JPS60117755A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60117755A
JPS60117755A JP58225817A JP22581783A JPS60117755A JP S60117755 A JPS60117755 A JP S60117755A JP 58225817 A JP58225817 A JP 58225817A JP 22581783 A JP22581783 A JP 22581783A JP S60117755 A JPS60117755 A JP S60117755A
Authority
JP
Japan
Prior art keywords
recess
oxide film
region
substrate
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58225817A
Other languages
Japanese (ja)
Inventor
Hiroaki Okizaki
沖崎 宏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58225817A priority Critical patent/JPS60117755A/en
Publication of JPS60117755A publication Critical patent/JPS60117755A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To enable the realization of desired characteristics by reducing the area and dimensions of elements by a method wherein a single crystal semiconductor region filling a recess formed in a substrate is formed and then made as one region for a semiconductor element. CONSTITUTION:An Si oxide film 28 is formed on the surface of the P type Si substrate 27, and this film is selectively etched by the use of a photo resist as a mask. Next, using the anisotropic dry etching method, the recess 29 is formed by selectively etching the substrate to a depth of approx. 3-4mum. Thereafter, an Si oxide film 30 is formed on the surface of the recess by using the vapor phase growing method and the like. Next, this oxide film is etched by the anisotropic dry etching method so that the bottom of the recess becomes exposed, and a high concentration layer 31 is formed by diffusing an N type impurity to the exposed surface. Then, an N type epitaxial layer 32 is selectively formed so as to fill the recess, and an Si oxide film 33 is formed over the entire surface.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は半導体装置の製造方法に関し、特に。[Detailed description of the invention] (Technical field of invention) The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device.

PおよびNチャンネルトランジスタや絶縁ゲートトラン
ジスタとバイポーラトランジスタのようにボ 導電極性や異なったシ制御方式が異なるトランジスタが
一つの半導体基体内に形成された半導体装置の製造方法
に関する。
The present invention relates to a method of manufacturing a semiconductor device in which transistors such as P- and N-channel transistors, insulated gate transistors, and bipolar transistors having different conductivity polarities and different control methods are formed within a single semiconductor substrate.

(従来技術) 例えば相補型絶縁ゲートトランジスタの製造方法におり
ては、従来は、第1図に示すように、N形基板lにP−
ウェル領域3を形成し、N形すブストレート領域にP型
のソース、ドレイン領域5゜5′を有するP−chMU
s)ランジスタを、P−ウェル領域3にNgのソースお
よびドレイン領域4.4′を有するN−chMUs)ラ
ンジスタをそれぞれ形成していた。なお、2は絶縁膜で
、6゜6′はゲート電柱である。その他として、P形基
板にN−ウェルを形成する方法やP−ウェル、N−ウェ
ル両方を形成する方法等がある。
(Prior Art) For example, in the manufacturing method of complementary insulated gate transistors, as shown in FIG.
A P-chMU in which a well region 3 is formed and a P-type source and drain region 5° 5' is formed in an N-type substrate region.
s) transistor and N-chMUs) transistor having Ng source and drain regions 4.4' in the P-well region 3, respectively. Note that 2 is an insulating film, and 6°6' is a gate pole. Other methods include forming an N-well on a P-type substrate, and forming both a P-well and an N-well.

以上のいずれの製造方法においても、ウェル領域を形成
する際に、ウェル領域の拡散深さを耐圧。
In any of the above manufacturing methods, when forming the well region, the diffusion depth of the well region is determined by the breakdown voltage.

う、チア、プ等の関係から4〜6μ程度必要とする。そ
のため、ウェル領域の横波がシのため、素子間距離を大
きくとらなければならないという欠点があった。
Approximately 4 to 6 μm is required due to the relationship between U, Chi, P, etc. As a result, transverse waves in the well region are generated, resulting in a drawback that a large distance between elements must be provided.

また、絶縁ゲートトランジスタとパイポーラトランジス
タとを共存させる場合、第2図に示すように、P形の基
板11に高濃度のNm埋込領域13ギ形成、さらにN形
のエピタキシャル層12を形成して絶縁分離領域15お
よびP−ウェル領域14を形成した後、バイポーラ部ベ
ース領域17.P−ch)ランジスタ部のソース、ドレ
イン領域16゜16’ ならびにバイポーラ部のエミッ
タおよびコレクタコンタクト領域19 # 19 ’ 
* N −ch Fランジスタ部ソース、ドレイン18
.18’ を形成していた。なお、10は各領域のため
の電極である・ この方法においても、p−+yエル領域14の形成条件
が高温で数時間〜十数時間となってしまい。
Furthermore, when an insulated gate transistor and a bipolar transistor are used together, as shown in FIG. After forming the insulating isolation region 15 and the P-well region 14, the bipolar part base region 17. P-ch) Source and drain regions 16°16' of transistor section and emitter and collector contact regions 19 #19' of bipolar section
*N-ch F transistor section source, drain 18
.. It formed 18'. Note that 10 is an electrode for each region. Even in this method, the conditions for forming the p-+yel region 14 are at a high temperature for several hours to more than ten hours.

それによるバイポーラ部のN形埋込層13のせシ上がシ
によシバイポーラ部の耐圧が低くなってし逢い、これを
さけるためには、エピタキシャル層12を厚くなってし
まい、この結果、素子自体非常に大きなものとなってし
まうという欠点があった。
As a result, the N-type buried layer 13 in the bipolar part is overlaid, which lowers the withstand voltage of the bipolar part. It had the disadvantage that it itself became very large.

このように、従来の方法では、所望の特性を有する所望
の素子を得るためには素子面積の増太さ犠牲にしなりれ
はならなかった・ (発明の目的) 不発明の目的は、素子面積1寸法を小さくしてJシを望
の特性を冥現するだめの製造方法を提供することにある
In this way, in the conventional method, in order to obtain a desired device with desired characteristics, it was necessary to sacrifice an increase in the device area. It is an object of the present invention to provide a method for manufacturing a dam that achieves the desired characteristics by reducing one dimension.

(発明の構成) 本発明は、基板を選択的に除去することによっを埋める
単結晶半導体領域を形成してこれを半導体素子のための
一領域とすることを特徴とする。
(Structure of the Invention) The present invention is characterized in that by selectively removing the substrate, a single crystal semiconductor region is formed to fill the gap, and this is used as a region for a semiconductor element.

かかる方法によれば、拡散による横広がシを防止でき、
高絨度不純物領域および絶縁膜によって所望の素子特性
が得られ得る。
According to this method, horizontal spread due to diffusion can be prevented,
Desired device characteristics can be obtained by the highly viscous impurity region and the insulating film.

(夾施例) 以下、不発明を図面を用いて詳細に説明する。(Example) Hereinafter, the invention will be explained in detail using the drawings.

第3図は不発明の一実施例を示す、まず、第3図(a)
のように、不純物濃度2〜3XIQ Cm程夏のP形シ
リコン基板27を用意し、この表面にシリコンポ化膜2
8を0.5〜1μm程度の厚さで形成し、フォトレジス
トをマスクとして用いて選択的に酸化膜28をエツチン
グする0次に、異方性のドライエツチング法を用い、基
板27を3〜4μm程度の深さに選択にエツチングを行
なって四部29形成する。その後、気相成長法等を用い
て凹部29の表面にシリコン酸化膜30を0.5〜1μ
程度の厚さに形成する0次に異方性のドライエ、チング
法忙用いて凹部29り底部が露出するように改化膜30
をエツチングする。露出した面にN形の不純物を拡散し
て1〜5XIQ Cm 程度の高濃度層31を形成する
Fig. 3 shows an embodiment of the non-invention. First, Fig. 3(a)
A P-type silicon substrate 27 with an impurity concentration of 2 to 3XIQ Cm is prepared as shown in FIG.
The oxide film 28 is selectively etched using a photoresist as a mask. Next, the substrate 27 is etched using an anisotropic dry etching method. Four portions 29 are formed by selectively etching to a depth of about 4 μm. Thereafter, a silicon oxide film 30 of 0.5 to 1 μm is formed on the surface of the recess 29 using a vapor phase growth method or the like.
The modified film 30 is formed to a certain thickness using a zero-order anisotropic drying and drying process so that the bottom of the recess 29 is exposed.
etching. N-type impurities are diffused into the exposed surface to form a high concentration layer 31 of about 1 to 5XIQ Cm.

次に、第3図(b)に示すように、凹部29を埋めるよ
うに選択的にN型のエピタキシャル層32を形成する0
選択的にエピタキシャル層32を形成する方法としては
、5iH2C12−HUl−H2の混合ガスを用いて減
圧下でエピタキシャル成長を行なう、すると、シリコン
酸化膜28上にはシリコン層は形成されず、単結晶シリ
コン部上にのみエピタキシャル層が形成される。以上の
方法を用い。
Next, as shown in FIG. 3(b), an N-type epitaxial layer 32 is selectively formed to fill the recess 29.
As a method for selectively forming the epitaxial layer 32, epitaxial growth is performed under reduced pressure using a mixed gas of 5iH2C12-HUl-H2. Then, no silicon layer is formed on the silicon oxide film 28, and single crystal silicon is formed. An epitaxial layer is formed only on the portion. Using the above method.

凹部29にlXl0 Cm 程度のN形エピタキシャル
層32を形成し、全面にシリコンポ化膜33を形成する
An N-type epitaxial layer 32 of about 1X10 Cm is formed in the recess 29, and a silicon oxide film 33 is formed on the entire surface.

以後は、通常のC−M(JS )ランジスタ形成プロセ
スを用い、第3図(C1に示すように、P−ch)ラン
ジスタのソースおよびドレイン領域34.34’。
Thereafter, a normal C-M (JS) transistor formation process is used to form the source and drain regions 34, 34' of the P-ch transistor in FIG. 3 (as shown in C1).

N−ch)ランジスタのソースおよびドレイン領域35
.35’ をそれぞれ形成し、ゲート酸化膜36.36
’を形成して各電極37を形成する。
N-ch) transistor source and drain regions 35
.. 35' are formed respectively, and gate oxide films 36 and 36 are formed.
' to form each electrode 37.

これによって、相補型MUS)ランジスタが形成される
This forms a complementary MUS) transistor.

なお、図面は金属ゲートのC−MOS トランジスタを
示しているが、Si(シリコン)ゲート形でもできるこ
とはいうまでもなく、またP形すブストレートの替シに
N形すブストレートを用いP形エピタキシャル層を用い
てもさしつかえない。
Although the drawing shows a C-MOS transistor with a metal gate, it goes without saying that a Si (silicon) gate type can also be used. An epitaxial layer may also be used.

かかる方法によれば、ウェル領域32の横波がシ(3〜
5μm程度)を無視することができ、さらに、ソース、
ドレイン領域34.34’ とウェル11領域32との
マージン(1〜2μm程度)も無視できるため、従来に
較べ大幅に素子の縮小化ができる。さらに、サブストレ
ート27−エピタキシャル層32間に高濃度埋込層31
があることによシ、寄生トランジスタが生じなくなシ、
ラッチアップに対しても非常に強くなるという利点を持
つ。
According to this method, the transverse waves in the well region 32 are
(approximately 5 μm) can be ignored, and in addition, the source,
Since the margin (approximately 1 to 2 .mu.m) between the drain region 34, 34' and the well 11 region 32 can be ignored, the device can be reduced in size to a greater extent than in the past. Further, a high concentration buried layer 31 is provided between the substrate 27 and the epitaxial layer 32.
Due to this, parasitic transistors do not occur,
It also has the advantage of being extremely resistant to latch-up.

第4図は本発明の他の実施例を示す、筐ず、第4図(a
)に示されるように、不純物濃度2〜3X10”cm−
3程度のP形シリコン基板41にシリコン酸化膜42を
05〜1μm程度の厚さに形成し、7オトレジストをマ
スクとして用い選択的に酸化膜42を工、チングする0
次に、異方性のドライエツチング法を用い、サブストレ
ー)41に3〜4μm程度の深さに選択的に工、チング
を行なって凹部43、43’ 、 43“を形成する。
FIG. 4 shows another embodiment of the present invention.
), the impurity concentration is 2~3X10"cm-
A silicon oxide film 42 is formed on a P-type silicon substrate 41 of approximately 0.3 μm to a thickness of approximately 0.5 to 1 μm, and the oxide film 42 is selectively etched using a 7-photoresist as a mask.
Next, using an anisotropic dry etching method, the substrate 41 is selectively etched to a depth of about 3 to 4 μm to form recesses 43, 43', 43''.

その後、気相成長法等を用いて凹部43〜43“の表面
にシリコン酸化膜44を0.5〜1μm程度形成する0
次に異方性ドライエツチング法を用い凹部43−43“
の底部の酸化膜をエツチングすることによ)シリコン面
を露出される。凹部43,43’ における霧出した5
i 面にN形の不純物を拡散し1〜5×10cm−3程
度の高濃度埋込層45,45’ を形成する。凹部43
“におけるシリコン露光面には高濃度埋込層は形成され
ていない。
Thereafter, a silicon oxide film 44 of about 0.5 to 1 μm is formed on the surfaces of the recesses 43 to 43'' using a vapor phase growth method or the like.
Next, using an anisotropic dry etching method, the recesses 43-43"
(by etching the oxide film on the bottom of the oxide film) the silicon surface is exposed. Mist coming out in the recesses 43, 43' 5
N-type impurities are diffused into the i-plane to form heavily doped buried layers 45, 45' with a thickness of about 1 to 5.times.10 cm.sup.-3. Recess 43
No high concentration buried layer is formed on the silicon exposed surface in ".

次に、第4図(b)に示すように、四部43−43“を
埋めるように選択的に1x1015cm−3程度のN型
エピタキシャル層46.46’ 、 46“を形成する
Next, as shown in FIG. 4(b), N-type epitaxial layers 46, 46' and 46'' having a thickness of about 1×10 15 cm −3 are selectively formed to fill the four portions 43 - 43 ″.

形成方法は、第3図で説明したものを用いることができ
る0次に、全面にシリコン酸化膜47を形成する。
As for the formation method, the method explained in FIG. 3 can be used. Next, a silicon oxide film 47 is formed on the entire surface.

以後は、通常のMOSトランジスタおよびバイポーラト
ランジスタの製造方法を用い、第4図(C1に示すよう
に、p−ch)ランジスタのソースおよびドレイン領域
48.48’ 、バイポーラ部のベース領域49を同時
に形成し、N−ch トランジスタのソースおよびドレ
イン領域50.50’、バイポーラ部のエミッタおよび
、コレクタコンタクト領域51.51’ を形成する。
Thereafter, the source and drain regions 48 and 48' of the p-ch transistor in FIG. 4 (as shown in C1) and the base region 49 of the bipolar part are formed at the same time using the usual manufacturing method of MOS transistors and bipolar transistors. Then, the source and drain regions 50 and 50' of the N-ch transistor, the emitter and collector contact regions 51 and 51' of the bipolar part are formed.

そして、ゲート酸化膜52,52’ を形成して各金属
電極(23)を形成する。これによJ、MOS)ランジ
スタおよびバイポーラトランジスタを同一基板上に形成
した半4本装置が製造される。
Then, gate oxide films 52, 52' are formed to form each metal electrode (23). As a result, a half-quadruple device in which a J, MOS transistor and a bipolar transistor are formed on the same substrate is manufactured.

尚1図面は金属ゲートのM(JS)ランジスタを示して
いるが S iゲー)MOS1−ランジスタでも可能な
ことはいうまでもない。また、4を型を入れかえること
ができる。また、N型エピタヤシャル領域46“には埋
込領域を必要としない他の素子が形成される。
Although FIG. 1 shows a metal gate M(JS) transistor, it goes without saying that a MOS1-MOS transistor may also be used. Also, the mold of 4 can be replaced. Further, other elements that do not require a buried region are formed in the N-type epitaxial region 46''.

かかる実施例によれは、well領域46の横波が、!
1)(3〜5μmn程度)、絶縁領域の横波がシ(7〜
10μm程度)、N1杉埋込領域45′の横波が9(4
〜6μm程度)を無視できる上、ソース、ドレイン48
.48’ とyel146とツマ−シフ (l〜2μm
程度)も無視できるだめ、従来に較べ大幅な素子縮小化
が可能となる。しかも、サブストレート41−エピタキ
シャル層46.46’間にN+形埋込層45,45’が
あることにより、寄生トランジスタが生じなくなシ、ラ
ッチアップに対しても非猟に強くなるという利点を持つ
According to this embodiment, the transverse waves in the well region 46 are !
1) (approximately 3 to 5 μm), transverse waves in the insulating area (7 to 5 μm)
10 μm), and the transverse wave in the N1 cedar embedded region 45' is 9 (about 4
~6μm) can be ignored, and the source and drain 48
.. 48' and yel146 and Zimmerschiff (l~2μm
The size of the device is also negligible, making it possible to significantly reduce the size of the device compared to the conventional method. Moreover, the presence of the N+ type buried layers 45, 45' between the substrate 41 and the epitaxial layer 46, 46' prevents the generation of parasitic transistors and has the advantage of being highly resistant to latch-up. have

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ従来の製造方法によシ形
成された素子の断面図である。第3図(al乃至(C)
は本発明の一実施例を示す工程断面図であハ第4図(a
)乃至fc)は他の実施例を示す工程断面図である。 1.11,27.41はP形すブストレート、12.4
6−46“、32はエピタキシャル層、13.45.4
5’はN 形埋込層、3,14はP−weJ3領域、1
5はP+形絶絶縁領域 5.5’。 16.16’、34.34’、48.48’、49はP
膨拡散層、4.4’、35.35’、50.50’。 51.51’はN+形拡散層、6,20,37゜53は
金属電極、2.28.30,42.44゜47は酸化j
漠、29.43−43“は凹部。 l 第f図 第1V 第−i図
1 and 2 are cross-sectional views of elements formed by conventional manufacturing methods, respectively. Figure 3 (al to (C)
4(a) is a process sectional view showing one embodiment of the present invention.
) to fc) are process cross-sectional views showing other embodiments. 1.11, 27.41 are P-type blast rates, 12.4
6-46", 32 is epitaxial layer, 13.45.4
5' is an N-type buried layer, 3 and 14 are P-weJ3 regions, 1
5 is a P+ type insulation region 5.5'. 16.16', 34.34', 48.48', 49 are P
Swelling diffusion layer, 4.4', 35.35', 50.50'. 51.51' is an N+ type diffusion layer, 6, 20, 37° 53 is a metal electrode, 2.28.30, 42.44° 47 is an oxidized layer.
29.43-43" is a concave portion. l Fig. f Fig. 1V Fig. -i

Claims (1)

【特許請求の範囲】[Claims] 半導体基板を選択的に除去して凹部を設ける工程と、前
記凹部の側面部に絶縁物を形成する工程と、前記凹部の
底面部に高濃度領域を設ける工程と、前記凹部を埋める
半導体領域を形成する工程と、前記半導体領域内に素子
領域を形成する工程−とを含むことを特徴とする半導体
装置の製造方法。
A step of selectively removing a semiconductor substrate to provide a recess, a step of forming an insulator on the side surfaces of the recess, a step of providing a high concentration region on the bottom of the recess, and a step of forming a semiconductor region to fill the recess. 1. A method of manufacturing a semiconductor device, comprising: a step of forming an element region in the semiconductor region; and a step of forming an element region within the semiconductor region.
JP58225817A 1983-11-30 1983-11-30 Manufacture of semiconductor device Pending JPS60117755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58225817A JPS60117755A (en) 1983-11-30 1983-11-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58225817A JPS60117755A (en) 1983-11-30 1983-11-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60117755A true JPS60117755A (en) 1985-06-25

Family

ID=16835259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58225817A Pending JPS60117755A (en) 1983-11-30 1983-11-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60117755A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104051A (en) * 1985-06-26 1987-05-14 テキサス インスツルメンツ インコ−ポレイテツド Isolation structure of integrated circuit and formation of the same
JPS63174350A (en) * 1987-01-13 1988-07-18 Nec Corp Bipolar cmos semiconductor device
JPS63219151A (en) * 1987-03-06 1988-09-12 Nec Corp Manufacture of semiconductor device
JP2008529279A (en) * 2005-01-20 2008-07-31 ダイオデス・インコーポレーテッド Integrated circuit including power diode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104051A (en) * 1985-06-26 1987-05-14 テキサス インスツルメンツ インコ−ポレイテツド Isolation structure of integrated circuit and formation of the same
JPS63174350A (en) * 1987-01-13 1988-07-18 Nec Corp Bipolar cmos semiconductor device
JPS63219151A (en) * 1987-03-06 1988-09-12 Nec Corp Manufacture of semiconductor device
JP2008529279A (en) * 2005-01-20 2008-07-31 ダイオデス・インコーポレーテッド Integrated circuit including power diode

Similar Documents

Publication Publication Date Title
US5861659A (en) Semiconductor device
US5389561A (en) Method for making SOI type bipolar transistor
JPH07142565A (en) Semiconductor device and manufacture thereof
US5559045A (en) Method of fabricating vertical-type double diffused mosfet having a self-aligned field oxide film
JPH065706B2 (en) Method for manufacturing BiCMOS device
JPS60117755A (en) Manufacture of semiconductor device
JPS59208851A (en) Semiconductor device and manufacture thereof
JPH07120705B2 (en) Method for manufacturing semiconductor device having element isolation region
JP2996694B2 (en) Method for manufacturing semiconductor stacked CMOS device
JPS59168675A (en) Manufacture of semiconductor device
JPS6394667A (en) Semiconductor integrated circuit
JPH0955496A (en) High-voltage resistant mos transistor and its manufacture
JPS6146062A (en) Semiconductor device
JP3521921B2 (en) Method for manufacturing semiconductor device
JPS63133662A (en) Manufacture of semiconductor device
JPS61139063A (en) Semiconductor device and manufacture thereof
JPH03126254A (en) Semiconductor device and manufacture thereof
JPH05218187A (en) Fabrication of semiconductor substrate
JPS63260174A (en) Manufacture of semiconductor device
JPH05175326A (en) Semiconductor device and manufacture thereof
JPS60180138A (en) Semiconductor device
JPS63136660A (en) Semiconductor device and manufacture thereof
JPH01155651A (en) Semiconductor integrated circuit device
JPH02202032A (en) Semiconductor device and manufacture thereof
JPS59148359A (en) Manufacture of semiconductor device