selectively etched to form a polysilicon gate 8 on the island 25a, as shown in FIG. Next, an oxide film is formed over the entire n-epitaxial substrate 1, and this oxide film is selectively etched to form a passivation film 18 on the islands 25aa and 25b, as shown in FIG.

その後、パッシベーション膜18を含むn エピタキシ
ャル基体1上に導電層を形成し、この導電層を選択的に
エツチングすることで、第1図に示すように島25aに
ドレイン電極9.ソース電極11.ゲート電極12が形
成され、島25bにエミッタ電極15.ベース電極16
及びコレクタ電極17が形成される。このようにして、
島25aに電界効果トランジスタ10Aが、島25bに
バイポーラトランジスタ10Bが形成される。
Thereafter, a conductive layer is formed on the n-type epitaxial substrate 1 including the passivation film 18, and this conductive layer is selectively etched to form the drain electrode 9 on the island 25a as shown in FIG. Source electrode 11. A gate electrode 12 is formed, and an emitter electrode 15. is formed on the island 25b. Base electrode 16
and a collector electrode 17 is formed. In this way,
A field effect transistor 10A is formed on the island 25a, and a bipolar transistor 10B is formed on the island 25b.

上記実施例においては、島25中の電極領域となるn+
領領域高濃度にn型不純物がドープされたポリシリコン
層30aと、このポリシリコン層30a中の不純物の拡
散により得られたn 拡散1t130bとにより形成し
ている。ポリシリコン層30aは、10 〜1022m
+−3程度まで容易かつ正確に不純物濃度を高くするこ
とができる。また、20μmの膜厚のn+層を形成する
には、従来の不純物拡散法では4時間程度要していたも
のが、ポリシリコン1130aではわずか20分程度で
形成できるため、短時間で膜厚を厚くすることができる
。したがって、所望の膜厚で高濃度なn+層が島25中
に作業性良く形成できる。
In the above embodiment, n+ which becomes the electrode region in the island 25
The region is formed by a polysilicon layer 30a doped with n-type impurities at a high concentration, and an n-diffusion it130b obtained by diffusion of the impurity in this polysilicon layer 30a. The polysilicon layer 30a has a thickness of 10 to 1022 m.
The impurity concentration can be easily and accurately increased to about +-3. In addition, to form an n+ layer with a thickness of 20 μm, which used to take about 4 hours using conventional impurity diffusion methods, it can be formed in only about 20 minutes using polysilicon 1130a, so the film thickness can be increased in a short time. It can be made thicker. Therefore, a highly concentrated n+ layer with a desired thickness can be formed in the island 25 with good workability.

その結果、この島25中に電界効果トランジスタ10A
を製造する場合は、ポリシリコン層30a及び拡散1i
130bをドレイン電極9とオーミック接続することで
、オン抵抗値、ドレイン−ソース間の順方向電圧を極力
小さくでき、島25中に接合型トランジスタ10Bを製
造する場合は、ポリシリコン層30a及び拡散Ji13
0bをコレクタ電極17とオーミック接続することで、
コレクターエミッタ間飽和電圧を極力小さくできる。
As a result, in this island 25 there is a field effect transistor 10A.
When manufacturing polysilicon layer 30a and diffusion 1i
130b is ohmically connected to the drain electrode 9, the on-resistance value and forward voltage between the drain and source can be minimized. When manufacturing the junction transistor 10B in the island 25, the polysilicon layer 30a and the diffusion
By ohmic connecting 0b with the collector electrode 17,
Collector-emitter saturation voltage can be minimized.

また、n+拡散層30bは、絶縁1[12の形成時に同
時に形成されるため、従来に比べ製造工程数が増えるこ
ともない。
Furthermore, since the n+ diffusion layer 30b is formed at the same time as the insulation 1[12 is formed, the number of manufacturing steps is not increased compared to the conventional method.

なお、上記実施例では、素子分離型複合素子の半導体装
置を例に挙げたが、この発明は、半導体素子の能動領域
中に所望の膜厚で高濃度な電極領域を必要とするすべて
の半導体装置に適用することができる。
In the above embodiments, a semiconductor device of an element isolation type composite element was taken as an example, but the present invention is applicable to all semiconductor devices that require a high concentration electrode region with a desired film thickness in the active region of a semiconductor element. It can be applied to the device.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、電極領域を、
能動領域内に形成された所定の導電型の不純物を高濃度
に含む多結晶半導体層と、この多結晶半動体層を拡散源
とした拡散により形成可能な拡散層とから構成するため
、所望の膜厚で1Mm度な電極領域を有することができ
る効果がある。
As explained above, according to the present invention, the electrode region is
It consists of a polycrystalline semiconductor layer containing a high concentration of impurities of a predetermined conductivity type formed in the active region and a diffusion layer that can be formed by diffusion using this polycrystalline semi-active layer as a diffusion source. This has the advantage of having an electrode area with a film thickness of about 1 mm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例である素子分離型複合素子
構造の半導体装置を示す断面図、第2図は第1図で示し
た半導体装置の製造方法を示す断面図、第3図は従来の
素子分離型複合素子構造の半導体装置を示す断面図、第
4図は第3図で示した半導体装置の製造方法を示す断面
図、第5図は電界効果トランジスタ及びバイポーラトラ
ンジスタの製造方法を示す断面図である。 図において、1はn”ポリシリコン基体、2は絶縁膜、
30aはポリシリコン層、30bはn+拡散層、4はn
−層、21はn″基板、24はn−ポリシリコン層であ
る。 なお、各図中同一符号は同一または相当部分を示す。 代理人   大  岩  増  雄 第2図(ぞの1) 24・・・n−ポリシリコン層 第 図(その2) 第 図 第4図(イの1) 第 図(その2)
FIG. 1 is a cross-sectional view showing a semiconductor device with an element-separated composite element structure as an embodiment of the present invention, FIG. 2 is a cross-sectional view showing a method for manufacturing the semiconductor device shown in FIG. 1, and FIG. 4 is a cross-sectional view showing a conventional semiconductor device with an element-separated composite element structure, FIG. 4 is a cross-sectional view showing a method for manufacturing the semiconductor device shown in FIG. 3, and FIG. 5 is a cross-sectional view showing a method for manufacturing a field effect transistor and a bipolar transistor. FIG. In the figure, 1 is an n'' polysilicon base, 2 is an insulating film,
30a is a polysilicon layer, 30b is an n+ diffusion layer, 4 is an n
- layer, 21 is an n'' substrate, and 24 is an n-polysilicon layer. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masuo Oiwa Figure 2 (Zone 1) 24.・・n-polysilicon layer Figure (Part 2) Figure 4 (A-1) Figure (Part 2)

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板と、 前記半導体基板上に形成された少なくとも1つの能動領
域と、 前記能動領域内に形成された、所定の導電型の不純物を
高濃度に含む多結晶半導体層および該多結晶半導体層の
周囲に形成された前記所定の導電型の拡散層より成る電
極領域とを備える半導体装置。
(1) a semiconductor substrate, at least one active region formed on the semiconductor substrate, a polycrystalline semiconductor layer formed in the active region and containing a high concentration of impurities of a predetermined conductivity type, and the polycrystalline semiconductor layer. and an electrode region made of a diffusion layer of the predetermined conductivity type formed around a semiconductor layer.
(2)半導体基板を準備する工程と、 前記半導体基板上に能動領域を形成する工程と、前記能
動領域内に所定の導電型の不純物を高濃度に含む多結晶
半導体層を形成する工程と、前記多結晶半導体層を拡散
源として前記所定の導電型の不純物を拡散し、前記多結
晶半導体層の周囲に拡散層を形成する工程とを備え、前
記拡散層は前記多結晶半導体層とともに電極領域を形成
している半導体装置の製造方法。
(2) a step of preparing a semiconductor substrate; a step of forming an active region on the semiconductor substrate; and a step of forming a polycrystalline semiconductor layer containing a high concentration of impurities of a predetermined conductivity type in the active region; diffusing the impurity of the predetermined conductivity type using the polycrystalline semiconductor layer as a diffusion source to form a diffusion layer around the polycrystalline semiconductor layer, the diffusion layer forming an electrode region together with the polycrystalline semiconductor layer. A method for manufacturing a semiconductor device forming a
JP1021684A 1989-01-31 1989-01-31 Semiconductor device and manufacturing method thereof Expired - Lifetime JP2757872B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1021684A JP2757872B2 (en) 1989-01-31 1989-01-31 Semiconductor device and manufacturing method thereof
DE19904002673 DE4002673C2 (en) 1989-01-31 1990-01-30 Method of manufacturing a semiconductor device
US07/652,221 US5246877A (en) 1989-01-31 1991-02-06 Method of manufacturing a semiconductor device having a polycrystalline electrode region

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1021684A JP2757872B2 (en) 1989-01-31 1989-01-31 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH02202032A true JPH02202032A (en) 1990-08-10
JP2757872B2 JP2757872B2 (en) 1998-05-25

Family

ID=12061894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1021684A Expired - Lifetime JP2757872B2 (en) 1989-01-31 1989-01-31 Semiconductor device and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP2757872B2 (en)
DE (1) DE4002673C2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2567472B2 (en) * 1989-05-24 1996-12-25 日産自動車株式会社 Semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63124576A (en) * 1986-11-14 1988-05-28 Nec Corp Field effect transistor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3722079A (en) * 1970-06-05 1973-03-27 Radiation Inc Process for forming buried layers to reduce collector resistance in top contact transistors
JPS60186036A (en) * 1984-03-05 1985-09-21 Nippon Telegr & Teleph Corp <Ntt> Semiconductor substrate and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63124576A (en) * 1986-11-14 1988-05-28 Nec Corp Field effect transistor

Also Published As

Publication number Publication date
JP2757872B2 (en) 1998-05-25
DE4002673C2 (en) 1998-01-22
DE4002673A1 (en) 1990-08-02

Similar Documents

Publication Publication Date Title
JPH01179342A (en) Composite semiconductor crystal
JPS6159852A (en) Manufacture of semiconductor device
US5246877A (en) Method of manufacturing a semiconductor device having a polycrystalline electrode region
JPH05299658A (en) Semiconductor device and manufacture thereof
JPH0513426A (en) Semiconductor device
JP2002190593A (en) Insulated gate fet and method of manufacturing the same
JPH02202032A (en) Semiconductor device and manufacture thereof
JPS60117755A (en) Manufacture of semiconductor device
JPS6313352B2 (en)
JPS5916414B2 (en) semiconductor equipment
JPH02207534A (en) Semiconductor device
JPS60123062A (en) Manufacture of semiconductor integrated circuit
KR900008818B1 (en) Manufacture method of a particle in bipolar integrated circuit
JPS6022358A (en) Semiconductor integrated circuit device
JPH06260598A (en) Transistor with built-in resistor
JPH0621077A (en) Semiconductor device and manufacture thereof
JPH0346335A (en) Bipolar-type semiconductor integrated circuit
JPS58210659A (en) Semiconductor device and manufacture thereof
JPS59217368A (en) Integrate circuit and manufacture thereof
JPS6124825B2 (en)
JPH0666275B2 (en) Method for manufacturing semiconductor device
JPS63246842A (en) Semiconductor integrated circuit
JPH01228157A (en) Semiconductor device
JPS5835363B2 (en) Manufacturing method for semiconductor devices
JPS62299059A (en) Semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080313

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 11

EXPY Cancellation because of completion of term