JPS627710B2 - - Google Patents

Info

Publication number
JPS627710B2
JPS627710B2 JP53050282A JP5028278A JPS627710B2 JP S627710 B2 JPS627710 B2 JP S627710B2 JP 53050282 A JP53050282 A JP 53050282A JP 5028278 A JP5028278 A JP 5028278A JP S627710 B2 JPS627710 B2 JP S627710B2
Authority
JP
Japan
Prior art keywords
region
openings
forming
conductivity type
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53050282A
Other languages
Japanese (ja)
Other versions
JPS54142074A (en
Inventor
Yoshiki Tanigawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP5028278A priority Critical patent/JPS54142074A/en
Publication of JPS54142074A publication Critical patent/JPS54142074A/en
Publication of JPS627710B2 publication Critical patent/JPS627710B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Protection Of Static Devices (AREA)
  • Amplifiers (AREA)

Description

【発明の詳細な説明】 本発明は絶縁ゲート型電界効果トランジスタの
ゲート保護装置の製造方法に関し、特にDSAト
ランジスタのゲート保護として好適な保護装置の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a gate protection device for an insulated gate field effect transistor, and more particularly to a method for manufacturing a protection device suitable for protecting the gate of a DSA transistor.

プレーナ型のDSAトランジスタにおいても、
一般のMOSトランジスタと同様にゲート絶縁膜
の破壊の防止を行うためのゲート保護装置が必要
とされる。特にプレーナ型DSAタイプのトラン
ジスタを含む集積回路装置(IC)にゲート保護
装置を採用する際には、DSAトランジスタを製
造する工程以外の余分の追加工程を必要としない
でIC化することが望まれる。
Even in planar type DSA transistors,
As with general MOS transistors, a gate protection device is required to prevent breakdown of the gate insulating film. In particular, when adopting a gate protection device for an integrated circuit device (IC) that includes planar DSA transistors, it is desirable to implement the IC without requiring any extra steps other than the process of manufacturing the DSA transistor. .

従つて本発明はDSAトランジスタを含むIC装
置において特別に余分の製造工程を必要としない
DSAトランジスタのゲート保護装置の製造方法
を提供することを目的とする。
Therefore, the present invention does not require any extra manufacturing process in IC devices including DSA transistors.
An object of the present invention is to provide a method for manufacturing a gate protection device for a DSA transistor.

以下本発明について添付図面を用いて説明す
る。
The present invention will be explained below with reference to the accompanying drawings.

第1図Aは本発明の一例を示す断面図であり、
Bはその等価回路図である。図において、10は
周知のプレーナ型DSAトランジスタであり、被
保護トランジスタとなる。当該トランジスタ10
は高比抵抗のN型シリコン半導体基板1の一主面
にP型及びN型の不純物を二重拡散することによ
り得られるチヤンネル領域2及びソース領域3を
有し、更にP型領域2の外周を所定間隔をもつて
取囲むリング状のN型ドレイン領域4を有してい
る。このドレイン領域4はソース領域3の形成と
同時に形成されるものである。P型領域2の基板
表面に沿う部分がいわゆる反転層となるチヤンネ
ルとして動作するものであるから、その上に所定
厚さのゲート絶縁膜すなわちシリコン酸化膜5が
形成され、更にその上にゲート電極Gが被着され
る構成である。
FIG. 1A is a sectional view showing an example of the present invention,
B is its equivalent circuit diagram. In the figure, 10 is a well-known planar type DSA transistor, which serves as a protected transistor. The transistor 10
has a channel region 2 and a source region 3 obtained by double-diffusing P-type and N-type impurities on one main surface of a high resistivity N-type silicon semiconductor substrate 1, and further includes a channel region 2 and a source region 3 obtained by double-diffusing P-type and N-type impurities on one main surface of a high resistivity N-type silicon semiconductor substrate 1, and further includes a channel region 2 and a source region 3 obtained by doubly diffusing P-type and N-type impurities. It has a ring-shaped N-type drain region 4 surrounding the drain region at a predetermined interval. This drain region 4 is formed at the same time as the source region 3 is formed. Since the portion of the P-type region 2 along the substrate surface operates as a channel, which is a so-called inversion layer, a gate insulating film, that is, a silicon oxide film 5 of a predetermined thickness is formed thereon, and a gate electrode is further formed thereon. This is a structure in which G is deposited.

こゝで、チヤンネル領域2とソース領域3との
二重拡散工程においては、例えば前者の領域2を
形成するための拡散用窓を再びソース領域3のた
めの拡散用窓として使用するものであつて、P型
領域2の基板表面に沿う部分は不純物の横方向拡
散による不純物濃度分布となる。従つて、当該部
分すなわちチヤンネル部はソース領域3から離間
するにつれてその濃度は減少する如き濃度分布を
有している。よつて、DSAトランジスタの動作
チヤンネルは極めて短い高濃度不純物層で形成さ
れていることになり、実質的には1μ以下の短い
部分で動作するために、高速度及び高密度化が可
能となる。
Here, in the double diffusion process of the channel region 2 and the source region 3, for example, the diffusion window for forming the former region 2 is used again as the diffusion window for the source region 3. Therefore, the portion of the P-type region 2 along the substrate surface has an impurity concentration distribution due to lateral diffusion of impurities. Therefore, this portion, that is, the channel portion, has a concentration distribution in which the concentration decreases as the distance from the source region 3 increases. Therefore, the operating channel of the DSA transistor is formed by an extremely short high concentration impurity layer, and since it operates in a short portion of substantially 1 μm or less, high speed and high density are possible.

20が当該DSAトランジスタ10のゲート保
護装置であり、N型基板1内においてトランジス
タ10のP型領域2形成と同時に一対のP型領域
6及び7を形成するが、この際両領域が基板主表
面において一部連結するようにする。そのために
は不純物拡散用のマスクとなる酸化膜である絶縁
膜13の拡散用開孔14及び15を近接して形成
し、両者の横方向拡散が開孔間の基板表面におい
て一部連結するようにする。そしてトランジスタ
10のN型領域形成と同時にそれぞれ両領域6及
び7中にN型領域8及び9を形成する。この場合
も、先の拡散用開孔14及び15を用いることが
好ましい。
20 is a gate protection device for the DSA transistor 10, and a pair of P-type regions 6 and 7 are formed in the N-type substrate 1 at the same time as the P-type region 2 of the transistor 10 is formed, and in this case, both regions are on the main surface of the substrate. Partially connect at . To do this, the diffusion holes 14 and 15 of the insulating film 13, which is an oxide film that serves as a mask for impurity diffusion, are formed close to each other so that the lateral diffusion of both is partially connected on the substrate surface between the holes. Make it. At the same time as forming the N-type region of transistor 10, N-type regions 8 and 9 are formed in both regions 6 and 7, respectively. In this case as well, it is preferable to use the aforementioned diffusion holes 14 and 15.

従つて、一対のN型領域8及び9はそれぞれP
型領域に6び7に接してこれら領域により取囲ま
れるような構造となつており、P型領域6及び7
の基板主面に沿つた濃度分布は、DSAトランジ
スタのチヤンネル部と同様に横方向拡散を利用す
るものであるから、中心から離れるにつれて減少
する構造であり、このチヤンネル部の一部が互い
に連結し合つている。
Therefore, the pair of N-type regions 8 and 9 are each P
The structure is such that it is in contact with the mold region 6 and 7 and is surrounded by these regions, and the P-type region 6 and 7
The concentration distribution along the main surface of the substrate utilizes lateral diffusion similar to the channel section of the DSA transistor, so it has a structure that decreases as it moves away from the center, and some of the channel sections are connected to each other. It fits.

かゝる構成において、N型領域8を被保護トラ
ンジスタ10のゲート電極Gと共に入力端子とな
し、他のN型領域9をトランジスタ10のソース
電極Sに接続すれば、第1図Bに示す等価回路が
得られ、入力端子INに印加された電圧が過大な
場合には、保護装置20のNPN構造でパンチス
ルー現象が生じ、N型領域8,9間が導通状態と
なり、入力電圧INを所定電圧に抑えることをで
きる。
In such a configuration, if the N-type region 8 is used as an input terminal together with the gate electrode G of the protected transistor 10, and the other N-type region 9 is connected to the source electrode S of the transistor 10, the equivalent structure shown in FIG. 1B can be obtained. If a circuit is obtained and the voltage applied to the input terminal IN is excessive, a punch-through phenomenon occurs in the NPN structure of the protection device 20, and conduction occurs between the N-type regions 8 and 9, causing the input voltage IN to be reduced to a predetermined value. It is possible to suppress the voltage.

この場合、一対のN型領域8及び9間の距離
は、例えば従来のゲート保護MOS構造に比し著
しく短いことは明白であるから、保護電圧を低く
しうる利点がある。
In this case, it is clear that the distance between the pair of N-type regions 8 and 9 is significantly shorter than, for example, in a conventional gate protection MOS structure, so there is an advantage that the protection voltage can be lowered.

第2図Aは本発明の他の例を示す断面図であ
り、Bはその等価回路図であつて、第1図と同等
部分は同一符号にて示す。図において第1図と異
なる部分につき説明するに、P型領域6及び7の
基板表面における連結部上すなわち開孔14及び
15間の基板表面に所定厚さの絶縁膜11を形成
し、その上に更にN型領域8のコンタクト電極と
共通したゲート電極12を形成している。他の部
分は第1図の場合と全く同等であるために説明は
省略される。
FIG. 2A is a sectional view showing another example of the present invention, and B is an equivalent circuit diagram thereof, in which parts equivalent to those in FIG. 1 are designated by the same reference numerals. To explain the different parts in the figure from FIG. 1, an insulating film 11 of a predetermined thickness is formed on the connecting portion of the substrate surface of the P-type regions 6 and 7, that is, on the substrate surface between the openings 14 and 15, and then Furthermore, a gate electrode 12 common to the contact electrode of the N-type region 8 is formed. The other parts are completely the same as in the case of FIG. 1, and therefore their explanation will be omitted.

かゝる構成において、一対のN型領域8及び9
がそれぞれソース及びドレイン領域として動作
し、また両者間のP型領域6,7の連結部がチヤ
ンネル部として動作するMOSトランジスタ20
と等価となるために、このトランジスタ20はゲ
ート膜11の厚さ等により定まるスレツシユホー
ルド電圧VTHを有する。従つてこのVTHを適当に
選定してトランジスタ10のゲート保護とするこ
とが可能となる。
In such a configuration, a pair of N-type regions 8 and 9
act as a source and drain region, respectively, and a connection portion between the P-type regions 6 and 7 acts as a channel portion.
Therefore, this transistor 20 has a threshold voltage V TH determined by the thickness of the gate film 11, etc. Therefore, it is possible to appropriately select this V TH to protect the gate of transistor 10.

以上詳述した如く本発明によればDSAトラン
ジスタのゲート保護装置がDSA素子を製造する
工程と全く同一の工程で作ることができるので、
装置のIC化の場合には極めて有利であり、また
保護装置20の占有面積は従来のものに比し少と
なるために高密度化が可能となる。
As detailed above, according to the present invention, the gate protection device of the DSA transistor can be manufactured in the same process as the process of manufacturing the DSA element.
This is extremely advantageous when the device is integrated into an IC, and since the area occupied by the protection device 20 is smaller than that of the conventional device, it is possible to increase the density.

尚、上述の例においては、Nチヤンネルの
DSAトランジスタの場合につきN型半導体基板
を用いたが、P型半導体基板を用いてもよく、更
にはPチヤンネルのDSAトランジスタに適用し
てもよいことは勿論である。これ等の場合におい
て、基板としてソース、ドレイン領域と逆導電型
のものを使用する際には、従来のゲート保護装置
をそのまゝ用いることが可能ではあるが、本発明
の如くDSA型の保護装置を用いれば保護電圧は
低くなる利点がある。従つて、一般のMOSトラ
ンジスタのゲート保護としても本発明の装置を用
いることができることは勿論である。また、保護
装置20の一方のN型領域9を被保護トランジス
タのソース電極に接続したが、回路の基準電位点
例えば接地電位点に接続してもよい。
In addition, in the above example, the N channel
Although an N-type semiconductor substrate is used in the case of the DSA transistor, it goes without saying that a P-type semiconductor substrate may be used, and furthermore, it may be applied to a P-channel DSA transistor. In these cases, when using a substrate of the opposite conductivity type to the source and drain regions, it is possible to use the conventional gate protection device as is, but the DSA type protection device as in the present invention is The advantage of using this device is that the protection voltage can be lowered. Therefore, it goes without saying that the device of the present invention can also be used to protect the gates of general MOS transistors. Moreover, although one N-type region 9 of the protection device 20 is connected to the source electrode of the protected transistor, it may be connected to a reference potential point of the circuit, for example, a ground potential point.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Aは本発明の一例を示す断面図、Bはそ
の等価回路図、第2図Aは本発明の他の例を示す
断面図、Bはその等価回路図である。 主要部分の符号の説明、1……半導体基板、
2,6,7……P型不純物領域、3,4,8,9
……N型不純物領域、10……被保護トランジス
タ、11……絶縁膜。
FIG. 1A is a sectional view showing one example of the present invention, B is an equivalent circuit diagram thereof, FIG. 2A is a sectional view showing another example of the present invention, and FIG. 2B is an equivalent circuit diagram thereof. Explanation of symbols of main parts, 1...Semiconductor substrate,
2, 6, 7...P type impurity region, 3, 4, 8, 9
... N-type impurity region, 10 ... transistor to be protected, 11 ... insulating film.

Claims (1)

【特許請求の範囲】 1 所定導電型の半導体基板に第1及び第2導電
型の不純物を二重拡散することにより得られるチ
ヤンネル領域及びソース領域を有する絶縁ゲート
型の電界効果トランジスタのゲート保護用半導体
装置の製造方法であつて、前記半導体基板の一主
面上に少くとも2個の開孔を有する絶縁膜を形成
する工程と、前記開孔の各々を通して前記基板内
へ不純物を導入し前記開孔間の絶縁膜直下におい
て互いに連結した第1導電型の第1及び第2の不
純物領域を前記チヤンネル領域と同時に形成する
工程と、前記開孔の各々を通して前記第1及び第
2の領域内に不純物を導入して第2導電型の第3
及び第4の不純物領域を前記ソース領域と同時に
形成する工程と、前記第3の領域を前記電界効果
トランジスタのゲート電極に接続し前記第4の領
域を前記電界効果トランジスタのソース電極に接
続する工程とを含むことを特徴とするゲート保護
用半導体装置の製造方法。 2 所定導電型の半導体基板に第1及び第2導電
型の不純物を二重拡散することにより得られるチ
ヤンネル領域及びソース領域を有する絶縁ゲート
型の電界効果トランジスタのゲート保護用半導体
装置の製造方法であつて、前記半導体基板の一主
面上に少くとも2個の開孔を有する絶縁膜を形成
する工程と、前記開孔の各々を通して前記基板内
へ不純物を導入し前記開孔間の絶縁膜直下におい
て互いに連結した第1導電型の第1及び第2の不
純物領域を前記チヤンネル領域と同時に形成する
工程と、前記開孔の各々を通して前記第1及び第
2の領域内に不純物を導入して第2導電型の第3
及び第4の不純物領域を前記ソース領域と同時に
形成する工程と、前記開孔間の絶縁膜上に電極を
形成する工程と、前記第3の領域及び前記電極を
前記電界効果トランジスタのゲート電極に接続し
前記第4の領域を前記電界効果トランジスタのソ
ース電極に接続する工程とを含むことを特徴とす
るゲート保護用半導体装置の製造方法。
[Claims] 1. Gate protection for an insulated gate field effect transistor having a channel region and a source region obtained by double-diffusing impurities of first and second conductivity types into a semiconductor substrate of a predetermined conductivity type. A method of manufacturing a semiconductor device, the method comprising: forming an insulating film having at least two openings on one main surface of the semiconductor substrate; and introducing an impurity into the substrate through each of the openings; forming first and second impurity regions of a first conductivity type connected to each other directly under the insulating film between the openings at the same time as the channel region; by introducing impurities into the third conductivity type of the second conductivity type.
and a step of forming a fourth impurity region simultaneously with the source region, and a step of connecting the third region to the gate electrode of the field effect transistor and connecting the fourth region to the source electrode of the field effect transistor. A method for manufacturing a semiconductor device for gate protection, comprising the steps of: 2. A method for manufacturing a semiconductor device for gate protection of an insulated gate field effect transistor having a channel region and a source region obtained by double diffusing impurities of a first and second conductivity type into a semiconductor substrate of a predetermined conductivity type. forming an insulating film having at least two openings on one main surface of the semiconductor substrate; and introducing an impurity into the substrate through each of the openings to form an insulating film between the openings. simultaneously forming first and second impurity regions of a first conductivity type connected to each other immediately below the channel region; and introducing impurities into the first and second regions through each of the openings. The third conductivity type
and forming a fourth impurity region simultaneously with the source region, forming an electrode on the insulating film between the openings, and forming the third region and the electrode into the gate electrode of the field effect transistor. and connecting the fourth region to a source electrode of the field effect transistor.
JP5028278A 1978-04-27 1978-04-27 Method of fabricating gate protecting semiconductor device Granted JPS54142074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5028278A JPS54142074A (en) 1978-04-27 1978-04-27 Method of fabricating gate protecting semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5028278A JPS54142074A (en) 1978-04-27 1978-04-27 Method of fabricating gate protecting semiconductor device

Publications (2)

Publication Number Publication Date
JPS54142074A JPS54142074A (en) 1979-11-05
JPS627710B2 true JPS627710B2 (en) 1987-02-18

Family

ID=12854565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5028278A Granted JPS54142074A (en) 1978-04-27 1978-04-27 Method of fabricating gate protecting semiconductor device

Country Status (1)

Country Link
JP (1) JPS54142074A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543864A (en) * 1978-09-25 1980-03-27 Hitachi Ltd Mis semiconductor device
JPS5793044U (en) * 1980-11-27 1982-06-08
JPH0714044B2 (en) * 1984-11-22 1995-02-15 株式会社日立製作所 Charge coupled device input circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4975288A (en) * 1972-11-22 1974-07-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4975288A (en) * 1972-11-22 1974-07-19

Also Published As

Publication number Publication date
JPS54142074A (en) 1979-11-05

Similar Documents

Publication Publication Date Title
EP0189914B1 (en) Semiconductor integrated circuit device and method of manufacturing the same
US5436484A (en) Semiconductor integrated circuit device having input protective elements and internal circuits
JP3066001B2 (en) Method of forming a diffused resistance device and an embedded capacitor
US4377819A (en) Semiconductor device
JP2001352057A (en) Semiconductor device and its manufacturing method
US5610089A (en) Method of fabrication of semiconductor integrated circuit device
JP2800702B2 (en) Semiconductor device
JP3456242B2 (en) Semiconductor device and manufacturing method thereof
US4213140A (en) Insulated-gate semiconductor device
JPH0653497A (en) Semiconductor device equipped with i/o protective circuit
JP2676888B2 (en) Semiconductor device
US6531742B2 (en) Method of forming CMOS device
JPS627710B2 (en)
JPS63244874A (en) Input protective circuit
JPS60123052A (en) Semiconductor device
JPH08172135A (en) Manufacture of semiconductor device and semiconductor integrated circuit device
JPS62262462A (en) Semiconductor device
JPH01194349A (en) Semiconductor device
JP2826024B2 (en) Method for manufacturing MOS transistor
JPS62274778A (en) Semiconductor device
JPH0235778A (en) Semiconductor device
JP2948256B2 (en) Method for manufacturing semiconductor memory device
JPS61207051A (en) Semiconductor device
JPH0691250B2 (en) Semiconductor device
JP2676769B2 (en) Semiconductor device