JPH0258367A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0258367A
JPH0258367A JP20833688A JP20833688A JPH0258367A JP H0258367 A JPH0258367 A JP H0258367A JP 20833688 A JP20833688 A JP 20833688A JP 20833688 A JP20833688 A JP 20833688A JP H0258367 A JPH0258367 A JP H0258367A
Authority
JP
Japan
Prior art keywords
isolation film
resistance
semiconductor device
resistor
polysilicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20833688A
Other languages
Japanese (ja)
Inventor
Takahiko Takahashi
高橋 貴彦
Motonori Kawaji
河路 幹規
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20833688A priority Critical patent/JPH0258367A/en
Publication of JPH0258367A publication Critical patent/JPH0258367A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0802Resistors only

Abstract

PURPOSE:To decrease fluctuation of resistance values in polysilicon resistance so as to avoid generation of operation failure, etc., to improve reliability by thinning an isolation film partially and providing resistance at this thinned part. CONSTITUTION:An isolation film 2 consisting of SiO2 to isolate a bipolar transistor 1 from other circuit elements and an active region inside the bipolar transistor 1 from a collector pullingup part is partially made thin, and polysilicon resistance 3 is formed at that thinned part. By the action that the heat resistance of the isolation film 2 below the polysilicon resistance 3 becomes small, the temperature rise of the polysilicon resistance 2 on the isolation film 2 becomes small as compared with a conventional one. As a result, the fluctuation of resistance values at the polysilicon resistance 2 becomes small, and generation of operation failure of a circuit, etc., is avoided, and in return, a semiconductor device high in reliability can be made.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体装置に関するもので、さらに詳しくは
、アイソレーション膜上に抵抗を形成する場合に適用し
て有効な技術に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and more particularly to a technique that is effective when applied to forming a resistor on an isolation film.

[従来の技術] 半導体集積回路の抵抗としては、従来、拡散抵抗が用い
られていた。しかし、拡散抵抗の場合には、拡散抵抗形
成領域をLOGO8等によって分離する必要があり、そ
の場合バーズビークの発生を見込んで拡散抵抗形成領域
の余裕を大きく取らなければならないという問題があっ
た。そこで。
[Prior Art] Conventionally, a diffused resistor has been used as a resistor in a semiconductor integrated circuit. However, in the case of a diffused resistor, it is necessary to separate the diffused resistor forming region by LOGO 8 or the like, and in this case, there is a problem in that a large margin must be provided for the diffused resistor forming region in anticipation of the occurrence of bird's beak. Therefore.

半導体集積回路の高集積化・微細化が要請される今日に
おいては、従来の拡散抵抗に代ってポリシリコン抵抗が
採用されつつある。なお、その場合。
In today's world where semiconductor integrated circuits are required to be highly integrated and miniaturized, polysilicon resistors are increasingly being adopted in place of conventional diffused resistors. In addition, in that case.

ポリシリコン抵抗を、対基板容量の低減化のためアイソ
レーション酸化膜(SiO2膜の)上に形成しているの
が普通である。
A polysilicon resistor is usually formed on an isolation oxide film (SiO2 film) to reduce the capacitance to the substrate.

このように、ポリシリコン抵抗を有する半導体集積回路
装置は、例えば、特開昭50−11644号に記載され
ている。
A semiconductor integrated circuit device having a polysilicon resistor as described above is described in, for example, Japanese Patent Laid-Open No. 11644/1983.

[発明が解決しようとする課題] しかし、アイソレーション酸化膜(Sin、膜)は熱伝
導率が1.9W/m”cであり熱伝導が悪いため、大電
流通電を行うものでは、ポリシリコン抵抗下のアイソレ
ーション膜の温度上昇が生じ。
[Problem to be solved by the invention] However, since the isolation oxide film (Sin film) has a thermal conductivity of 1.9 W/m"c and has poor thermal conductivity, polysilicon The temperature of the isolation film under the resistor increases.

それによって該アイソレーション膜上のポリシリコン抵
抗の抵抗値が変動してしまい1回路電流が流れなくなっ
たり1回路電流が設計値から外れてしまうという問題が
あった。
As a result, the resistance value of the polysilicon resistor on the isolation film fluctuates, resulting in a problem that one-circuit current no longer flows or one-circuit current deviates from the designed value.

本発明は、かかる点に鑑みなされたもので、信頼性の高
い半導体装置を提供することを目的としている。
The present invention has been made in view of this point, and an object of the present invention is to provide a highly reliable semiconductor device.

この発明の前記ならびにそのほかの目的と新規な特徴に
ついては、本明細書の記述および添附図面から明らかに
なるであろう。
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

[課題を解決するための手段] 本願において開示される発明のうち代表的なものの概要
を説明すれば、下記のとおりである。
[Means for Solving the Problems] Representative inventions disclosed in this application will be summarized as follows.

本発明の半導体装置は、アイソレーション膜を部分的に
薄くし、この薄くした部分に抵抗を設けるようにしたも
のである。
In the semiconductor device of the present invention, the isolation film is partially thinned and a resistor is provided in the thinned portion.

[作用コ 上記した手段によれば、アイソレーション膜を薄くして
、この薄くなった部分に抵抗を設けるようにしているの
で、アイソレーション膜の熱抵抗が従来に比べて小さく
なるという作用によって、そのアイソレーション膜上の
抵抗の温度上昇を従来に比べて小さく抑えることができ
る。その結果。
[Function] According to the above-mentioned means, the isolation film is made thinner and a resistance is provided in this thinner portion, so that the thermal resistance of the isolation film becomes smaller than that of the conventional method. The temperature rise of the resistance on the isolation film can be suppressed to a smaller level than in the past. the result.

抵抗における抵抗値の変動が小さくなり、動作不良等の
発生が回避され、ひいては信頼性の高い半導体装置が実
現できることになる。
Fluctuations in the resistance value of the resistor are reduced, the occurrence of malfunctions, etc. is avoided, and a highly reliable semiconductor device can be realized.

[実施例] 以下1本発明に係る半導体装置の実施例を図面に基づい
て説明する。
[Example] Hereinafter, an example of a semiconductor device according to the present invention will be described based on the drawings.

第1図および第3図には本発明に係る半導体装置の実施
例が示されている。
1 and 3 show an embodiment of a semiconductor device according to the present invention.

第1図において符号1はNPN型バイポーラトランジス
タを表し、符号2はバイポーラトランジスタ1と他の回
路素子およびバイポーラトランジスタ1内のアクティブ
領域とコレクタ引上げ部とを分離するためのS i O
,からなるアイソレーション膜を表し、このアイソレー
ション膜2は部分的に簿くされ、その薄くされた部分に
ポリシリコン抵抗3が形成されている。
In FIG. 1, the reference numeral 1 represents an NPN bipolar transistor, and the reference numeral 2 represents an S i O transistor for separating the bipolar transistor 1 from other circuit elements, and the active region and collector pull-up portion within the bipolar transistor 1.
, this isolation film 2 is partially made thin, and a polysilicon resistor 3 is formed in the thinned part.

続いて、第1図に示す半導体装置の構造の詳細をその製
造方法と共に説明する。
Next, details of the structure of the semiconductor device shown in FIG. 1 will be explained together with its manufacturing method.

先ず、P型のシリコン基板4に部分的にN+型埋込層5
を形成し、この埋込層5を形成したシリコン基板4上に
全面的にN型エピタキシャル層6を形成する。続いて、
バイポーラトランジスタ1のアクティブ領域およびコレ
クタ引上げ部以外の領域にあるエピタキシャルM6を酸
化膜(SiO8膜)7および窒化膜(Si、N4膜)8
をマスクにして削り取る0次に、基板表面に酸化膜9を
500人程変形成した後、フォトレジスト10をマスク
にボロンをイオン打込みし、P1型チャネルストッパ領
域11を形成する。その後、マスクとなったフォトレジ
スト10を除去し、さらに熱酸化によってアイソレーシ
ョン膜(S i O,膜)12を形成する。次に5アイ
ソレーシヨン膜12における抵抗形成予定領域を基板表
面が露出するまで削り、フォトレジスト10を除去した
後、アイソレーション膜2を削った領域に500人程変
形酸化膜13を形成する。そして、その抵抗形成予定領
域に上記酸化膜13を通して例えばリンをイオン打込み
してN+型半導体領域14を形成してアニールを施す、
これにより、N+型半導体領域14のリンが拡散してN
+型半導体領域14はN−型半導体領域に変する。次に
、熱酸化により抵抗形成予定領域のアイソレーション膜
12(便宜上。
First, an N+ type buried layer 5 is partially formed on a P type silicon substrate 4.
An N-type epitaxial layer 6 is formed over the entire surface of the silicon substrate 4 on which the buried layer 5 is formed. continue,
An oxide film (SiO8 film) 7 and a nitride film (Si, N4 film) 8 are formed on the epitaxial layer M6 in a region other than the active region and collector pull-up portion of the bipolar transistor 1.
Next, after forming an oxide film 9 of about 500 layers on the substrate surface, boron ions are implanted using the photoresist 10 as a mask to form a P1 type channel stopper region 11. Thereafter, the photoresist 10 serving as a mask is removed, and an isolation film (S i O film) 12 is further formed by thermal oxidation. Next, the area where the resistor is to be formed in the isolation film 12 is shaved until the substrate surface is exposed, and after the photoresist 10 is removed, a deformed oxide film 13 of about 500 layers is formed in the area where the isolation film 2 has been scraped. Then, for example, phosphorus is ion-implanted into the region where the resistor is to be formed through the oxide film 13 to form an N+ type semiconductor region 14, and annealing is performed.
As a result, phosphorus in the N+ type semiconductor region 14 is diffused and N
The + type semiconductor region 14 changes to an N- type semiconductor region. Next, thermal oxidation is performed to form an isolation film 12 (for convenience) in a region where a resistor is to be formed.

上記アイソレージ目ン膜と同一符号を用いる)の厚さを
0.3〜0.7μm程度にする。その後。
(The same reference numerals as the above-mentioned isolation eye film are used) have a thickness of about 0.3 to 0.7 μm. after that.

ポリシリコン3を堆積した後1選択エツチングしてポリ
シリコン抵抗3を形成する。その後1通常の工程でもっ
てトランジスタ1のベース領域16およびエミッタ領域
17を形成する。なお、第1図および第3図において符
号18,19.20はベース電極、エミッタ電極、コレ
クタ電極をそれぞれ表している。また、符号21はポリ
シリコン抵抗3にコンタクトするAI2電極を表わして
いる。
After depositing polysilicon 3, selective etching is performed to form polysilicon resistor 3. Thereafter, a base region 16 and an emitter region 17 of transistor 1 are formed in one conventional process. Note that in FIGS. 1 and 3, reference numerals 18, 19, and 20 represent a base electrode, an emitter electrode, and a collector electrode, respectively. Further, reference numeral 21 represents an AI2 electrode that contacts the polysilicon resistor 3.

なお、製造順序は上記順序でなくとも良いことは勿論で
ある。
It goes without saying that the manufacturing order does not have to be the above order.

上記のように構成された半導体装置によれば下記のよう
な効果を得ることができる。
According to the semiconductor device configured as described above, the following effects can be obtained.

即ち、上記実施例の半導体装置によれば、アイソレーシ
ョン膜2を薄くして、この薄くなった部分の上にポリシ
リコン抵抗3を設けるようにしているので、ポリシリコ
ン抵抗3の下側のアイソレーション膜2の熱抵抗が小さ
くなるという作用によって、そのアイソレーション膜2
上のポリシリコン抵抗3の温度上昇が従来に比べて小さ
くなる。
That is, according to the semiconductor device of the above embodiment, the isolation film 2 is made thinner and the polysilicon resistor 3 is provided on the thinned portion, so that the lower isolator of the polysilicon resistor 3 is Due to the effect that the thermal resistance of the isolation film 2 becomes smaller, the isolation film 2
The temperature rise in the upper polysilicon resistor 3 is smaller than in the conventional case.

その結果、ポリシリコン抵抗2における抵抗値の変動が
小さくなり1回路の動作不良等の発生が回避され、ひい
ては信頼性の高い半導体装置が実現できる。
As a result, fluctuations in the resistance value of the polysilicon resistor 2 are reduced, and malfunction of one circuit can be avoided, and a highly reliable semiconductor device can be realized.

これを具体的に説明すれば次のとおりである。A concrete explanation of this is as follows.

今、アイソレーション膜の厚さをt、ポリシリコン抵抗
の幅をW、ポリシリコン抵抗の長さをLとすれば熱抵抗
Rは次式で表される。
Now, assuming that the thickness of the isolation film is t, the width of the polysilicon resistor is W, and the length of the polysilicon resistor is L, the thermal resistance R is expressed by the following equation.

ここで、従来の半導体装置の一例を挙げれば、アイソレ
ーション膜の厚さLが1μm、ポリシリコン抵抗の幅W
が5μm、ポリシリコン抵抗の長さしが20pmであり
、アイソレーション膜12として用いるS i O2の
熱伝導率は1.9W/m℃であるから、アイソレーショ
ン膜の熱抵抗Rは5263℃/Wとなる。
Here, to take an example of a conventional semiconductor device, the thickness L of the isolation film is 1 μm, and the width W of the polysilicon resistor is
is 5 μm, the length of the polysilicon resistor is 20 pm, and the thermal conductivity of SiO2 used as the isolation film 12 is 1.9 W/m°C, so the thermal resistance R of the isolation film is 5263°C/ It becomes W.

一方、抵抗を流れる電流Iを15mA、ポリシリコン抵
抗の抵抗R1を400Ωとすれば電力P(=工zR1)
は90mWとなり上昇温度ΔT(=PXR)は474℃
となる。
On the other hand, if the current I flowing through the resistor is 15 mA and the resistance R1 of the polysilicon resistor is 400 Ω, the power P (= zR1)
is 90mW and the temperature rise ΔT (=PXR) is 474℃
becomes.

これに対して、本実施例の半導体装置において。In contrast, in the semiconductor device of this embodiment.

アイソレーション膜の厚さtを例えば0.5μmとした
場合アイソレーション膜3の熱抵抗R′は従来の半導体
装置の熱抵抗Rの1/2となり、その結果、上昇温度へ
Tは237℃となる。
If the thickness t of the isolation film is, for example, 0.5 μm, the thermal resistance R' of the isolation film 3 will be 1/2 of the thermal resistance R of the conventional semiconductor device, and as a result, the temperature increase T will be 237°C. Become.

このようにアイソレーション膜を簿<シた場合。When the isolation membrane is used in this way.

ポリシリコン抵抗3の温度上昇を著しく低減できること
になる。
This means that the temperature rise of the polysilicon resistor 3 can be significantly reduced.

また、上記実施例の半導体装置によれば、アイソレーシ
ョン膜2下何にPN接合容量が形成されているので、ア
イソレーション膜2を薄くした場合の容量増大が回避さ
れることになる。
Further, according to the semiconductor device of the above embodiment, since the PN junction capacitor is formed below the isolation film 2, an increase in capacitance when the isolation film 2 is made thinner can be avoided.

つまり、絶縁膜容量Cは誘電率をεいアイソレーション
膜(Sinよ)の比誘電率をEいアイソレーション膜の
厚さをtとすれば次式で表される。
That is, the insulating film capacitance C is expressed by the following equation, where the dielectric constant is ε, the dielectric constant of the isolation film (Sin) is E, and the thickness of the isolation film is t.

c=  E・X′・ ここで真空の誘電率ε。は8.86 X 10−14F
/a11.SiO□の比Iff率ε1は3.9、従来の
Sio2の厚さしは1μmであるから、従来の絶縁膜容
量Cは次のようになる。
c= E・X'・ Here, the permittivity of vacuum is ε. is 8.86 x 10-14F
/a11. Since the specific If ratio ε1 of SiO□ is 3.9 and the thickness of conventional Sio2 is 1 μm, the conventional insulating film capacitance C is as follows.

=0.0346  fF/μm” これに対して本実施例の半導体装置の絶縁膜容量C1は
、アイソレーション膜3の厚さが従来の1/2 (0,
5μm)であるから従来の2倍即ち0.0692  f
F/pm”となる。
=0.0346 fF/μm" On the other hand, in the insulating film capacitance C1 of the semiconductor device of this embodiment, the thickness of the isolation film 3 is 1/2 that of the conventional one (0,
5 μm), which is twice that of the conventional method, or 0.0692 f
F/pm".

このように絶縁膜容量だけを考えれば容量は従来の2倍
となるが、実施例の半導体装置ではアイソレーション膜
2の下側にPN接合を形成している。したがって、絶縁
膜容量C1と下記のPN接合容量C2が第1図に示すよ
うに直列に接続されているのと同じ状態となる。
In this way, if only the insulating film capacitance is considered, the capacitance will be twice that of the conventional one, but in the semiconductor device of the embodiment, a PN junction is formed under the isolation film 2. Therefore, the state is the same as when the insulating film capacitor C1 and the PN junction capacitor C2 described below are connected in series as shown in FIG.

この場合の、PN接合容量C2は、 q:電子1個当りの電荷量、E6+誘電率、E2=シリ
コンの比誘導率、φ:内蔵電位V、NA:アクセプタ不
純物濃度、Nn:ドナー不純物濃度 で表わされる。
In this case, the PN junction capacitance C2 is: q: charge per electron, E6 + dielectric constant, E2 = specific inductivity of silicon, φ: built-in potential V, NA: acceptor impurity concentration, Nn: donor impurity concentration. expressed.

ここで電子1個の電荷量qは1.6X]O−”クーロン
、1ffi率E0は8,86X10−14F/c+n。
Here, the charge amount q of one electron is 1.6X]O-'' coulombs, and the 1ffi rate E0 is 8.86X10-14F/c+n.

シリコンの比誘電率ε2は11.7であり、内蔵電位φ
を0,8V、アクセプタ不純物a度NAを1015、ド
ナー不純物1度Noを1017とすれば。
The dielectric constant ε2 of silicon is 11.7, and the built-in potential φ
If it is 0.8V, the acceptor impurity a degree NA is 1015, and the donor impurity 1 degree No is 1017.

PN接合容nc、は0.1  fF/μm”となる。The PN junction capacitance nc is 0.1 fF/μm.

しかして全体の容量C′は、 で表わされるから上記C1,C2を代入すれば全体の容
ic’ は0.041  F/)tm”とする。
Therefore, the total capacitance C' is expressed as follows, so by substituting the above C1 and C2, the total capacitance ic' becomes 0.041 F/)tm''.

したがって、従来の寄生容量と略同等レベルに全体の容
量を抑えることができる。
Therefore, the overall capacitance can be suppressed to approximately the same level as the conventional parasitic capacitance.

[発明の効果] 本願において開示される発明のうち代表的なものによっ
て得られる効果を簡単に説明すれば下記のとおりである
[Effects of the Invention] The effects obtained by typical inventions disclosed in this application are briefly explained below.

本発明の半導体装置は、アイソレーション膜を部分的に
薄くし、この薄くした部分にポリシリコン抵抗を設ける
ようにしたので、アイソレーション膜の熱抵抗が小さく
なり、そのアイソレーション膜上のポリシリコン抵抗の
温度上昇を従来に比べて小さく抑えることができる。そ
の結果、ポリシリコン抵抗における抵抗値の変動が小さ
くなり、動作不良等の発生が回避され、ひいては信頼性
の高い半導体装置が実現できることになる。
In the semiconductor device of the present invention, the isolation film is partially thinned and a polysilicon resistor is provided in this thinned part, so that the thermal resistance of the isolation film is reduced, and the polysilicon resistor on the isolation film is The temperature rise of the resistor can be suppressed to a smaller level than in the past. As a result, fluctuations in the resistance value of the polysilicon resistor are reduced, malfunctions, etc. can be avoided, and a highly reliable semiconductor device can be realized.

また、上記アイソレーション膜の下側にPN接合を形成
すれば、絶縁膜容量とPN接合容量とが直列接続された
状態となり、アイソレーション膜が薄くなったことに起
因する容量の増大を抑える゛ことができる。
Furthermore, if a PN junction is formed under the isolation film, the insulating film capacitance and the PN junction capacitance will be connected in series, suppressing the increase in capacitance due to the thinning of the isolation film. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る半導体装置の実施例の縦断面図、 第2図(A)〜(D)は第1図の半導体装置の製造方法
を工程順に示す縦断面図、 第3図は第1図の半導体装置のレイアウトを示す平面図
である。 2・・・・アイソレーション膜、3・・・・ポリシリコ
ン抵抗。
FIG. 1 is a vertical cross-sectional view of an embodiment of the semiconductor device according to the present invention, FIGS. 2(A) to (D) are vertical cross-sectional views showing the manufacturing method of the semiconductor device of FIG. 1 in order of steps, and FIG. FIG. 2 is a plan view showing the layout of the semiconductor device of FIG. 1; 2...Isolation film, 3...Polysilicon resistor.

Claims (1)

【特許請求の範囲】 1、アイソレーション膜上に抵抗を形成した半導体装置
において、上記アイソレーション膜を部分的に薄くし、
この薄くした部分に上記抵抗を設けるようにしたことを
特徴とする半導体装置。 2、上記抵抗はポリシリコンによって構成されているこ
とを特徴とする請求項1記載の半導体装置。 3、上記アイソレーション膜の下側にPN接合容量を形
成したことを特徴とする請求項1または請求項2記載の
半導体装置。
[Claims] 1. In a semiconductor device in which a resistor is formed on an isolation film, the isolation film is partially thinned,
A semiconductor device characterized in that the resistor is provided in this thinned portion. 2. The semiconductor device according to claim 1, wherein the resistor is made of polysilicon. 3. The semiconductor device according to claim 1 or 2, wherein a PN junction capacitor is formed under the isolation film.
JP20833688A 1988-08-24 1988-08-24 Semiconductor device Pending JPH0258367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20833688A JPH0258367A (en) 1988-08-24 1988-08-24 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20833688A JPH0258367A (en) 1988-08-24 1988-08-24 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0258367A true JPH0258367A (en) 1990-02-27

Family

ID=16554585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20833688A Pending JPH0258367A (en) 1988-08-24 1988-08-24 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0258367A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04177871A (en) * 1990-11-13 1992-06-25 Nec Corp Semiconductor integrated circuit
JPH05121664A (en) * 1991-10-25 1993-05-18 Nec Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04177871A (en) * 1990-11-13 1992-06-25 Nec Corp Semiconductor integrated circuit
JPH05121664A (en) * 1991-10-25 1993-05-18 Nec Corp Semiconductor device

Similar Documents

Publication Publication Date Title
US4819052A (en) Merged bipolar/CMOS technology using electrically active trench
US4965220A (en) Method of manufacturing a semiconductor integrated circuit device comprising an MOS transistor and a bipolar transistor
US4041518A (en) MIS semiconductor device and method of manufacturing the same
JPH0123949B2 (en)
EP0078220B1 (en) Polycrystalline silicon interconnections for bipolar transistor flip-flop
US4511912A (en) Semiconductor element
US5395782A (en) Process for fabricating a semiconductor integrated circuit
JPH11135799A (en) Semiconductor integrated circuit and its manufacture
JPH0258367A (en) Semiconductor device
JP2840488B2 (en) Semiconductor integrated circuit and manufacturing method thereof
US5008724A (en) Semiconductor device
JPS58107645A (en) Manufacture of semiconductor device
Hilleringmann MOS Technologies for Circuit Integration
JPS58155739A (en) Semiconductor device
JPH0750769B2 (en) Method for manufacturing semiconductor device
JPH0414497B2 (en)
JPH0157506B2 (en)
JPH04213856A (en) Fail-safe operation integrated circuit
JP2000216254A (en) Manufacture of semiconductor device
JPS5931860B2 (en) semiconductor equipment
JPS6359259B2 (en)
JPH05152512A (en) Method for manufacturing capacitor for semiconductor integrated circuit
JPS62111459A (en) Manufacture of semiconductor device
JPS6022828B2 (en) Manufacturing method of semiconductor device
JPH0317374B2 (en)