JPS6179268A - Phototransistor - Google Patents

Phototransistor

Info

Publication number
JPS6179268A
JPS6179268A JP59200934A JP20093484A JPS6179268A JP S6179268 A JPS6179268 A JP S6179268A JP 59200934 A JP59200934 A JP 59200934A JP 20093484 A JP20093484 A JP 20093484A JP S6179268 A JPS6179268 A JP S6179268A
Authority
JP
Japan
Prior art keywords
layer
inp
added
striped
base layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59200934A
Other languages
Japanese (ja)
Inventor
Hidenori Nomura
野村 秀徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59200934A priority Critical patent/JPS6179268A/en
Publication of JPS6179268A publication Critical patent/JPS6179268A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03042Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors
    • H01L31/1105Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors the device being a bipolar phototransistor

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a phototransistor operating at high speed and having high sensitivity by laminating striped P-InGaAs and N-InP on N-InP, forming P-InP on the first layer while surrounding the second and third layers and making the refractive index of the striped second layer larger than other all layers. CONSTITUTION:Non-added N-InP 1, Gd added P-In0.35Ga0.47As 2 and Sn added N-InP 3 are superposed onto a Sn added N-InP substrate 1s, and processed to a mesa shape, and a Cd added P-InP buried layer 4 is formed. Electrodes 5, 7 are shaped by an AuGe alloy, electrodes 6 are formed by an AuZn alloy, and the whole is cloven so that the striped base layer 2 appears on an end surface. Since the base layer 2 has a high refractive index and optical absorptive optical waveguide structure. the greater part of beams projected from the end surface are absorbed during a time when beams are wave-guided in the layer 2, the thickness of a depletion layer in the collector layer 1 need not be thickened, the base layer may be thinned and impurity concentration lowered, and a junction area is reduced by adopting waveguide type structure, thus acquiring a phototransistor operating at high speed and having high sensitivity.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高速かつ高感度の光検出器として用いられるフ
ォトダイオードの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to improvements in photodiodes used as high-speed and highly sensitive photodetectors.

(従来技術とその問題点) 光通信、センサ等を始め種々の用途に光検出器が使用さ
れておシ、高速に変化する信号をいかに高感度に検出す
るかは常に大きな開発課題と力っている。高速性、高感
度性を有する光検出器として現在多く用いられているも
のは、フォトダイオード、フォトトランジスタであるが
、一般に高速性と高感度性は両立しないものと表ってお
シ、高い内部増幅作用によって極めて高感度なフォトト
ランジスタはフォトダイオードに比べ高速性に劣シ、そ
の通常の使用周波数領域はI MHz程度以下の低周波
に限られている。
(Prior art and its problems) Photodetectors are used in a variety of applications, including optical communications and sensors, and how to detect rapidly changing signals with high sensitivity has always been a major development challenge and effort. ing. Photodiodes and phototransistors are currently widely used as photodetectors with high speed and high sensitivity, but in general, high speed and high sensitivity are not compatible. A phototransistor, which has extremely high sensitivity due to its amplification effect, is inferior to a photodiode in high speed, and its normal frequency range is limited to low frequencies of approximately I MHz or less.

このような従来のフォトトランジスタの欠点は光吸収層
であるベースないしコレクタに層と垂直な方向から光を
入射する構造に起因していた。−例として第30回応用
物理学関係連合講演会講演予稿集第173頁に示されて
いるI n G a A s Pを光吸収層、InPを
エミツタ層とするInGaAsP  /InPへテロ接
合フォトトランジスタを挙げることができる。この様な
従来例では光吸収層をある程度以上、例えば1〜2μm
程度に厚くしないと光の吸収効率が低下して高感度性を
損なうために光吸収層であるベース層とコレクタ層を厚
くしてコレクタ層の光吸収層領域を逆バイアス印加によ
って空乏層化するように設計されている。しかしながら
コレクタ層の空乏層化によってもベース層がパンチスル
ーレないよう、ベース層の厚さや不純物濃度を適切に設
定する必要があり、高速化及び高利得化に必要な薄いベ
ース層のフォ))ランジスタが得られないという欠点が
ある。
Such drawbacks of conventional phototransistors are due to the structure in which light is incident on the base or collector, which is a light absorption layer, from a direction perpendicular to the layer. - As an example, an InGaAsP/InP heterojunction phototransistor with InGaAsP as a light absorption layer and InP as an emitter layer is shown in the Proceedings of the 30th Applied Physics Conference, page 173. can be mentioned. In such conventional examples, the thickness of the light absorption layer is more than a certain level, for example, 1 to 2 μm.
If it is not thick enough, the light absorption efficiency will decrease and high sensitivity will be lost, so the base layer and collector layer, which are light absorption layers, are made thicker and the light absorption layer region of the collector layer is made into a depletion layer by applying a reverse bias. It is designed to. However, it is necessary to appropriately set the thickness and impurity concentration of the base layer so that the base layer does not punch through even if the collector layer becomes a depletion layer. The disadvantage is that a transistor cannot be obtained.

(発明の目的) 本発明の目的は上述の欠点を除去し、高速かつ高感度々
フォトトランジスタを提供することにある。
(Objective of the Invention) An object of the present invention is to eliminate the above-mentioned drawbacks and to provide a high-speed and highly sensitive phototransistor.

(発明の構成) 本発明によれば第1導電形の第1半導体と、その第1半
導体上にストライプ状に形成された第2導電形の第2半
導体層と、その第2半導体層上に形成された第1導電形
の第3半導体層と、前記第1半導体上に第21第3半導
体層を取り囲むようにして形成された第2導電形の第4
半導体層とを少なくとも含んで形成され、ベース層とな
るべき前記ストライブ状に残された第2半導体層の屈折
率が前記第1半導体及び第3F第4半導体層の屈折率の
いずれよシも大きいことを特徴とするフォトトランジス
タが得られる。
(Structure of the Invention) According to the present invention, a first semiconductor of a first conductivity type, a second semiconductor layer of a second conductivity type formed in a stripe shape on the first semiconductor, and a second semiconductor layer of a second conductivity type formed on the first semiconductor layer in a stripe shape. a third semiconductor layer of the first conductivity type formed, and a fourth semiconductor layer of the second conductivity type formed on the first semiconductor so as to surround the twenty-first third semiconductor layer.
The refractive index of the second semiconductor layer left in the stripe shape, which is formed to include at least a semiconductor layer and is to become a base layer, is higher than the refractive index of the first semiconductor and the third F fourth semiconductor layer. A phototransistor is obtained which is characterized by its large size.

(実施例) 次に図面を参照して本発明の詳細な説明する。(Example) Next, the present invention will be described in detail with reference to the drawings.

第1図は本発明に基づく一実施例の光入射方向と垂直な
断面図である。本実施例はn−InP(Sn;lXl0
”cm−3)から成る基板1s上に順次エピタキシャル
成長されたn −InP (アンドープ;〜1×10 
α 、厚さ2μm)から成るコレクタ層1、p −In
6.53 Gao、4+y As (Cd ; I X
 10”ca−3、厚さQ、2μm)から成るベース層
2、n −InP(Sn; I X 10” cm−3
厚さ1μm)から成るエミツタ層3と幅2μm1高さ1
.5μm のストライプ状メサエッチング加工を施して
後、エピタキシャル成長されたp −InP (Cd 
; 5 X 10’ティー3厚さ1.5μm)から成る
埋め込み層4を中心として構成されている。コレクタ電
極5及びエミッタ電極7はA、uGe合金、ベース電極
6はAuZn合金をそれぞれ真空蒸着した後、熱処理し
て形成されている。ウェハープロセスの後、ストライブ
状のベース層2が端面に現われるようにへき開して素子
形成を打力っだ。エミッタ接合面積は2μm×50μm
である。
FIG. 1 is a sectional view perpendicular to the direction of light incidence of an embodiment according to the present invention. In this example, n-InP (Sn; lXl0
n-InP (undoped; ~1×10
Collector layer 1 consisting of p-In
6.53 Gao, 4+y As (Cd; IX
10"ca-3, thickness Q, 2 μm), n-InP (Sn; I x 10" cm-3
An emitter layer 3 consisting of a thickness of 1 μm) and a width of 2 μm and a height of 1
.. After 5 μm striped mesa etching, epitaxially grown p-InP (Cd
; 5 x 10' tee 3 (thickness: 1.5 μm) centered around a buried layer 4. The collector electrode 5 and the emitter electrode 7 are formed by vacuum-depositing A and uGe alloys, and the base electrode 6 is formed by vacuum-depositing AuZn alloy and then heat-treating them. After the wafer process, the base layer 2 in the form of stripes was cleaved to appear on the end face to form elements. Emitter junction area is 2μm x 50μm
It is.

本実施例ではベース層2が高屈折率かつ光吸収性の光導
波構造を成しており、端面から入射した光は長さ50μ
mのベース層2を導波される間にほとんどすべて吸収さ
れ、光励起キャリヤをベース領域へ注入する。光吸収を
ベース層2のみで行なうため、コレクタ層1の空乏層厚
をそれほど厚くする必要はなく、このためトランジスタ
としての利得を高くとるために重要な薄いベース層厚と
低いペース層不純物濃度を可能にしている。また導波形
構造の採用によって接合面積を小さく抑えられるという
利点も得られている。本実施例では10Hz以−ヒの利
得帯域幅積が得られる。
In this example, the base layer 2 has a high refractive index and light-absorbing optical waveguide structure, and the light incident from the end face has a length of 50 μm.
Almost all of the light is absorbed while being guided through the base layer 2 of m, injecting photoexcited carriers into the base region. Since light absorption is carried out only in the base layer 2, there is no need to make the depletion layer thickness of the collector layer 1 very thick. Therefore, the thin base layer thickness and low impurity concentration of the base layer, which are important for achieving high gain as a transistor, can be reduced. It makes it possible. Furthermore, the use of a waveguide structure has the advantage that the bonding area can be kept small. In this embodiment, a gain-bandwidth product of 10 Hz or higher is obtained.

なお本実施例では1〜1.6μm領域で有効々In0.
53 Gao、47 Asをベース組成とし、だが、こ
れに限定する必要はなく、GaAs jAIGaAs系
の半導体を用いても良い。またトランジスタの形もnp
n形のみならずpnp形であっても良い。ベース電極6
は省略することも可能である。基板上に成長した第1層
をエミツタ層とすることもできる。又、電極と半導体層
(例えばエミツタ層)との接触を下げる目的で高濃度の
コンタク層(領域)を形成した構造、あるいはコレクタ
層の表面を平坦にした構造(この場合はエツチングをコ
レクタ層表面で止めてコレクタ層にメサを作らないよう
にする、又はコレクタ層表面に第4半導体層を形成後、
第4半導体層に溝を形成し、この溝の中にエミツタ層と
コレクタ層を形成すればよい)でも同様の効果ば得られ
る。
In this example, In0.
The base composition is 53 Gao and 47 As, but there is no need to limit it to this, and a GaAs jAIGaAs semiconductor may be used. Also, the shape of the transistor is np
Not only n-type but also pnp-type may be used. Base electrode 6
can also be omitted. The first layer grown on the substrate can also be an emitter layer. In addition, there are also structures in which a highly concentrated contact layer (area) is formed to reduce the contact between the electrode and the semiconductor layer (for example, the emitter layer), or a structure in which the surface of the collector layer is flattened (in this case, etching is performed on the surface of the collector layer). to avoid forming a mesa in the collector layer, or after forming the fourth semiconductor layer on the surface of the collector layer,
The same effect can be obtained by forming a groove in the fourth semiconductor layer and forming an emitter layer and a collector layer in this groove.

(発明の効果) 最後に本発明の効果を要約すれば、高速性と高感度性の
両立が可能なフォ))ランジスタが得られることである
(Effects of the Invention) Finally, to summarize the effects of the present invention, it is possible to obtain a transistor that is capable of achieving both high speed and high sensitivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に基づく一実施例の断面図である。 図中1sは基板、1はコレクタ層、2はベース層、3は
エミツタ層、4は埋め込み層、5はコレクタ電極、6は
ベース電極、7はエミッタ電極である。 顎1図 1 ]1921 層 べ゛−ス漫 3 エミ・リタ層
FIG. 1 is a sectional view of an embodiment according to the present invention. In the figure, 1s is a substrate, 1 is a collector layer, 2 is a base layer, 3 is an emitter layer, 4 is a buried layer, 5 is a collector electrode, 6 is a base electrode, and 7 is an emitter electrode. Jaw 1 Figure 1] 1921 layer Base layer 3 Emily Rita layer

Claims (1)

【特許請求の範囲】[Claims]  第1導電形の第1半導体と、その第1半導体上にスト
ライプ状に形成された第2導電形の第2半導体層と、そ
の第2半導体層上に形成された第1導電形の第3半導体
層と、前記第1半導体上に前記第2、第3半導体層を取
り囲んで形成された第2導電形の第4半導体層とを少な
くとも含んで形成され、ベース層となるべき前記ストラ
イプ状に残された第2半導体層の屈折率が前記第1半導
体及び第3、第4半導体層の屈折率のいずれよりも大き
いことを特徴とするフォトトランジスタ。
A first semiconductor of a first conductivity type, a second semiconductor layer of a second conductivity type formed in a stripe shape on the first semiconductor, and a third semiconductor layer of the first conductivity type formed on the second semiconductor layer. a semiconductor layer, and a fourth semiconductor layer of a second conductivity type formed on the first semiconductor to surround the second and third semiconductor layers, and the stripe-like structure is formed to be a base layer. A phototransistor characterized in that the refractive index of the remaining second semiconductor layer is greater than the refractive index of any of the first semiconductor layer and the third and fourth semiconductor layers.
JP59200934A 1984-09-26 1984-09-26 Phototransistor Pending JPS6179268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59200934A JPS6179268A (en) 1984-09-26 1984-09-26 Phototransistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59200934A JPS6179268A (en) 1984-09-26 1984-09-26 Phototransistor

Publications (1)

Publication Number Publication Date
JPS6179268A true JPS6179268A (en) 1986-04-22

Family

ID=16432719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59200934A Pending JPS6179268A (en) 1984-09-26 1984-09-26 Phototransistor

Country Status (1)

Country Link
JP (1) JPS6179268A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011507257A (en) * 2007-12-11 2011-03-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Semiconductor laser with integrated phototransistor
CN112420869A (en) * 2020-09-30 2021-02-26 无锡中科德芯光电感知技术研究院有限公司 Mesa InGaAs focal plane detector with high In component and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648182A (en) * 1979-09-26 1981-05-01 Ricoh Co Ltd Photosensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648182A (en) * 1979-09-26 1981-05-01 Ricoh Co Ltd Photosensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011507257A (en) * 2007-12-11 2011-03-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Semiconductor laser with integrated phototransistor
US9735546B2 (en) 2007-12-11 2017-08-15 Koninklijke Philips N.V. Semiconductor laser with integrated phototransistor
US10164407B2 (en) 2007-12-11 2018-12-25 Koninklijke Philips N.V. Semiconductor laser with integrated phototransistor
CN112420869A (en) * 2020-09-30 2021-02-26 无锡中科德芯光电感知技术研究院有限公司 Mesa InGaAs focal plane detector with high In component and preparation method thereof
CN112420869B (en) * 2020-09-30 2022-05-10 无锡中科德芯感知科技有限公司 Mesa InGaAs focal plane detector with high In component and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH022691A (en) Semiconductor light receiving device
JP2002314118A (en) Photodetector
JPS6179268A (en) Phototransistor
JP3276836B2 (en) Semiconductor waveguide receiver
JPH0542837B2 (en)
JPS60123083A (en) Semiconductor device
JP3138199B2 (en) Semiconductor waveguide type light receiving element and method of manufacturing the same
JPH03270277A (en) Semiconductor photoreceptor element
JPH0316275A (en) Manufacture of semiconductor photodetector
JP2638445B2 (en) Semiconductor light receiving element
JP2711055B2 (en) Semiconductor photodetector and method of manufacturing the same
JP3055030B2 (en) Manufacturing method of avalanche photodiode
JPH01205478A (en) Photodetector
JPH11135823A (en) Manufacture of semiconductor photodetector
JP2991555B2 (en) Semiconductor light receiving element
JPS6346789A (en) Buried high resistance type semiconductor laser
JPS63124475A (en) Semiconductor photodetector
JPH02253666A (en) Semiconductor photodetector
JPS62269368A (en) Semiconductor photodetector device
JPH03239378A (en) Semiconductor photodetector
JPS6244710B2 (en)
JPS62186574A (en) Semiconductor light receiving device
JPH04164376A (en) Light emitting diode
JPH04297074A (en) Semiconductor photodetector
JPH04257284A (en) Buried hetero structured semiconductor laser