JPS6184052A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6184052A
JPS6184052A JP59205906A JP20590684A JPS6184052A JP S6184052 A JPS6184052 A JP S6184052A JP 59205906 A JP59205906 A JP 59205906A JP 20590684 A JP20590684 A JP 20590684A JP S6184052 A JPS6184052 A JP S6184052A
Authority
JP
Japan
Prior art keywords
insulating film
thickness
film
gate insulating
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59205906A
Other languages
Japanese (ja)
Inventor
Takashi Ito
隆 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59205906A priority Critical patent/JPS6184052A/en
Publication of JPS6184052A publication Critical patent/JPS6184052A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To reinforce the static dielectric strength by a method wherein the thickness of gate insulating film of transistor in the peripheral circuit is made thicker than the thickness of gate insulating film of inner circuit. CONSTITUTION:Oxide films 21, 22 are formed in Tr regions A, B on a P type Si substrate 11 provided with a thick oxide film 14. In such a constitution, assuming the final thickness of oxide film formed in the regions A, B to be tA, tB, the thickness DELTAt of films 21, 22 is set up to be equivalent to the thickness difference between tA and tB i.e. DELTAt=tA-tB. Next the film 22 in the region B only is removed to form another oxide film 23 in the region B by thermal oxidation simultaneously increasing the thickness of film 21 to form another oxide film 21'. Assuming the regions A, B respectively to peripheral part and inner part, the gate insulating film 21' of Tr provided on the peripheral part may be made thicker than that of inner part by DELTAt to reinforce the dielectric strength against any outer static electricity.

Description

【発明の詳細な説明】 (座業上の利用分野) 本発明は半導体装置に関し、特にNチャネル・シリコン
ゲート型〜108トランジスタを含む半導体装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Sedentary Use) The present invention relates to a semiconductor device, and particularly to a semiconductor device including an N-channel silicon gate type to 108 transistors.

(従来の技術) 従来、Nチャンネル−シリコンゲート型MOSトランジ
スタを含む半導体集積回路(以下NMO8・LSIと記
す)は、素子寸法の値組化に伴なうS積密度の向上が著
しく、メモリ、マイクロコンビエータを初めとした論理
LS■に応用されて、その高機能化、高速化に寄与して
きた。
(Prior Art) Conventionally, in semiconductor integrated circuits (hereinafter referred to as NMO8 LSI) including N-channel silicon gate type MOS transistors, the S density has significantly improved due to the value set of element dimensions. It has been applied to logic LS such as micro combinators, contributing to higher functionality and faster speeds.

しかしながら、このNMOS −L、19 Iの高集積
化は、−万でその信頼性上解決すべきさまざまな問題を
生み出している。そのひとつが外部からの静電気による
MOSトランジスタのゲート絶縁膜のぞ縁破壊の問題で
ある。これは、MOSトランジスタを構成するゲー)&
化膜が非常に薄い絶縁膜であるために、入力インピーダ
ンスが高く、外部からの高電圧がそのままこの絶縁膜に
加わって起きるものである。
However, the high integration of NMOS-L, 19I has created various problems that need to be solved in terms of reliability. One of them is the problem of edge breakdown of the gate insulating film of a MOS transistor due to external static electricity. This is the game that makes up the MOS transistor) &
Since the dielectric film is a very thin insulating film, the input impedance is high, and high voltage from the outside is directly applied to this insulating film.

この間頌に対しては従来から次のような対策がとられて
きた。即ち、NMOS−LSIの人力電極パッドとそれ
に直接結合する入力ゲートとの間に保護回路を設け、外
部からの静電気が入力ゲートに達する直前でその放電を
流を減衰させ、シリコン基板側にバイパスさせる方法で
ある。この保護回路として最も広く用いられているのが
、N型拡散層の抵抗と基板側に接地したゲート電極を有
するMO8構造のダイオード、あるいはトランジスタを
組合せたものである。
The following countermeasures have traditionally been taken against this issue. That is, a protection circuit is provided between the manual electrode pad of the NMOS-LSI and the input gate directly connected to it, and the flow of static electricity from the outside is attenuated just before it reaches the input gate, bypassing it to the silicon substrate side. It's a method. The most widely used protection circuit is a combination of a resistor of an N-type diffusion layer and a MO8 structure diode or transistor having a gate electrode grounded to the substrate side.

第3図(a)、 fb)は従来の半導体装置の保護回路
の例の回路図である。
FIGS. 3(a) and 3(fb) are circuit diagrams of examples of conventional protection circuits for semiconductor devices.

第3図fa)、(b)において、lは電極パッド、2は
N型拡散抵抗、3はゲートコントロールダイオード、4
は保護用トランジスタ、5は入力トランジスタである。
In Figs. 3 fa) and (b), l is an electrode pad, 2 is an N-type diffused resistor, 3 is a gate control diode, and 4 is a gate control diode.
5 is a protection transistor, and 5 is an input transistor.

上記二つの例の回路において、N型拡散抵抗は静電気の
放IE電流を制限し、ダイオード3またはトランジスタ
4はそれらのシリコンゲート絶縁膜の下のPN接合が低
い電圧で降伏することによって放電電流を基板側に逃が
す役目をする。そして、これらの保護回路は、NMO8
@LSIの本来のプロセスに従って、拡散層とMOSダ
イオードまたはトランジスタを作ることができるため、
付加的なプロセスを一切必要としないという利点ももり
ていた。
In the above two example circuits, the N-type diffused resistor limits the electrostatic discharge IE current, and the diode 3 or transistor 4 limits the discharge current by breaking down the PN junction under their silicon gate insulator at a low voltage. It serves to release air to the board side. And these protection circuits are NMO8
@Diffusion layers and MOS diodes or transistors can be made according to the original process of LSI, so
It also had the advantage of not requiring any additional processes.

(発明が解決しようとする問題点) ところが、N〜10S−L’8Iの高集積化が進むにつ
れて、ゲート絶縁膜の厚さは次第に薄くなる傾向罠あり
、保護回路を構成するMOSダイオード及びトランジス
タの保護能力もこれに伴なって低下することが避けられ
なくなってきた。これは、PN接合の降服時に強い電界
がゲート絶縁膜にも加わるが、薄い絶縁膜はどその絶縁
耐力を上進る電界が加わりやすいためである。このため
、NMO8@LSIの高集積化にはこの保護回路の回路
形式や平面パターンの改良を必要とするのが常であった
0 第4図fa)〜(d)は従来のMO8半導体装置の製造
工程の一部を説明するための断面図である0まず、第4
図(a)に示すように、P型シリコン基板11に薄い絶
縁膜12を設け、その上にシリコン窒化膜13を選択的
に形成する0この7リコ/窒化膜13をマスクにして選
択酸化して分朧用の厚い絶縁膜14を形成する。
(Problem to be Solved by the Invention) However, as the integration of N~10S-L'8I progresses, the thickness of the gate insulating film tends to become thinner and thinner, and the thickness of the MOS diode and transistor forming the protection circuit tends to become thinner. It has become inevitable that the protective ability of This is because a strong electric field is also applied to the gate insulating film when the PN junction breaks down, and an electric field that increases the dielectric strength of a thin insulating film is likely to be applied thereto. For this reason, it has always been necessary to improve the circuit format and planar pattern of this protection circuit in order to increase the integration density of NMO8@LSI. Figures 4 fa) to (d) show the conventional MO8 semiconductor device. 0, which is a cross-sectional view for explaining a part of the manufacturing process.
As shown in Figure (a), a thin insulating film 12 is provided on a P-type silicon substrate 11, and a silicon nitride film 13 is selectively formed thereon. Selective oxidation is performed using this silicon/nitride film 13 as a mask. Then, a thick insulating film 14 for blurring is formed.

次に、第4図(b)に示すように、シリコン窒化膜13
、薄い絶縁膜12を除去する。
Next, as shown in FIG. 4(b), the silicon nitride film 13
, the thin insulating film 12 is removed.

次に、第4図(C)に示すように、全面酸化してケート
絶縁膜15を形成する。
Next, as shown in FIG. 4(C), the entire surface is oxidized to form a gate insulating film 15.

次に、第4図(d)に示すように、ポリシリコンでゲー
ト電極16.16’を形成し、これをマスク−してイオ
ン注入あるいは拡11!LKよりソース・ドレイン領域
18.18’、19.19’を形成することにより、二
つのトランジスタを製造する。
Next, as shown in FIG. 4(d), gate electrodes 16 and 16' are formed of polysilicon, and using this as a mask, ions are implanted or expanded (11!). Two transistors are manufactured by forming source/drain regions 18.18' and 19.19' from LK.

ここで、A、Bで示される2つのトランジスタ領域につ
いて1便宜上、Aの領域をNMO,5−LSIの周辺の
電極パッドに直接結合するトランジスタ。
Here, for the sake of convenience, regarding the two transistor regions A and B, the transistor region A is directly coupled to the peripheral electrode pad of the NMO, 5-LSI.

またはその近傍のトランジスタで外部からの静電気によ
るストレスを受けやすい領域とし、Bの領域を静電気の
影響をほとんど受けない内部のトランジスタ領域とする
と、従来の裏道プロセスによれば、Aの領域とBの領域
のトランジスタのゲート散化膜は同時に形成されるため
、高集積化に伴っ℃ゲー)11化膜を4くすると、への
領域に存在する保護回路を始めとする入力及び出力トラ
ンジスタの静電気に対する絶縁耐力が低下してしまうと
いう問題を生ずる。
If we assume that the area of the transistor in or near the area is susceptible to stress due to external static electricity, and area B is an internal transistor area that is almost unaffected by static electricity, then according to the conventional back-path process, area A and area B are Since the gate dielectric film of the transistor in the region is formed at the same time, with the increase in integration density, increasing the 11 dielectric film to 4 will reduce the static electricity of the input and output transistors including the protection circuit existing in the region. A problem arises in that the dielectric strength decreases.

本発明の目的は、上記欠点を除去し、靜を耐力を維持し
、かつ高集積化、i!6速度化を計ることのできるNチ
ャンネル・7リコンケ一ト型MOSトランジスタを含む
半導体装置を提供することにある0 (間組点を解決するための手段) 本発明の半導体装置は、半導体基板にMOSトランジス
タを含んで構成される内部回路と周辺部回路を有する半
導体装置において、入力及び出力電極パッドに直接連な
るMOSトランジスタ並びに前記周辺部回路のht O
S トランジスタのゲート絶縁膜の厚さを前記内部回路
のMOSトランジスタのゲート絶縁膜よシも厚く形成し
たことによp構成される。
The purpose of the present invention is to eliminate the above-mentioned drawbacks, maintain strength, and achieve high integration. An object of the present invention is to provide a semiconductor device including an N-channel 7-reconstituted MOS transistor capable of increasing speed. In a semiconductor device having an internal circuit and a peripheral circuit including transistors, a MOS transistor directly connected to input and output electrode pads and htO of the peripheral circuit
The gate insulating film of the S transistor is made thicker than the gate insulating film of the MOS transistor of the internal circuit.

(実施例) 次に、本発明の実施例について図面を用いて説明する。(Example) Next, embodiments of the present invention will be described using the drawings.

第1図(a)〜(e)は本発明の第1の実施例の裂造工
程を説明するための断面図である。
FIGS. 1(a) to 1(e) are cross-sectional views for explaining the tearing process of the first embodiment of the present invention.

まず、第1図(a)に示すように、従来の方法(43囚
(a)で説明した方法)によって、P型シリコン基板1
1に厚い絶縁膜14上形成した後、それに使用したシリ
コン、窒化膜と薄い絶縁膜を除去する。
First, as shown in FIG. 1(a), a P-type silicon substrate is
After forming a thick insulating film 14 in step 1, the silicon and nitride films used thereon and the thin insulating film are removed.

この状、櫟は、第3図(b)に示し友のと同じである。This state of the lily is the same as that shown in Fig. 3(b).

便宜上、露出しているトランジスタ領域をA、 Bで区
別して示す。
For convenience, exposed transistor regions are shown separately as A and B.

次に、第1図fb)に示すように1熱酸化して絶縁膜2
1,22を形成する。領域A及びBK将米形成される絶
縁膜の厚さをそれぞれtAefBとすると、絶縁膜21
.22の厚さは、△1=1人−tB  に相当する膜厚
差が得られるように設定する(絶縁膜21.22の厚さ
を△tとするのではない)0次に、第1図(C)に示す
ように、領域Bのば化膜22のみ″f選択味去する。
Next, as shown in FIG. 1 fb), the insulating film 2 is thermally oxidized
1 and 22 are formed. If the thickness of the insulating film formed in areas A and BK is respectively tAefB, then the insulating film 21
.. The thickness of the insulating film 22 is set so as to obtain a film thickness difference equivalent to Δ1 = 1 person - tB (the thickness of the insulating film 21 and 22 is not set to Δt). As shown in Figure (C), only the oxidized film 22 in area B is selectively removed.

次に、第1図+dlに示すように、熱酸化して領域Bに
絶縁膜23を形成する。このとき、領域Aの万も酸化し
て禮化膜は厚くなり、絶縁膜21’となる。4に化膜2
1′の厚さをtA、絶縁膜23の厚さをtBとするとき
、前述の嘆厚さ△t=tA−tB が実現されるのであ
る。
Next, as shown in FIG. 1+dl, an insulating film 23 is formed in region B by thermal oxidation. At this time, the area A is also oxidized and the oxidized film becomes thick, becoming an insulating film 21'. 4 to 2
When the thickness of the insulating film 23 is tA and the thickness of the insulating film 23 is tB, the above-mentioned thickness Δt=tA-tB is realized.

次に1第1図(e) K示すよう罠、従来と同様の方法
によってゲート電極16.16’、ンース・ドレイン領
域18.18’、19.19’を形成する0 領域Aを周辺部、領域Bを内部と考えると、周辺部回路
のトランジスタと内部回路のトランジスタのゲート絶縁
膜の厚さを異ならしめることができ、靜v#を力を維持
し、かつ高集槍仕、高速度化を計ることのでさる半導体
装置が得られる。
Next, as shown in FIG. 1(e) K, a gate electrode 16.16', drain regions 18.18', and 19.19' are formed using a method similar to the conventional method. Considering region B as the interior, it is possible to make the gate insulating film thickness of the transistors in the peripheral circuit and the transistors in the internal circuit different, thereby maintaining quietness and achieving high concentration and speed. By measuring this, a suitable semiconductor device can be obtained.

第2図(a)〜(d)#′i本発明の第2の実施例の製
造工程を説明するための断面図である。
FIGS. 2(a) to 2(d) #'i are sectional views for explaining the manufacturing process of the second embodiment of the present invention.

まず、第2図(atに示すように、第1図(a)の場合
と同様にして厚い絶縁膜14を基板11の表面に形成す
る。
First, as shown in FIG. 2(at), a thick insulating film 14 is formed on the surface of the substrate 11 in the same manner as in FIG. 1(a).

次に、第2図(b)に示すように、熱酸化して絶縁膜2
1’ 、23’を形成する。このとき、絶縁膜22’ 
、23’の厚さは前述のtAと同じ厚さく形成しておく
Next, as shown in FIG. 2(b), the insulating film 2 is thermally oxidized.
1' and 23' are formed. At this time, the insulating film 22'
, 23' are formed to have the same thickness as tA described above.

次に、第2図(C)K示すように、ホトエ、テング法を
用いて、鯛駿Bの酸化123′を辱さが前述のty、の
ノ【lさになろまでエツチングして薄くする。
Next, as shown in Figure 2 (C)K, using the hot etching method, the oxidized 123' of Taisun B is etched until it becomes as shallow as the above-mentioned ty. .

つまp、△を分だけ除去する。このようにしても紀1図
id)に示し1ζものと同じ絶縁膜の厚さになる0 次に、第2図(d)に示すよって、従来の方法を用いて
フートLTh16.16’ 、 ンース・ドレイン領域
18.18’、19.19’を形成する。このようにし
ても第1の実施例と公く同じものが形成できろ。
Remove the toes p and △. In this way, the thickness of the insulating film is the same as that of the 1ζ shown in Fig. 1 (id). Next, as shown in Fig. 2 (d), using the conventional method, the foot LTh16.16', - Form drain regions 18.18' and 19.19'. Even in this way, it is possible to form something that is exactly the same as the first embodiment.

(1明のりJ木) 以上と明したようシて、本発明((よれば、周辺部回路
のトランジスタと内部回路のトラ〉・ジスタのゲート杷
碌l漢厚を異ならしめ、静電耐力を維持し、かつ高年を
化と筒速化とを計った半導体装置が得られる。
(1 Akinori J Wood) As stated above, the present invention (according to the invention) differs the gate strength and thickness of transistors in the peripheral circuit and transistors in the internal circuit to improve electrostatic resistance. It is possible to obtain a semiconductor device that maintains the same characteristics and is designed to reduce aging and speed up.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(Ω)〜(elは本発明の第1のブー流側の製造
工程を説明するための断面図、第2図(a)〜(d)は
本発明の第2の実施例の製造工程を説明するだめの断面
図、第3図(at、 (b)は従来の半導体装置の保護
回路の例の回路図、第4図(a)〜(d)は従来のMO
8半導体装置の製造工程の一部を説明するための断面図
である。 ■・・・・・・電極パッド、2・・・・・・N型拡散抵
抗、3・・・・・・ゲートコントロールダイオード、4
・・・・・保所用トランジスタ、5・・・・・・久方ト
ランジスタ、11・・・・・・P型シリコンが析、12
・・・・・・絶縁膜、13  ・・・シリコン窒化膜、
14・川・絶縁膜、15・・・・ゲート絶縁膜、16.
  + 6’−=−ゲート絶縁膜、18゜18’ 、 
 19. 19’ 四−ンース−トレインIrp15.
21.21/、22.23.23’・・・山酸化嘆。 牟l 面 算2 ズ
Fig. 1 (Ω) to (el are cross-sectional views for explaining the manufacturing process of the first flow side of the present invention, and Fig. 2 (a) to (d) are cross-sectional views of the second embodiment of the present invention. 3(at) and 3(b) are circuit diagrams of examples of protection circuits for conventional semiconductor devices, and FIGS. 4(a) to (d) are cross-sectional views for explaining the manufacturing process.
FIG. 8 is a cross-sectional view for explaining a part of the manufacturing process of the No. 8 semiconductor device. ■... Electrode pad, 2... N-type diffused resistor, 3... Gate control diode, 4
...Transistor for storage, 5... Kugata transistor, 11... P-type silicon is analyzed, 12
...Insulating film, 13...Silicon nitride film,
14. River insulating film, 15... Gate insulating film, 16.
+6'-=-gate insulating film, 18°18',
19. 19' Four-once-train Irp15.
21.21/, 22.23.23'...Yamahano laments. ㉟〇               

Claims (1)

【特許請求の範囲】[Claims]  半導体基板にMOSトランジスタを含んで構成される
内部回路と周辺部回路を有する半導体装置において、入
力及び出力電極パッドに直接連なるMOSトランジスタ
並びに前記周辺部回路のMOSトランジスタのゲート絶
縁膜の厚さを前記内部回路のMOSトランジスタのゲー
ト絶縁膜よりも厚く形成したことを特徴とする半導体装
置。
In a semiconductor device having an internal circuit and a peripheral circuit including MOS transistors on a semiconductor substrate, the thickness of the gate insulating film of the MOS transistor directly connected to the input and output electrode pads and the MOS transistor of the peripheral circuit is as described above. A semiconductor device characterized by being formed thicker than a gate insulating film of a MOS transistor in an internal circuit.
JP59205906A 1984-10-01 1984-10-01 Semiconductor device Pending JPS6184052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59205906A JPS6184052A (en) 1984-10-01 1984-10-01 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59205906A JPS6184052A (en) 1984-10-01 1984-10-01 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6184052A true JPS6184052A (en) 1986-04-28

Family

ID=16514709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59205906A Pending JPS6184052A (en) 1984-10-01 1984-10-01 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6184052A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236354A (en) * 1987-03-25 1988-10-03 Toshiba Corp Semiconductor device
JPH0221653A (en) * 1988-07-08 1990-01-24 Toshiba Corp Semiconductor device and manufacture thereof
JPH0271559A (en) * 1988-09-06 1990-03-12 Toshiba Corp Static type memory

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236354A (en) * 1987-03-25 1988-10-03 Toshiba Corp Semiconductor device
JPH0221653A (en) * 1988-07-08 1990-01-24 Toshiba Corp Semiconductor device and manufacture thereof
JPH0271559A (en) * 1988-09-06 1990-03-12 Toshiba Corp Static type memory

Similar Documents

Publication Publication Date Title
US3946424A (en) High frequency field-effect transistors and method of making same
JPH05347412A (en) Semiconductor integrated circuit
JPS6184052A (en) Semiconductor device
US6524922B1 (en) Semiconductor device having increased breakdown voltage and method of fabricating same
JPH08195443A (en) Semiconductor device and its manufacture
JP3125929B2 (en) Method for manufacturing semiconductor device
JP2000223701A (en) Semiconductor device and its manufacture
US6858489B2 (en) Semiconductor device manufacturing method
JPS6074658A (en) Semiconductor ic device
JPH0590492A (en) Semiconductor integrated circuit and manufacture thereof
JPH05267586A (en) Output protection network
JPH0831948A (en) Semiconductor integrated circuit device
JP2001156181A (en) Semiconductor device
JPS627710B2 (en)
KR950000106B1 (en) Manufacturing method of semiconductor device
JP2817226B2 (en) Method for manufacturing semiconductor device
JPS61156830A (en) Semiconductor device and manufacture thereof
JPH0258367A (en) Semiconductor device
JPH04359473A (en) Insulation gate type field effect transistor
JPH0677442A (en) Manufacture of semiconductor integrated circuit
JPS63144543A (en) Formation of semiconductor interelement isolation region
JPH03218634A (en) Semiconductor device and manufacture thereof
JPH0851188A (en) Semiconductor integrated circuit device and manufacture of it
JPS6081838A (en) Semiconductor integrated circuit
KR970053003A (en) High voltage transistor manufacturing method