JPS6183437A - 内燃機関の沸騰冷却装置 - Google Patents

内燃機関の沸騰冷却装置

Info

Publication number
JPS6183437A
JPS6183437A JP59204586A JP20458684A JPS6183437A JP S6183437 A JPS6183437 A JP S6183437A JP 59204586 A JP59204586 A JP 59204586A JP 20458684 A JP20458684 A JP 20458684A JP S6183437 A JPS6183437 A JP S6183437A
Authority
JP
Japan
Prior art keywords
condenser
refrigerant
air
temperature
water jacket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59204586A
Other languages
English (en)
Other versions
JPH0476009B2 (ja
Inventor
Kazuyuki Fujigaya
藤ケ谷 和幸
Naoki Ogawa
直樹 小川
Hitoshi Shimonosono
均 下野園
Yutaka Minezaki
峯崎 裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP59204586A priority Critical patent/JPS6183437A/ja
Priority to US06/780,934 priority patent/US4624221A/en
Publication of JPS6183437A publication Critical patent/JPS6183437A/ja
Publication of JPH0476009B2 publication Critical patent/JPH0476009B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/22Liquid cooling characterised by evaporation and condensation of coolant in closed cycles; characterised by the coolant reaching higher temperatures than normal atmospheric boiling-point
    • F01P3/2285Closed cycles with condenser and feed pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、ウォータジャケット内の所定レベルまで液
相冷媒を貯留しておき、その沸騰気化により内燃薇関各
部の冷却を行うとともに、発生した冷媒蒸気をコンデン
サにより凝縮して再利用するようにした内燃機関の沸騰
冷却装置に関する。
従来の技術 自動玉用機関等の冷却装置として、従前の水冷式冷却装
置に代えて冷媒(冷却水)の沸騰・凝縮のせイクルを利
用した沸騰冷却装置が、例えば特開昭57−62912
号公報に記載されている。
この従来の装置は、ウォータジャケットと分離タンクと
で自然循環的に液相冷媒の液面位置を調整するとともに
、分離タンクからコンデンせに冷媒蒸気を導いて凝縮さ
せた後に再び分離タンクに電動ポンプρこて戻すようl
こ構成されており、また系内温度を安定的に維持するた
めに、コンデンサ下流側を常時大気に開放して系内圧力
を略大気圧とし、かつコンデンせに臨設したファンのO
N −OFFによって凝縮量の調整を図っている。
また−万、水出願人はウォータジャケットとコンデンサ
とを主体として通常密閉状態となる冷媒循環系を構成し
、かつその系外に設けたリザーバタンクの液相冷媒を利
用して系内の完全な空気排出と高稍度な温度制御とを実
現した内燃機関の沸騰冷却装置を先に提案している(特
願昭59−100156号、特願昭59−140378
号)。
これは始動時にリザーバタンクから系内に液相冷媒を送
り込んで一旦満水状態とし、その後蒸気発生とともに空
気の侵入を防止しつつ余剰の冷媒をリザーバタンクに戻
すことで空気を完全に除去し、また運転中は、リザーバ
タンクとコンデンサとの間で系内温度に応じて強制的な
冷媒の導入、排出を行い、コンデンサ内の冷媒液面高さ
つまり実質的な放熱部となる気相冷媒領域の面積を可変
制御して、コンデンサ放熱量を制御するようにしたもの
である。
発明が解決しようとする問題点 上記のl寺開昭57−62912号公報に記載の装置で
は、分離タンクを介して液面調整を行って力るので、配
管や構成が比較的複雑であるとともに、装置全体として
保有する冷媒量が非常に多くなり、M載の装置としては
スペース的9重量的に好ましくない。またコンデンサ下
流側が常時大気に開放されているので僅かながらもRH
的な冷媒蒸気の損失を生じ、特に高負荷時tこ多層の冷
媒蒸気をそのまま流出させないためには、コンデンサチ
ューブ出口側の端部の相当な範囲で既に液相状態となっ
ていることが必要であるから、コンデンサ全体を気相領
域として有効に利用することができない。しかも、常時
大気に開放したこの構成では、機関発熱fせが急激ζこ
増大したような場合に。
コンデンサ内から速やかにかつ完全に空気を押し出すこ
とは困難である。従って、コンデンサは機関の最大発熱
量に比して相当に余裕を見込んだ下型のものとなってし
まう。
一方、水出願人が先に提案した後者の装置にあっては、
系を密閉した状態で運転されるので高負荷時にコンデン
サ全体を総て気相空間として有効に利用することができ
、しかも確実に空気が除去されるためコンデンサを大幅
lこ小型化できる。しかし、空気排出のための液相冷媒
が余分に存在するので、やはりAH1全体で保有する冷
媒量が比較的多く、特に満水状態で暖機運転されるので
、暖機完了がそれだけ遅くなってしまう。また系最上部
に空気排出用の通路や電磁弁が必焚であり、構造の単純
化に限昇があった。
この発明は、それ程高M度な温度制御が妾求されない場
合に好適なものとし2て、構造が単純でかつ小型であり
、しかも非常に少ない冷媒量で連転でき、かつ急速暖機
が可iヒな内燃機関の沸騰冷却装置を提供しようとする
ものである。
問題点を解決するための手段 この発明に係る内燃機関の沸騰冷却装置は、上部に蒸気
出口を有し、かつ所定レベルに液面セン乎が設けられた
ウォータジャケットと、上記蒸気出口にN4され、かつ
下部に凝縮した液相冷媒が集められるコンアンせと、上
記コンデンサ下部から上記ウォータジャケットへ上記液
面センサの検出備考に応じて液相冷媒を補給する冷媒供
給ポンプとを備えており、これらのウォータジャケット
コンデンサ、冷媒供給ポンプlこよって密閉された冷媒
循環系が構成されている。またこの冷媒循環系の系内の
昇常低温状態を系内温度もしくは系内圧力から検知する
手段と、同じく異常低温状態を検知する手段とを備えて
おり、具体的には系内温度を検出する温度センサや系内
圧力を検出する圧力センサ等が設けられている。そして
、上記異常高温時にコンデ/−1−下部を大気中に連通
開放し、コンアンせ内からの空気の流出を許容する空気
排出機構と、上記異常低温時にコンデンサを大気中に連
通開放し、コンデンサ内への空気の流入を許容する空気
導入機構とを備えており、これらは具体的には電磁^用
いて構成されている。
作用 上記の沸騰冷却装置においては、始動時には格別な空気
排出動作を行わず、ウォータジャケットの所定レベルま
で液相冷媒(例えば水と不凍液との混合液)を貯留し、
かつコンデンサの大部分およびウォータジャケットの上
部に空気が人いった状態で運転を開始する。沸+19が
開始する段階では系内が密閉状態となっており、その中
で冷媒の沸褥・凝縮が繰り返される。このとき、コンデ
ンサの一部は空気によって覆われ、有効放熱面積が狭め
られているが、その条件の下で機関発熱前とコンデンサ
放熱量とが略平衡すれば、そのまま密閉状態が継続され
る。
ここで高負荷運転の長時間の継続などにより系内が異常
高温となると空気排出機構が作動し、コンアンせ下部が
大気中に連通される。従って、コンデンサ内に溜まって
いた空気が内部の蒸気圧によって一気に押し出され、コ
ンアンせの有効放熱面積が拡大する。一方、逆に下り坂
走行などにより系内が異常低温となると空気導入機構が
作動し、コンデンサが一部で大気中に連通される。従っ
て減圧状態にあるコンデンサ内に空気が吸引され、コン
アンぜの一部を覆って有効放熱面積が減少する。このよ
うな作動の繰り返しによって、系内の温度は確実に一定
範囲内に維持される。
実施例 第1図はこの発明に係る沸騰冷却装置の一実施例を示す
もので、同図において、1はウォータジャケット2を備
えてなる内燃機関、3は気相冷媒を凝縮するためのコン
デンサ、4は′g8式の冷媒供給ポンプを夫々示してい
、る。
上記ウォータジャケット2は、内燃機関1のンリングお
よび燃焼室の外周部を包囲するようにシリンダブロック
5および7リンダヘツド6の両者に亘って形成されたも
ので、通常気相空間となる上部が各気筒で互いに連通し
ているとともに、その上部の適宜な位置に蒸気比ロアが
設けられている。この蒸気比ロアは、接続管8および蒸
気4路9を介してコンデン+3の上部人口3aに連通し
ている。また10は、例えばリードスイッチを利用した
フロート式七ン廿等からなる第1!面センチ、11は冷
媒温度を検出するナーミスタ等を用いた温度センサであ
って、上記第1液面センサ10がウォータジャケット2
の所定レベルに対応して装着されているとともに、これ
より下方位置つまり通常液相冷奴領域となる位置に上記
温度センチ11が装着されている。
上記コンデン+3は、上記人口3aを有するアッパタン
ク12と、上下方向に沿った微細な千二一ブを主体とし
たコア部13と、このコア部13で凝縮された液化冷媒
を一時貯留するロアタンク14とから構成されており、
例えば直両前部など正画走行風を受は取る位置に設置さ
れ、更にその前面あるいは背面に、強制冷却用の゛邂動
式冷却ファン15を備えている。また上記ロアタンク1
4は、その比較的下部に冷媒循環通路16の一端が接続
されているとともに、これより上部に空気通路17の一
端が接続されている。上記冷媒循環通路16は、その他
端が上記ウォータジャケット2の71ンダヘツド6側l
こ設けた冷媒人口2aに接続されており、その通路中に
三方型の第1′1!Ia弁18を備えているとともに、
この第1電磁弁18とロアタンク14との間lこ上記冷
媒供給ポンプ4が介装されている。また上記ロアタンク
14には、その検出レベルが上記空気通路17の開口付
近に設定された同様にフロート式七ンせ等からなる第2
液面セン+19が装着されている。
20は、上記ウォータジャケット2′0コンデンせ3等
を主体とした冷媒循環系の外部に設けられたリザーバタ
ンクであって、これは通気機能を有するキャップ21を
介して大気に開放されているとともに、上記ウォータジ
ャケット2と略等しい高さ位置に設置され、かつその底
部に補助冷媒通路22が接続されている。上記補助冷媒
通路22の先端は、上記の三方型第1電磁弁18を介し
て冷媒循環通路16に接続されており、上記第1電磁弁
18は、励磁状態では冷媒循環通路[6を遮断してリザ
ーバタンク20とロアタンク14との間を連通状態とし
く流路A)、非励磁状態では補助冷媒通路22を遮断し
て冷媒循環通路16を連通状態(流路B)とする構成と
なっている。そして、上記冷媒供給ポンプ4としては、
正逆両方向に液相冷媒を圧送できるものが用いられてお
り、上記の流路Aの状態で冷媒供給ポンプ4を正方向に
駆動すればロアタンク14からリザーバタンク20へ液
相冷媒を強制排出でき、逆方向に駆動すればリザーバタ
ンク20からロアタンク14へ液相冷媒を強制導入でき
、更に流路Bの状態で冷媒供線ポンプ4を正方向に駆動
すればロアタ/り14からウォータジャケット2へ液相
冷媒を循環供給することが可能である。
また上記空気通路17の先端は、上記リザーバタンク2
0の上部空間に開口しており、かつその通路中には、空
気導入機構と空気排出機構とを兼ねる常開型の第2電磁
弁23が介装されている。
上記の各7に磁弁18,23と冷媒供給ポンプ4および
冷却ファン15は、所cf1マイクロコンピュータ/ス
テムを用いた図示せぬ制御装置によって所定のプログラ
ムに従って制御される。
第21留〜第6図は、その制御の内容を示すフローチャ
ートであって、以下、機関の始動から停止までの流れζ
こ沿ってこれを説明する。尚、図中第】、第2電磁弁1
8.23を夫々■l弁○)J、  r’戒磁弁■」と略
記しである。また第1.第2′o、面センチ10.19
0rONJ、rOFFJは冷媒液面が所定レベル以上に
あるか否かを意味する。
第2図および第3図は徂j#の概要を示すメインフロー
千ヤードであって、機関の始動(イグニツノヨンキーO
N)をこより制御が開始すると、ステップ1のイニ/ヤ
ライズ処理を行った後に一旦第1電磁升18を[流路B
−1.第21!磁弁23を「閉」(ステップ2)とし、
ステップ3の液面制御を実行する。尚、この機関始動の
際には、ウォータジャケット2の所定レベル近傍まで液
相冷媒(例えば水と不凍液の混合液)が存在し、その上
部およびコンテン+3の大部分は空気で占められている
上記液面制御(以下ステップ9.ステップ45も同様で
ある)は、第4図に示すような処理手屓によつ、てウォ
ータジャケット2内の冷媒液面を所定レベルに維持する
制御である。すなわち、冷媒液面が所定レベルに達して
いないときには、先ず冷・・媒供給ポンプ4を正方向に
駆動してロアタ/り14からウォータジャケット2へ液
相冷媒を供給する(ステップ21〜24)。この結果冷
媒液面が所定レベルに回復すれば冷媒供給を終了(ステ
ップ31゜32)するカ≦、補給すべき液相冷媒がロア
タンク]4fこ存在しない場合が考えられるので、冷媒
供給ポンプ4の作動時間が10秒継続した場合には、冷
媒供給ポンプ4の逆方向偲動によりリザーバタンク20
からロアタンク14内へ5秒間液相冷媒を送り込み(ス
テップ24〜30)、その後再度ウォータジャケット2
ヘロアタンク14から冷媒補給を行うようにしている。
上記のfi、面制御を経てステップ4で冷媒温度を判別
するが、冷間始動の場合は80℃以下であるから第2亀
日弁23が「開」(ステップ5)となり、この状ψAで
冷媒【温度が80′Cに上昇するまで待機する。このと
き、ウォータジャケット2内の液相冷媒は滞留状r理の
ままであり、かつウォータジャケット2内に存在する冷
媒量が通常の流水式冷幻装置凌の場合などに比べて相当
に少ないので、非常lこ短時間で温度上昇が生じ、急速
暖機を実現できる。
その後、冷媒温度が80’Ciこ上昇したら(ステップ
4)、第2電磁弁23が「閉」(ステップ6)となり、
以後、密閉した系内で冷媒の沸騰・凝縮のサイクルが慄
り返される。すなわち、コンアン+3内(こは多少の空
気が存在した状態となっているが、その状態でのコンテ
ン+3の放熱量と機関発熱量とが略平衡している限り、
ステップ3の液面制御卸によるウォータジャケット2へ
の冷媒補給のみが行われる。    ゛ ここで高負荷運転を長時間継続するなどして放熱量と機
関発熱量との平衡が太き(崩れ、冷媒温度が「設定m度
+2℃」以上となった場合lこは第2図のステップ7以
降へ進む。尚、一連の制御の間、第3図に示すように一
定時間毎に第6図の割込処理ルーチンが実行され、その
ステップ60において、機関連転条件lこ応じて80℃
〜110℃程度の範囲内で上記の設定温度が算出される
。上記のように「設定温度+2℃」以上となると、原則
上してステップ15の高温回避制御へ進むが、それに先
立ってコンチン+3内に余分な液相冷媒が溜まっていな
いか確認しくステップ8)%放熱面積を狭める余分な液
相冷媒が存在している場合には第1速磁弁18を「流路
A」として冷媒供給ポンプ4により系外のりザーバタン
ク20へ排出する(ステップ9〜11 )。
第5図は上記高温回避制御を示す。この制御に進んで来
ても系内温度が更に「設定温IJif + 4 ’Cj
に上昇するまでは特に、新たな動作は行わない(ステッ
プ48.49)。「設定温度+4℃」を越えると、冷却
ファン15をON(ステップ42)とし、コンテン−1
−3における凝縮を促進する。これにより、「設定温度
+4℃」以下に低下すれば冷却ファン15をOFF (
ステップ48)とする。
また冷却ファン15の作動のみで足らずに、更ζこ冷媒
温度が115℃以上(ステップ41)となったときには
第2電磁弁nを「開」とし、ロアタンク14を空気通路
17を介して大気に開放する(ステップ44〜47)。
このとき、系内圧力は相当に高圧であるから、コンテン
−1−3の微細なチューブに溜まっていた空気がロアタ
ンク14を通してリザーバタンク20側へ一気に押し出
される。従って、コンデンサ3の有効放熱面積が拡大し
、かつこれと同時に系内圧力も@、激に低下するので、
通常は極く短時間で冷媒塩層が低下する。冷媒γ温度が
115℃以下(ステップ41)となれば第2d磁弁23
が「閉」(ステップ42)となって再び密閉系による運
転が行われる。ここで上述の空気排出の際に空気ととも
iこ若干の冷媒量2が流出するが、空気は冷媒蒸気の圧
力によってコンデン廿チューブの下部に既に集められて
おり、冷媒蒸気より先に空気が確実に押し出されるとと
もに、通常は極く短時間で温度低下して第2電磁弁23
が閉じ、かつ一部の蒸気はリザーバタンク20内で凝縮
して滴下するので、実際Iこ外部に失われる冷媒量は非
常に少ない。しかも、一旦空気排出が実行されれば、再
度空気が導入されない限りは異常賃温となる頻度は少な
いので、運転中に減少する冷媒量は実用上殆ど問題とな
らない。
一万、第2電磁弁23を開いても冷媒温度が低下せずに
、115℃以上の状態が60秒(ステップ47、)以上
継続したときには、何らかの異常によるものであるから
、警報ブザーあるいは警告灯等による異常警報を出力(
ステップ50)シ、運転者に異常を報矧する。通常は運
転者がこれに従ってアクセル開度を小さくするなどの対
応を行うので、やがて冷媒温度は低下する。
尚、上記の第21を磁弁%の「開」の間もステップ45
において前述した液面制御がなされ、ウォータジャケッ
ト2内の冷媒液面は設定レベルに維持される。
上記の空気排出によってコンテン+3の有効放熱面積が
拡大した後、その条件の下でコンデンサ3の放熱量と醗
iタコ発熱量とが略平衡し、具体的には冷媒温度が80
゛C〜「設定温度+2℃」(ステップ4)の範囲内にあ
れば、前述したように、以後密閉した系内でステップ3
の液面制御のみによって運転が継続される。
一方、長い下り坂の走行などを行った場合に、機関発熱
量がコンデン−1−3の放熱量を大きく下廻ることがあ
るが、この結果、冷媒温度が過度に低下して80℃以下
(ステップ4)となったときには、第2を磁弁nを「開
」としてロアタンク14を犬スに開放する(ステップ5
)。このとき、系内圧力は負圧状態にあるから、空気通
路17を介してコンテン+3内に空気が流入し、そのチ
ューブの一部を糧って有効放熱面積を狭める。従ってコ
ンデンサ3の放熱量が減少し、運やかに温度回復が図れ
る。この空気導入の結果、冷媒温度が80℃以上となれ
ば再び系を密閉(ステップ6)して運転が行われる。
以上のように、暖機完了後は基本的には冷媒循環系を密
閉した状態にて冷媒の沸騰・凝縮のサイクルによる冷却
が行われる。そして、コンデンサ3の放熱量と機関発熱
量との平衡が大きく崩れて無視できない程度の異常高温
、異常低温となったときに、系内外の圧力差を利用した
空気の排出。
導入によってコンデンサ3の放熱量を制御し、冷媒温度
つまり機関温度を確実に一定の範囲内に維持するのであ
る。
次に第6図は、一定時間毎に実行される割込処理を示す
フロー千ヤードであって、ステップ52の判別によりキ
ーON状態であれば設定温度の更新(ステップ60)を
行い、またキーOFF信号が入力された場合にはステッ
プ53以降のキーOFF制御を行う。
これは、先ず設定温度を80℃にセット(ステップ54
)することによってステップ8〜IHこよる冷媒排出動
作を行わせ、コンデンサ3の放熱能力を十分に利用する
ようにするとともに、最大[0秒間冷却ファン15を駆
動して強制冷却(ステップ55.56%ステップ42)
し、系内が十分に低い温度(例えば80 ’C’)にな
る(ステップ53)か、系内が負圧状態になる(ステッ
プ57)か、あるいは一定時間(例えば1分)経過した
こと(ステップ58)を条件として電源をOFF (ス
テップ59)とする。この電源OFF !こより常開型
電磁弁である’M 2 j:L m弁23が「開」とな
って系内は大気に開放される。また、この電源OFFま
では液面制御(ステップ3)が継続されるので、ウォー
タジャケット2の冷媒液面は所定レベルに維持され、こ
の状態で次の始動に備えることIこなる。
尚、上記実施例では第21/L磁弁nおよび空気通路1
7を、空気排出および空気導入の双方に兼用しているが
、勿論夫々単独に電磁弁等を設けても良い。
発明の効果 以上の説明で明らかなように、この発明に係る内燃機関
の沸騰冷却装置においては、ウォータジャケットとコン
デンサとを主体とした極めて単純な冷媒循環系でもって
密閉状態のまま冷媒の沸騰・凝縮のサイクルを行わせる
ことができ、高負荷時にコンデンサ全体を気相状態とし
て有効に利用することか可能である。そして、9気排出
の必要時には系内圧力を利用して瞬時にかつ確実に空気
を押し出すことができるので、結局、冷媒の損失は非常
に少なく、また機関発熱量が急激に増大したような場合
にも十分に対応でき、コンデンサを過度に大型化する必
要がない。
更に、装置全体として保有する冷媒量が非常に少なくて
済み、自動車用機関等にとって有利であるとともlこ、
始動時には最少限の冷媒のみに熱を与えるので暖機時間
が非常に短い。
【図面の簡単な説明】
第1図はこの発明の一実施例を示す構成説明図、瀉2図
、 5If!3図、第4図、第5図および第6図はこの
実施例における制御の内容を示すフローチャートである
。 1・・・内′p機関、2・・・ウォータジャケット、3
・・・コンデンサ、4・・冷媒供給ポンプ、1o・・・
第1液面センサ、11・・昌iセンサ、15・・・冷却
ファン、 16・・・冷媒循環通路、17・・空気通路
、18川第1電磁弁、20・・・リザーバタンク、22
・・・補助冷媒通路%n・・・第2電磁弁。 第5図

Claims (1)

    【特許請求の範囲】
  1. (1)上部に蒸気出口を有し、かつ所定レベルに液面セ
    ンサが設けられたウォータジャケットと、上記蒸気出口
    に接続され、かつ下部に凝縮した液相冷媒が集められる
    コンデンサと、上記コンデンサの下部から上記ウォータ
    ジャケットへ上記液面センサの検出信号に応じて液相冷
    媒を補給する冷媒供給ポンプと、上記ウォータジャケッ
    ト、コンデンサ等からなる密閉された冷媒循環系の系内
    異常高温状態を系内温度もしくは系内圧力から検知する
    手段と、同じく系内異常低温状態を検知する手段と、上
    記異常高温時にコンデンサ下部を大気中に連通開放し、
    コンデンサ内からの空気の流出を許容する空気排出機構
    と、上記異常低温時にコンデンサを大気中に連通開放し
    、コンデンサ内への空気の流入を許容する空気導入機構
    とを備えてなる内燃機関の沸騰冷却装置。
JP59204586A 1984-09-29 1984-09-29 内燃機関の沸騰冷却装置 Granted JPS6183437A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59204586A JPS6183437A (ja) 1984-09-29 1984-09-29 内燃機関の沸騰冷却装置
US06/780,934 US4624221A (en) 1984-09-29 1985-09-27 Cooling system for automotive engine or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59204586A JPS6183437A (ja) 1984-09-29 1984-09-29 内燃機関の沸騰冷却装置

Publications (2)

Publication Number Publication Date
JPS6183437A true JPS6183437A (ja) 1986-04-28
JPH0476009B2 JPH0476009B2 (ja) 1992-12-02

Family

ID=16492915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59204586A Granted JPS6183437A (ja) 1984-09-29 1984-09-29 内燃機関の沸騰冷却装置

Country Status (2)

Country Link
US (1) US4624221A (ja)
JP (1) JPS6183437A (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5582138A (en) * 1995-03-17 1996-12-10 Standard-Thomson Corporation Electronically controlled engine cooling apparatus
US5699759A (en) * 1995-12-21 1997-12-23 Thomas J. Hollis Free-flow buoyancy check valve for controlling flow of temperature control fluid from an overflow bottle
US6802283B2 (en) 2002-07-22 2004-10-12 Visteon Global Technologies, Inc. Engine cooling system with variable speed fan
US6668766B1 (en) 2002-07-22 2003-12-30 Visteon Global Technologies, Inc. Vehicle engine cooling system with variable speed water pump
US6668764B1 (en) 2002-07-29 2003-12-30 Visteon Global Techologies, Inc. Cooling system for a diesel engine
US6745726B2 (en) 2002-07-29 2004-06-08 Visteon Global Technologies, Inc. Engine thermal management for internal combustion engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4367699A (en) * 1981-01-27 1983-01-11 Evc Associates Limited Partnership Boiling liquid engine cooling system
JPS59194028A (ja) * 1983-04-18 1984-11-02 Nissan Motor Co Ltd エンジンの冷却装置
JPS6069232A (ja) * 1983-09-27 1985-04-19 Nissan Motor Co Ltd 内燃機関の沸騰冷却装置
US4549505A (en) * 1983-10-25 1985-10-29 Nissan Motor Co., Ltd. Cooling system for automotive engine or the like
DE3575451D1 (de) * 1984-02-23 1990-02-22 Nissan Motor Kuehlverfahren und kuehlsystem fuer brennkraftmaschinen.

Also Published As

Publication number Publication date
US4624221A (en) 1986-11-25
JPH0476009B2 (ja) 1992-12-02

Similar Documents

Publication Publication Date Title
JPS6183413A (ja) 内燃機関の沸騰冷却装置における高温異常回避制御装置
JPS6183437A (ja) 内燃機関の沸騰冷却装置
JPS61247819A (ja) 内燃機関の沸騰冷却装置
JPH0692730B2 (ja) 車両用内燃機関の沸騰冷却装置
JPS6183424A (ja) 内燃機関の沸騰冷却装置におけるポンプ異常対策装置
JPH0475369B2 (ja)
JPH0545446B2 (ja)
JPS60122223A (ja) 内燃機関の沸騰冷却装置
JPS61123712A (ja) 内燃機関の沸騰冷却装置
JPS6183442A (ja) 内燃機関の沸騰冷却装置
JPS6183436A (ja) 内燃機関の沸騰冷却装置
JPS6183438A (ja) 内燃機関の沸騰冷却装置
JPS6183417A (ja) 自動車用内燃機関の沸騰冷却装置
JPS6183441A (ja) 内燃機関の沸騰冷却装置
JPH034726B2 (ja)
JPS6183419A (ja) 内燃機関の沸騰冷却装置
JPS6183440A (ja) 内燃機関の沸騰冷却装置
JPH0519546Y2 (ja)
JPH0410331Y2 (ja)
JPS60243318A (ja) 内燃機関の沸騰冷却装置
JPH034727B2 (ja)
JPS6183415A (ja) 自動車用内燃機関の沸騰冷却装置
JPS63134811A (ja) 内燃機関の冷却装置
JPS6183414A (ja) 沸騰冷却装置の空気排出制御装置
JPS6275016A (ja) 内燃機関の沸騰冷却装置