JPH0316275A - Manufacture of semiconductor photodetector - Google Patents

Manufacture of semiconductor photodetector

Info

Publication number
JPH0316275A
JPH0316275A JP1151869A JP15186989A JPH0316275A JP H0316275 A JPH0316275 A JP H0316275A JP 1151869 A JP1151869 A JP 1151869A JP 15186989 A JP15186989 A JP 15186989A JP H0316275 A JPH0316275 A JP H0316275A
Authority
JP
Japan
Prior art keywords
layer
insulating film
window
light
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1151869A
Other languages
Japanese (ja)
Inventor
Toshiharu Kawabata
川端 敏治
Toshio Matsuda
俊夫 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP1151869A priority Critical patent/JPH0316275A/en
Publication of JPH0316275A publication Critical patent/JPH0316275A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To reduce a dark current, to reduce a junction volume and to realize fast response by forming an insulating film on a third layer whose impurity diffusion velocity is slower than that of a second layer, by etching a window partially in the insulating film and by diffusing impurity using the insulating film as a mask. CONSTITUTION:An insulating film 6 is formed on a third layer 5 of a semiconductor wafer, whose impurity diffusion velocity is slower than that of a window layer 4. A window is etched away partially in the insulating film 6 and the third layer 5, impurity is diffused using the insulating film 6 as a mask, and the insulating film 6 and the third layer 5 are removed. Since diffusion velocity of impurity inside the third layer 5 is slow, diffusion of impurity does not extended transversely so much, and moreover, the third layer 5 is removed in the following process; it becomes thereby possible to shorten periphery of P-N junctions 10, 11, to reduce a junction area and to realize a semiconductor photosensitive element of rapid response at a low dark current. A good semiconductor photosensitive element which enable rapid response at a low dark current can be acquired in this way.

Description

【発明の詳細な説明】 産業上の利用分封 本発明は光信号を電気信号に変換する半導体受光素子の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Industrial Application The present invention relates to a method of manufacturing a semiconductor light-receiving element that converts an optical signal into an electrical signal.

従来の技術 近年、半導体受光素子(以下単に受光素子と記す)は光
センサやファイバを用いた光通信の信号の検知、あるい
は半導体レーザの光出力のモニター等に利用されている
2. Description of the Related Art In recent years, semiconductor light-receiving elements (hereinafter simply referred to as light-receiving elements) have been used to detect signals in optical communications using optical sensors and fibers, or to monitor the optical output of semiconductor lasers.

以下に従来の受光素子について説明する。受光素子の材
料として、0.8〜0.9μmの短波長帯には主として
Siが用いられるが、1.0〜1.6μmの長波長帯に
はGeの他にInGaAsPやInGaAs等の化合物
半導体が用いられる。
A conventional light receiving element will be explained below. As the material for the photodetector, Si is mainly used in the short wavelength band of 0.8 to 0.9 μm, but in the long wavelength band of 1.0 to 1.6 μm, compound semiconductors such as InGaAsP and InGaAs are used in addition to Ge. is used.

受光素子の種類には、零バイアスで使用する太陽電池、
逆バイアスを印加して使用するフォトダイオード、なだ
れ増幅を利用して光電流を増幅するア、ベランシェフォ
トダイオード(以下APDと記す)、あるいはフォトト
ランジスタ等がある。
Types of light receiving elements include solar cells used at zero bias,
There are photodiodes that are used by applying a reverse bias, a vellanche photodiode (hereinafter referred to as APD) that amplifies photocurrent using avalanche amplification, and phototransistors.

これらの中で光通信用には高速応答が可能なP型一負性
半導体(i層あるいはn″′層) −n型構造のフォト
ダイオード(以下PIN−PDと記す〉やAPDが用い
られる。これらの構造は大別すると、メサエッチングに
より素子分離するメサ型と拡散を部分的に行い素子を分
離するブラナー型があるが、一般には暗電流が少なく製
造が容易なブラナー型が採用される。
Among these, photodiodes (hereinafter referred to as PIN-PD) and APDs having a P-type mononegative semiconductor (i layer or n'' layer)-n type structure and capable of high-speed response are used for optical communications. These structures can be roughly divided into two types: the mesa type, in which elements are separated by mesa etching, and the Branner type, in which elements are separated by partial diffusion. Generally, the Branner type is adopted because it has less dark current and is easier to manufacture.

第3図は従来のブラナー型1nGaAsPIN−PDの
製造方法を示すものである。n”−1nP基板31上に
n”−InPバッファ層32、rnGaAs受光層33
、さらに表面再結合を防止し短波長側の感度を向上させ
る目的でInPウィンドウ層34を順次威長させる。(
第3図(a))次に前記ウェハの表面にSi02等の絶
縁膜36を形威し、受光部の絶縁1136を部分的に除
去し窓37をあけた後絶縁膜36をマスクとして、亜鉛
(Zn)を拡散しP層38を形成する。
FIG. 3 shows a conventional method for manufacturing a Branner type 1nGaAs PIN-PD. n”-InP buffer layer 32 and rnGaAs light-receiving layer 33 on n”-1nP substrate 31
Furthermore, the InP window layer 34 is sequentially lengthened for the purpose of preventing surface recombination and improving sensitivity on the short wavelength side. (
FIG. 3(a)) Next, an insulating film 36 such as Si02 is formed on the surface of the wafer, and after partially removing the insulation 1136 of the light receiving part and opening a window 37, using the insulating film 36 as a mask, (Zn) is diffused to form a P layer 38.

(第3図(b))さらに絶縁膜36を除去して、表面パ
ッシベーシlンIl! 3 9およびP側電極40、n
個電極41を形威して、ブラナー型I n.GaAs 
P IN−PDを作成する。〈第3図(C)) 発明が解決しようとする課題 しかしながら上記従来の製造方法では、Znの拡散速度
がInP層34ではI nGaAsPIJ33に比べて
約1.7倍速く、しかもInP層34と絶縁膜36との
付着が不完全なため、Zn拡散はInP層34と絶縁膜
36の界面に沿って横方向に大きく広がる。
(FIG. 3(b)) The insulating film 36 is further removed to form a surface passivation layer Il! 3 9 and P side electrode 40, n
By using the individual electrode 41, a Branner type I n. GaAs
Create a PIN-PD. (FIG. 3(C)) Problems to be Solved by the Invention However, in the conventional manufacturing method described above, the diffusion rate of Zn in the InP layer 34 is about 1.7 times faster than that in the InGaAsPIJ 33, and moreover, Since the adhesion to the film 36 is incomplete, Zn diffusion widely spreads laterally along the interface between the InP layer 34 and the insulating film 36.

PIN−PDの暗電流は主としてPN接合が結晶の表面
に露出している部分の表面リーク電流であり、上記の従
来の製造方法て作戊されたPIN−PDは、Znが横方
向に大きく広がっているため、表面が不安定で、表面に
露出するPN接合の周囲が長くなり、暗電流か大きくな
る。さらにはPN接合の面積が大きくなり、接合容量が
大となる。その結果、CR時定数が大となり応答速度が
遅くなるという欠点を有していた。
The dark current of a PIN-PD is mainly a surface leakage current at the part where the PN junction is exposed on the surface of the crystal, and the PIN-PD manufactured using the conventional manufacturing method described above has Zn widely spread in the lateral direction. As a result, the surface is unstable, and the area around the PN junction exposed on the surface becomes longer, resulting in a larger dark current. Furthermore, the area of the PN junction becomes larger, and the junction capacitance becomes larger. As a result, the CR time constant becomes large and the response speed becomes slow.

本発明は上記従来の問題点を解決するもので、Zn拡散
を横方向に大きく広がるのを防止し、表面に露出するP
N接合の周囲の長さを短くし、暗電流を小さ《するとと
もに、接合容量を小さくし、応答速度を早くするプラナ
ー型受光素子の製造方法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and prevents Zn diffusion from widening in the lateral direction, and prevents P exposed on the surface.
It is an object of the present invention to provide a method for manufacturing a planar type light-receiving element that shortens the length around the N-junction, reduces dark current, reduces junction capacitance, and increases response speed.

課題を解決するための手段 この目的を達成するために本発明の受光素子の製造方法
は、受光層の上に受光層よりもバンドギャップの大きい
ウィンドウ層を成長し、さらに前記ウィンドウ層と格子
整合し、拡散に用いる不純物の拡散速度が前記ウィンド
ウ層より遅い第3の層を成長した半導体ウェハにおいて
、前記第3の層の上に絶縁膜を形成する工程と、前記絶
縁膜と前記第3の層を部分的に窓あけする工程と、前記
絶縁膜をマスクとして不純物を拡散する工程と、前記絶
縁膜および第3の層を除去する工程を少なくとも含む構
成を有している。
Means for Solving the Problems In order to achieve this object, the method for manufacturing a light receiving element of the present invention grows a window layer having a larger band gap than the light receiving layer on the light receiving layer, and further lattice matches the window layer. In the semiconductor wafer on which a third layer is grown, the diffusion rate of impurities used for diffusion is slower than that of the window layer, the step of forming an insulating film on the third layer, and the step of forming an insulating film and the third layer. The method has a configuration including at least a step of partially opening a layer, a step of diffusing impurities using the insulating film as a mask, and a step of removing the insulating film and the third layer.

作用 この構成によって前記第3の層中の不純物の拡散速度が
遅いために、不純物の拡散が横方向に大きくは広がらな
い。しかもその後工程で前記第3の層を除去するために
、結晶表面に露出するPN接合の周囲を短く、かつ接合
面積を小さくして低暗電流で高速応答の半導体受光素子
を達成することができる。
Effect: Due to this configuration, the impurity diffusion rate in the third layer is slow, so that the impurity diffusion does not spread widely in the lateral direction. Moreover, since the third layer is removed in a subsequent process, the periphery of the PN junction exposed on the crystal surface is shortened and the junction area is reduced, making it possible to achieve a semiconductor light-receiving device with low dark current and high-speed response. .

実施例 以下本発明の実施例について図面を参照しながら説明す
る。第1図は本発明の第1の実施例における半導体受光
素子の製造方法を示すものである。n型1nP基板1上
に有機金属気相成長方法(MOCVD法)を用いて、I
 n. Pバッファ層2、InGaAs受光層3、In
Pウィンドウ層4、さらにInGaAs層5を順次成長
した。これら或長層はすべてn型で、キャリア濃度はI
nPが7X10”am−’,InGaAsが5 X 1
 0 ”cm−3の低キャリア濃度となっている。(第
1図(a)〉次にlnGaAs層5上にSi02膜6を
形成し、受光部のSi○2膜6を部分的に除去し窓7を
あけた後、Si02膜6をマスクとして硫酸、過酸化水
素および水の混合液により選択化学エッチングし、窓7
の部分のInGaAs層5を除去した。さらにSiOg
l6をマスクとして、500℃の温度で30分間Znを
InGaAs受光層3の上部に達するまで拡散しP十層
8を形成した。
EXAMPLES Hereinafter, examples of the present invention will be described with reference to the drawings. FIG. 1 shows a method of manufacturing a semiconductor light-receiving element according to a first embodiment of the present invention. I was deposited on an n-type 1nP substrate 1 using a metal organic chemical vapor deposition method (MOCVD method).
n. P buffer layer 2, InGaAs light-receiving layer 3, In
A P window layer 4 and then an InGaAs layer 5 were grown in sequence. These long layers are all n-type and have a carrier concentration of I.
nP is 7X10"am-', InGaAs is 5X1
The carrier concentration is as low as 0"cm-3. (Fig. 1(a)) Next, a Si02 film 6 is formed on the lnGaAs layer 5, and the Si02 film 6 in the light receiving area is partially removed. After opening the window 7, selective chemical etching is performed using a mixture of sulfuric acid, hydrogen peroxide, and water using the Si02 film 6 as a mask.
The InGaAs layer 5 was removed at the portion shown in FIG. Furthermore, SiOg
Using L6 as a mask, Zn was diffused at a temperature of 500° C. for 30 minutes until it reached the upper part of the InGaAs light-receiving layer 3, thereby forming a P layer 8.

(第1図(b)〉 最後に、Si02膜6とI nGaAs層5を化学エッ
チングにより除去して、Si3N4およびSi02の表
面パッシベーション膜9、p側電極10およびn側電極
11を形成して、I nGaAsブラナー型PIN−P
Dを作成した。(第1図(C)〉以上のように作成され
たPIN−PDは、表面にZnの拡散速度の遅いInG
aAs層5が成長してあるために、Si02膜6との界
面に沿ってZnが横方向に大きくは広がらない。さらに
I nGaAs層5を除去するために、Znの横方向の
拡散は無視できる程度となる。しかしながらInPウィ
ンドウ層4に対してInGaAs層5の格子不整が±0
.15%より大きい場合は、界面に歪が発生し、界面に
歪が発生し、界面に沿ってZ nが横方向に大きく拡散
するため、InP層4とI n G a A. s層5
の格子不整は±0.15%以下である必要がある。そし
前述したように、PIN−PDの暗電流は主としてPN
接合が結晶表面に露出している部分で発生する表面生戒
・再結合のリーク電流であり、これはバンドギャップが
大きい程小さくなる。そのため、I n. G aAS
層5を除去してバンドギャップの大きいInPウィンド
ウ層4を表面にした方が暗電流が小さくなる。実際にI
nGaAs層5を残して作成されたPIN−PDは逆方
向電圧10Vにおいて200nAと非常に大きな暗電流
を示した。
(FIG. 1(b)) Finally, the Si02 film 6 and the InGaAs layer 5 are removed by chemical etching to form a surface passivation film 9 of Si3N4 and Si02, a p-side electrode 10, and an n-side electrode 11. I nGaAs Brunner type PIN-P
Created D. (Figure 1 (C)) The PIN-PD created as described above has InG with a slow diffusion rate of Zn on the surface.
Since the aAs layer 5 has grown, Zn does not spread laterally along the interface with the Si02 film 6. Further, since the InGaAs layer 5 is removed, the lateral diffusion of Zn becomes negligible. However, the lattice mismatch of the InGaAs layer 5 with respect to the InP window layer 4 is ±0.
.. If it is larger than 15%, strain will occur at the interface, and Zn will be largely diffused in the lateral direction along the interface. s layer 5
The lattice misalignment of must be less than ±0.15%. As mentioned above, the dark current of PIN-PD is mainly caused by PN
This is a leakage current due to surface recombination and recombination that occurs in the part where the junction is exposed to the crystal surface, and this becomes smaller as the band gap becomes larger. Therefore, I n. G aAS
The dark current will be smaller if the layer 5 is removed and the InP window layer 4 with a large band gap is exposed as the surface. Actually I
A PIN-PD made with the nGaAs layer 5 left in place exhibited a very large dark current of 200 nA at a reverse voltage of 10V.

このようにして作成された受光径80μmのPIN−P
Dは逆方向電圧10Vにおいて、暗電流は0.5nAと
大幅に減少し、接合容量も1.0pFと小さくなりIG
Hzの高速応答が可能となった。しかしながら第1の実
施例で作成されたPIN−PDは拡散の深さが浅いため
拡散層8の周辺部のPN接合の曲率が小さく、この部分
でエッジブレークダウンが発生し、逆方向のブレークダ
ウン電圧は20Vと低い値となる。
PIN-P with a light-receiving diameter of 80 μm created in this way
When the reverse voltage of D is 10V, the dark current is significantly reduced to 0.5nA, and the junction capacitance is also small to 1.0pF.
High-speed response of Hz is now possible. However, since the PIN-PD created in the first embodiment has a shallow diffusion depth, the curvature of the PN junction in the peripheral area of the diffusion layer 8 is small, and edge breakdown occurs in this area, causing breakdown in the opposite direction. The voltage is a low value of 20V.

一般にInGaAsのPIN−PDは逆方向電圧がIO
V程度で使用されることが多く、本発明の第1の実施例
で示したPiN−PDは実使用に関して問題はない。し
かし、さらに逆方向の印加電圧を高くして空乏層を広げ
て使用する場合や、APDのようにアバランシェブレー
クダウンを利用して光電流を増幅する場合には、エッジ
ブレークダウンを防止して逆方向のブレークダウン電圧
を増加させる必要がある。
In general, InGaAs PIN-PD has a reverse voltage of IO
It is often used at about V, and the PiN-PD shown in the first embodiment of the present invention has no problems in actual use. However, if the applied voltage in the reverse direction is further increased to widen the depletion layer, or if the photocurrent is amplified by utilizing avalanche breakdown as in APD, edge breakdown can be prevented and the depletion layer expanded. It is necessary to increase the breakdown voltage in the direction.

以下本発明の第2の実施例について図面を参照しながら
説明する。第2図は第2の実施例のI nGaAsブラ
ナー型PIN−PDの製造方法を示す図である。まず第
1の実施例で示したのと同じ半導体ウェハを或長じた。
A second embodiment of the present invention will be described below with reference to the drawings. FIG. 2 is a diagram showing a method for manufacturing an InGaAs Brunner type PIN-PD according to a second embodiment. First, the same semiconductor wafer as shown in the first embodiment was lengthened.

(第2図(a)〉次にI n G a A s層5上に
SiOJi6を形威し、受光部の周辺部のSi02膜6
を部分的に除去した後、Si02膜をマスクとして硫酸
,過酸化水素および水の混合液により選択化学エッチン
グし、受光部の周囲のI nGaAs層5を部分的に除
去し、さらに受光部のS i 02H 6を選択的に除
去して、拡散の窓7を形成した。モしてSi(hll!
16をマスクとして500℃の温度で50分間Znを拡
散しP十層8を形威した。受光部の周辺部はI n. 
G a A s JtEI5が除去されているため拡散
が深く、受光部の中央部は拡散が浅くなっている。(第
2図(b)) 最後に、SiChll!I6とl n G a A s
層を化学エッチングにより除去した後、Si3N4およ
びSiO2の表面パッシベーション膜9、p flll
l電極10、およびrl側電極11を形成してInGa
ASプラナー型PIN−PDを作成した。(第2図(C
)) 以上のように作成されたPIN−PDは受光部の周辺部
に拡散の深い部分12が形成されているために、この部
分のPN接合の的率が大きくなり、エッジブレークダウ
ンを防止するガードリングとなる。従来ガードリングは
2回の拡散工程により行われていたが、本発明の方法で
は1回の拡散により形戒できる。
(Fig. 2(a)) Next, SiOJi6 is formed on the InGaAs layer 5, and the SiO2 film 6 in the peripheral area of the light receiving part is
After partially removing the InGaAs layer 5 around the light receiving part, selective chemical etching is performed using a mixture of sulfuric acid, hydrogen peroxide and water using the Si02 film as a mask, and the InGaAs layer 5 around the light receiving part is partially removed. i 02H 6 was selectively removed to form a diffusion window 7. Moshite Si (hlll!
Using No. 16 as a mask, Zn was diffused at a temperature of 500° C. for 50 minutes to form a P layer 8. The peripheral part of the light receiving part is I n.
Since G a As JtEI5 is removed, the diffusion is deep, and the central part of the light receiving part is shallowly diffused. (Figure 2(b)) Finally, SiChll! I6 and l n G a A s
After removing the layer by chemical etching, a surface passivation film 9 of Si3N4 and SiO2, p flll
The l electrode 10 and the rl side electrode 11 are formed to form InGa.
An AS planar type PIN-PD was created. (Figure 2 (C
)) Since the PIN-PD created as described above has a deep diffusion part 12 formed around the light receiving part, the accuracy of the PN junction in this part is increased and edge breakdown is prevented. It becomes a guard ring. Conventionally, guard ringing was performed by two diffusion steps, but with the method of the present invention, guard ringing can be performed by one diffusion step.

このようにして作成された受光径80μmのPIN−P
Dは暗電流、接合容量ともに第1の実施例で作成された
PIN−PDと同様の値を示し、逆方向のブレークダウ
ン電圧は40Vと大幅に増加した。
PIN-P with a light-receiving diameter of 80 μm created in this way
Both the dark current and the junction capacitance of D were similar to those of the PIN-PD prepared in the first example, and the breakdown voltage in the reverse direction was significantly increased to 40V.

なお、第1と第2の実施例において受光層3はInGa
Asの単層としたが、I nGaAsとInPの薄膜を
交互に多数積層した超格子受光層でもよい。また実施例
のI nGaAsilはI nGaAs P層としても
よい。さらにI nGaAs(P)/I nP系以外の
GaAi! As/GaAs系等の他の化合物半導体に
おいてもよいことは言うまでもない。
Note that in the first and second embodiments, the light-receiving layer 3 is made of InGa.
Although a single layer of As is used, a superlattice light-receiving layer in which a large number of thin films of InGaAs and InP are alternately laminated may also be used. Furthermore, the InGaAsil in the embodiment may be replaced by an InGaAs P layer. Furthermore, GaAi other than InGaAs(P)/InP system! It goes without saying that other compound semiconductors such as As/GaAs may also be used.

発明の効果 以上のように本発明は受光層の上に受光層よりもバンド
ギャップの大きいウィンドウ層を成長し、さらに前記ウ
ィンドウ層と格子整合し、拡散に用いる不純物の拡散速
度が前記ウィンドウ層より遅い第3の層を成長じた半導
体ウェハにおいて、前記第3の層上に絶縁膜を形成する
工程と、前記絶縁膜と前記第3の層を部分的に窓あけす
る工程と、前記絶縁膜をマスクとして不純物を拡散する
工程と、前記絶縁膜および第3の層を除去する工程を少
なくとも含む製造方法により、低暗電流で高速応答が可
能な優れた半導体受光素子を実現することができるもの
である。
Effects of the Invention As described above, the present invention grows a window layer having a larger band gap than the light-receiving layer on the light-receiving layer, and is further lattice matched with the window layer, so that the diffusion rate of impurities used for diffusion is higher than that of the window layer. In a semiconductor wafer on which a slow third layer is grown, the steps of forming an insulating film on the third layer, partially opening a window between the insulating film and the third layer, and the insulating film are provided. An excellent semiconductor light-receiving device capable of high-speed response with low dark current can be realized by a manufacturing method including at least a step of diffusing impurities using a mask as a mask, and a step of removing the insulating film and the third layer. It is.

【図面の簡単な説明】 第1図は本発明の第1の実施例におけるInGaAsブ
ラナー型PIN−PDの製造方法を示す工程断面図、第
2図は本発明の第2の実施例におけるInGaAsブラ
ナー型PIN−PDの製造方法を示す工程断面図、第3
図は従来のInGaAsブラナー型PIN−PDの製造
方法を示す工程断面図である。 1・・・・・・n型1nP基板、2・・・・・・InP
バッファ層、3・・・・・・InGaAs受光層、4・
・・・・・InPウィンドウ層、5・・・・・・I n
. G a A s層、6・・・・・・絶縁層、7・・
・・・・窓、8・・・・・・P”−Zn拡散層、9・・
・・・・表面バッシベーション膜、10・・・・・・p
側電極、11・・・・・・n側電極、12・・・・・・
ガードリング。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a process cross-sectional view showing a method for manufacturing an InGaAs Brunner-type PIN-PD in a first embodiment of the present invention, and FIG. Process cross-sectional diagram showing the manufacturing method of type PIN-PD, 3rd
The figure is a process sectional view showing a conventional method for manufacturing an InGaAs Brunner type PIN-PD. 1...N-type 1nP substrate, 2...InP
Buffer layer, 3...InGaAs light-receiving layer, 4.
...InP window layer, 5...I n
.. Ga As layer, 6... Insulating layer, 7...
...Window, 8...P"-Zn diffusion layer, 9...
...Surface passivation film, 10...p
Side electrode, 11...n side electrode, 12...
Guard ring.

Claims (1)

【特許請求の範囲】[Claims]  所定波長領域の光を吸収する単層あるいは多層からな
る受光層の上に、前記受光層の平均の値より広いバンド
ギャップを有する第2の層を成長し、さらに前記第2の
層の上に、第2の層と格子不整が±0.15%以内に格
子整合し、拡散に用いる不純物の拡散速度が第2の層よ
り遅い第3の層を少なくとも成長した半導体ウェハを用
い、前記第3の層の上に絶縁膜を形成する工程と、前記
絶縁膜を部分的に窓あけする工程と、前記窓の部分の前
記第3の層を一部あるいは全部除去する工程と、前記絶
縁膜をマスクとして不純物を拡散する工程と、前記絶縁
膜および第3の層を除去する工程を少なくとも含む半導
体受光素子の製造方法。
A second layer having a bandgap wider than the average value of the light-receiving layer is grown on a light-receiving layer consisting of a single layer or a multilayer that absorbs light in a predetermined wavelength range, and further on the second layer. , using a semiconductor wafer on which at least a third layer is grown, the third layer having a lattice mismatch with the second layer within ±0.15% and having a diffusion rate of impurities used for diffusion slower than the second layer; a step of forming an insulating film on the layer of the insulating film, a step of partially opening a window in the insulating film, a step of removing part or all of the third layer in the window portion, and a step of removing the third layer on the insulating film. A method for manufacturing a semiconductor light-receiving element, which includes at least the steps of diffusing impurities as a mask and removing the insulating film and a third layer.
JP1151869A 1989-06-14 1989-06-14 Manufacture of semiconductor photodetector Pending JPH0316275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1151869A JPH0316275A (en) 1989-06-14 1989-06-14 Manufacture of semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1151869A JPH0316275A (en) 1989-06-14 1989-06-14 Manufacture of semiconductor photodetector

Publications (1)

Publication Number Publication Date
JPH0316275A true JPH0316275A (en) 1991-01-24

Family

ID=15527997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1151869A Pending JPH0316275A (en) 1989-06-14 1989-06-14 Manufacture of semiconductor photodetector

Country Status (1)

Country Link
JP (1) JPH0316275A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045816A (en) * 2001-07-26 2003-02-14 Nec Corp Method of manufacturing semiconductor device
JP2008251729A (en) * 2007-03-29 2008-10-16 Eudyna Devices Inc Manufacturing method of light-receiving element
JP2010056147A (en) * 2008-08-26 2010-03-11 Hamamatsu Photonics Kk Semiconductor light receiving element
WO2013054862A1 (en) 2011-10-12 2013-04-18 塩野義製薬株式会社 Polycyclic pyridone derivative having integrase-inhibiting activity

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045816A (en) * 2001-07-26 2003-02-14 Nec Corp Method of manufacturing semiconductor device
JP4518233B2 (en) * 2001-07-26 2010-08-04 日本電気株式会社 Manufacturing method of semiconductor device
JP2008251729A (en) * 2007-03-29 2008-10-16 Eudyna Devices Inc Manufacturing method of light-receiving element
JP4520480B2 (en) * 2007-03-29 2010-08-04 住友電工デバイス・イノベーション株式会社 Manufacturing method of light receiving element
JP2010056147A (en) * 2008-08-26 2010-03-11 Hamamatsu Photonics Kk Semiconductor light receiving element
WO2013054862A1 (en) 2011-10-12 2013-04-18 塩野義製薬株式会社 Polycyclic pyridone derivative having integrase-inhibiting activity

Similar Documents

Publication Publication Date Title
EP0156156A1 (en) Avalanche photodiodes
JPH02159775A (en) Semiconductor photodetector and manufacture thereof
JPS6016474A (en) Hetero multiple junction type photo detector
JP2002314118A (en) Photodetector
KR910013515A (en) Photoelectric integrated circuit for receiving and manufacturing method thereof
JPS6058686A (en) Photodetector and method of producing same
KR100303471B1 (en) Avalanche photodetector device and method for manufacturing the same
US6730979B2 (en) Recessed p-type region cap layer avalanche photodiode
US5391910A (en) Light receiving device
JP2000323746A (en) Avalanche photodiode and its manufacture
JPH0316275A (en) Manufacture of semiconductor photodetector
JPH0582829A (en) Semiconductor light receiving element
JPS6244709B2 (en)
US20050161695A1 (en) Systems and methods having a metal-semiconductor-metal (MSM) photodetector with buried oxide layer
US4396443A (en) Reduction of leakage current in InGaAs diodes
JPS61229371A (en) Photo diode
JPH02248081A (en) Avalanche photodiode and manufacture thereof
CA1298640C (en) Avalanche photodiodes and methods for their manufacture
KR970009732B1 (en) Fabrication method of planar pin photodiode
JPS61101084A (en) Manufacture of compound semiconductor light-receiving element
JPS59149070A (en) Photodetector
JPS6180875A (en) Semiconductor device
GB2240874A (en) Photodiode
JPS62186574A (en) Semiconductor light receiving device
JPH0382085A (en) Semiconductor photodetector and manufacture thereof