JP3138199B2 - Semiconductor waveguide type light receiving element and method of manufacturing the same - Google Patents

Semiconductor waveguide type light receiving element and method of manufacturing the same

Info

Publication number
JP3138199B2
JP3138199B2 JP07305629A JP30562995A JP3138199B2 JP 3138199 B2 JP3138199 B2 JP 3138199B2 JP 07305629 A JP07305629 A JP 07305629A JP 30562995 A JP30562995 A JP 30562995A JP 3138199 B2 JP3138199 B2 JP 3138199B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
type
layer
conductivity type
waveguide structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07305629A
Other languages
Japanese (ja)
Other versions
JPH09148616A (en
Inventor
和利 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP07305629A priority Critical patent/JP3138199B2/en
Publication of JPH09148616A publication Critical patent/JPH09148616A/en
Application granted granted Critical
Publication of JP3138199B2 publication Critical patent/JP3138199B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光入射端面である
劈開端面におけるpn接合を、光吸収層よりもバンドギ
ャップが大きい半導体層内に形成し、暗電流を低減させ
た半導体導波路型受光素子およびその製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor waveguide type light receiving device in which a pn junction at a cleavage end surface, which is a light incident end surface, is formed in a semiconductor layer having a larger band gap than a light absorption layer to reduce dark current. The present invention relates to an element and a method for manufacturing the same.

【0002】[0002]

【従来の技術】半導体導波路型受光素子の従来例を図4
に示す。図4において301は半絶縁性InP基板、3
02は厚さ0.6μmでバンドギャップ波長1.3μm
のn型InGaAsP層、303は厚さ0.4μmのn
型低キャリア濃度InGaAs光吸収層、304は厚さ
0.2μmのp型InGaAs光吸収層、305は厚さ
0.6μmでバンドギャップ波長1.3μmのp型In
GaAsP層、306は厚さ0.5μmのp型InP
層、307は厚さ0.2μmのp型InGaAsオーミ
ックコンタクト層、308はn型オーミック電極、30
9はp型オーミック電極、310は劈開面に形成された
酸化けい素からなる無反射膜である。上記n型InGa
AsP層302、n型InGaAs光吸収層303、p
型InGaAs光吸収層304、p型InGaAsP層
305、p型InP層306、p型InGaAsオーミ
ックコンタクト層307は長さ12μm、幅4μmのハ
イメサ形状に加工されている。この半導体導波路型受光
素子においては、p型半導体層とn型半導体層との境
界、すなわちpn接合は303と304からなるInG
aAs光吸収層内に形成されている(K. Kato他「高
効率50GHz InGaAsマルチモード導波路型受
光素子」、アイ・イー・イー・イー・ラウナル・オブ・
クワンタム・エレクトロニクス(IEEE Lournal of
Quantum Electronics)、第28巻、第12号、27
28頁、1992年))。
2. Description of the Related Art A conventional example of a semiconductor waveguide type light receiving element is shown in FIG.
Shown in In FIG. 4, reference numeral 301 denotes a semi-insulating InP substrate;
02 has a thickness of 0.6 μm and a band gap wavelength of 1.3 μm.
N-type InGaAsP layer 303 has a thickness of 0.4 μm
Type low carrier concentration InGaAs light absorbing layer, 304 is a 0.2 μm thick p-type InGaAs light absorbing layer, 305 is 0.6 μm thick p-type In with a band gap wavelength of 1.3 μm.
GaAsP layer, 306 is a 0.5 μm thick p-type InP
Layer, 307 is a 0.2 μm thick p-type InGaAs ohmic contact layer, 308 is an n-type ohmic electrode, 30
9 is a p-type ohmic electrode, and 310 is a non-reflective film made of silicon oxide formed on the cleavage plane. The above n-type InGa
AsP layer 302, n-type InGaAs light absorbing layer 303, p
The type InGaAs light absorbing layer 304, the p-type InGaAsP layer 305, the p-type InP layer 306, and the p-type InGaAs ohmic contact layer 307 are processed into a high-mesa shape having a length of 12 μm and a width of 4 μm. In this semiconductor waveguide type light receiving element, the boundary between the p-type semiconductor layer and the n-type semiconductor layer, that is, the pn junction is made of InG
(High-efficiency 50 GHz InGaAs multi-mode waveguide type light receiving element) formed in an aAs light absorption layer, IEE Raunal of
Quantum Electronics (IEEE Journal of
Quantum Electronics), Vol. 28, No. 12, 27
28, 1992)).

【0003】上記受光素子の動作原理はつぎのとおりで
ある。すなわち、波長1.55μmの光を無反射膜31
0を通して劈開端面より入射し、301〜306で構成
される光導波路内を導波させる。その間に光はn型In
GaAs光吸収層303とp型InGaAs光吸収層3
04で吸収され、電子とホールに変換されるいわゆる光
電変換が行われる。光電変換で生じた電子およびホール
はpn接合に印加された逆バイアス電圧によって、それ
ぞれn型およびp型半導体層側に走行し、信号電流とし
て素子外部に取り出される。
The principle of operation of the above-mentioned light receiving element is as follows. That is, light having a wavelength of 1.55 μm is applied to the non-reflection film 31.
The light enters from the cleavage end face through 0 and is guided in the optical waveguide constituted by 301 to 306. Meanwhile, the light is n-type In
GaAs light absorbing layer 303 and p-type InGaAs light absorbing layer 3
So-called photoelectric conversion is performed in which the light is absorbed at 04 and converted into electrons and holes. The electrons and holes generated by the photoelectric conversion travel to the n-type and p-type semiconductor layers, respectively, by the reverse bias voltage applied to the pn junction, and are taken out of the element as a signal current.

【0004】[0004]

【発明が解決しようとする課題】ところで、半導体受光
素子を低雑音で動作させるためには、信号電流以外の電
流成分、すなわち暗電流を低減しなければならない。一
般にpn接合部に無反射膜などの誘電体が堆積すると暗
電流が増加し、その増加量はpn接合が形成されている
半導体層のバンドギャップが小さいほど大きくなる。実
際この半導体受光素子に無反射膜として酸化けい素を用
いた場合に暗電流は100nAとなり、雑音抑制のため
の許容値である30nAを大きく上回った。したがっ
て、従来の光吸収層内にpn接合が形成された半導体受
光素子では、暗電流を十分に低減することができず、低
雑音動作を実現することは不可能であった。
In order to operate a semiconductor light receiving element with low noise, a current component other than a signal current, that is, a dark current must be reduced. Generally, when a dielectric such as an anti-reflection film is deposited on the pn junction, the dark current increases, and the increase increases as the band gap of the semiconductor layer on which the pn junction is formed becomes smaller. In fact, when silicon oxide was used as the non-reflective film in this semiconductor light receiving element, the dark current was 100 nA, which was much larger than the allowable value of 30 nA for suppressing noise. Therefore, in a conventional semiconductor light receiving element in which a pn junction is formed in a light absorbing layer, dark current cannot be reduced sufficiently, and low noise operation cannot be realized.

【0005】本発明は、光入射端面である劈開端面に無
反射膜を形成すると暗電流が増加するという上記従来技
術の問題点を解消し、低暗電流の半導体受光素子を得る
ことを目的とする。
An object of the present invention is to solve the above-mentioned problem of the prior art that a dark current increases when a non-reflection film is formed on a cleavage end face, which is a light incident end face, and to obtain a semiconductor light receiving element having a low dark current. I do.

【0006】[0006]

【課題を解決するための手段】上記目的は、第1半導体
層と、該第1半導体層よりエネルギーギャップが狭く屈
折率が大きい第2半導体層と、該第2半導体層よりエネ
ルギーギャップが広く屈折率が小さい第3半導体層と
が、順次積層されて導波路構造をなし、上記導波路構造
が少なくとも1つの光入力端面と、該光入力端面に続き
上記第1半導体層および第2半導体層ならびに第2半導
体層に隣接し上記第3半導体層の一部を構成する半導体
層が第1の導電型を有し、上記半導体層に属さない上記
第3半導体層が第2の導電型を有する第1の導波路構造
と、該第1の導波路構造に続き、第1半導体層および上
記第1半導体層に隣接し上記第2半導体層の一部を構成
する半導体層が第1の導電型を有し、上記半導体層が属
さない上記第2半導体層を構成する半導体層ならびに上
記第3半導体層が、第2の導電型を有する第2の導波路
構造とを備えることにより達成される。
SUMMARY OF THE INVENTION The above object is achieved by a first semiconductor layer, the second semiconductor layer is larger energy gap narrower refractive index than the first semiconductor layer, the energy gap than the second semiconductor layer wider refractive A third semiconductor layer having a small ratio is sequentially laminated to form a waveguide structure, and the waveguide structure has at least one light input end face, the first semiconductor layer and the second semiconductor layer following the light input end face, and A semiconductor layer adjacent to the second semiconductor layer and forming a part of the third semiconductor layer has a first conductivity type, and the third semiconductor layer not belonging to the semiconductor layer has a second conductivity type. 1 and a semiconductor layer adjacent to the first semiconductor layer and forming part of the second semiconductor layer adjacent to the first semiconductor layer and having the first conductivity type, following the first waveguide structure. The second semiconductor to which the semiconductor layer does not belong The semiconductor layer and the third semiconductor layer constituting the layer is achieved by providing a second waveguide structure having a second conductivity type.

【0007】さらに上記目的は、第1半導体層と、該第
1半導体層よりエネルギーギャップが狭く屈折率が大き
い第2半導体層と、該第2半導体層よりエネルギーギャ
ップが広く屈折率が小さい第3半導体層とが、順次積層
されて導波路構造をなし、上記導波路構造が少なくとも
1つの光入力端面と、該光入力端面に続き上記第1半導
体層の一部を構成し上記第2半導体層に隣接しない半導
体層が第1の導電型を有し、上記半導体層に属さない上
記第1半導体層および上記第2半導体層ならびに上記第
3半導体層とが、第2の導電型を有する第1の導波路構
造と、該第1の導波路構造に続き、第1半導体層および
上記第1半導体層に隣接し上記第2半導体層の一部を構
成する半導体層が第1の導電型を有し、上記半導体層が
属さない上記第2半導体層を構成する半導体層および第
3半導体層が、第2の導電型を有する第2の導波路構造
とを備えることによって達成される。
It is another object of the present invention to provide a first semiconductor layer, a second semiconductor layer having a smaller energy gap and a larger refractive index than the first semiconductor layer, and a third semiconductor layer having a larger energy gap and a smaller refractive index than the second semiconductor layer. Semiconductor layers are sequentially stacked to form a waveguide structure, wherein the waveguide structure constitutes at least one light input end face and a part of the first semiconductor layer following the light input end face and the second semiconductor layer A semiconductor layer that is not adjacent to the first semiconductor layer has a first conductivity type, and the first semiconductor layer, the second semiconductor layer, and the third semiconductor layer that do not belong to the semiconductor layer have a second conductivity type. Following the first waveguide structure, the first semiconductor layer and the semiconductor layer adjacent to the first semiconductor layer and constituting a part of the second semiconductor layer have a first conductivity type. And the second layer does not belong to the semiconductor layer. The semiconductor layer and the third semiconductor layer constituting a conductor layer is achieved by providing a second waveguide structure having a second conductivity type.

【0008】さらにまた、上記目的は、少なくとも第1
半導体層と、該第1半導体層よりエネルギーギャップが
狭く屈折率が大きい第2半導体層と、該第2半導体層よ
りエネルギーギャップが広く屈折率が小さい第3の半導
体層とが、順次積層された導波路構造を半導体基板上に
形成する工程と、上記導波路構造が少なくとも1つの光
入力端面を有し、上記光入力端面に続き、第1半導体層
および第2半導体層、ならびに第2半導体層に隣接し上
記第3半導体層の一部を構成する半導体層が第1の導電
型を有し、上記半導体層に属さない第3半導体層が第2
の導電型を有する第1の導波路構造に続き、上記第1半
導体層および第1半導体層に隣接し上記第2半導体層の
一部を構成する半導体層が第1の導電型を有し、上記半
導体層が属さない上記第2半導体層を構成する半導体層
が第2の導電型を有する第2の導波路構造の表面を除去
する工程と、除去された第2の導波路構造に第2の導電
型を形成する不純物を拡散し、上記第1および第2の導
波路の導電型構造を形成する工程と、上記導電型構造が
形成された導波路構造を加工して受光素子にする工程と
を有することにより達成される。
[0008] Further, the above object has at least a first object.
A semiconductor layer, a second semiconductor layer having a smaller energy gap and a larger refractive index than the first semiconductor layer, and a third semiconductor layer having a larger energy gap and a smaller refractive index than the second semiconductor layer were sequentially stacked. Forming a waveguide structure on a semiconductor substrate, wherein the waveguide structure has at least one optical input end face, following the optical input end face, a first semiconductor layer, a second semiconductor layer, and a second semiconductor layer A third semiconductor layer adjacent to the first semiconductor layer and forming a part of the third semiconductor layer has a first conductivity type, and a third semiconductor layer not belonging to the semiconductor layer is a second semiconductor layer.
Following the first waveguide structure having the first conductivity type, the first semiconductor layer and the semiconductor layer adjacent to the first semiconductor layer and forming a part of the second semiconductor layer have the first conductivity type, Removing the surface of the second waveguide structure having the second conductivity type, wherein the semiconductor layer forming the second semiconductor layer to which the semiconductor layer does not belong; Diffusing impurities for forming the conductivity type of the first and second waveguides to form a conductivity type structure of the first and second waveguides, and processing the waveguide structure having the conductivity type structure formed into a light receiving element This is achieved by having

【0009】[0009]

【発明の実施の形態】本発明は上記のように、劈開端面
の無反射膜形成による暗電流の増加を抑制するために、
半導体受光素子の光入射端面において、光吸収層よりも
バンドギャップが大きい半導体層内にpn接合を形成す
るようにしている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, the present invention is intended to suppress an increase in dark current due to the formation of a non-reflective film on a cleavage end face.
A pn junction is formed in the semiconductor layer having a larger band gap than the light absorption layer on the light incident end face of the semiconductor light receiving element.

【0010】無反射膜を通して劈開端面から入射した光
は光導波路中の光吸収層で吸収され、電子とホールとに
光電変換されたのち、pn接合に印加された逆バイアス
電圧によりそれぞれn型およびp型の半導体層側に走行
し素子の外部に取り出されるが、上記光吸収層にpn接
合があると、このpn接合部に無反射膜の誘電体が堆積
して暗電流を増加させることになり、その増加量はpn
接合が形成されている半導体層のバンドギャップが小さ
いほど大きくなる。したがって、上記光吸収層よりもバ
ンドギャップが大きい半導体層に、pn接合を形成する
ようにすることによって、暗電流を低減した半導体受光
素子を得ることができる。
Light incident from the cleavage end face through the non-reflective film is absorbed by the light absorbing layer in the optical waveguide, photoelectrically converted into electrons and holes, and then n-type and n-type are applied by the reverse bias voltage applied to the pn junction. It travels to the p-type semiconductor layer side and is taken out of the device. If the light absorbing layer has a pn junction, a dielectric of an antireflection film is deposited on the pn junction to increase dark current. And the increase is pn
It becomes larger as the band gap of the semiconductor layer where the junction is formed is smaller. Therefore, by forming a pn junction in a semiconductor layer having a larger band gap than the light absorption layer, a semiconductor light receiving element with reduced dark current can be obtained.

【0011】[0011]

【実施例】つぎに本発明の実施例および参考例を図面と
ともに説明する。図1は本発明に関連する半導体導波路
型受光素子の参考例を示す図、図2および図3は本発明
の第実施例における製造工程を示す図である。
Next, embodiments of the present invention and reference examples will be described with reference to the drawings. 1 is a diagram showing a reference example of a semiconductor waveguide type light receiving element that are related to the present invention, FIGS. 2 and 3 are views showing manufacturing steps of the first embodiment of the present invention.

【0012】参考例 本発明に関連する参考例の構造を説明する図1におい
て、101は半絶縁性InP基板、102は第1半導体
層である厚さ0.6μmでバンドギャップ波長1.3μ
mのn型InGaAsP層、103は第2半導体層であ
る厚さ0.6μmのn型低キャリア濃度InGaAs光
吸収層、104は第3半導体層である厚さ0.2μmで
バンドギャップ波長1.3μmのn型低キャリア濃度I
nGaAsP層、105は第4半導体層である厚さ0.
4μmでバンドギャップ波長1.3μmのp型InGa
AsP層、106は厚さ0.5μmのp型InP層、1
07は厚さ0.2μmのp型InGaAsオーミックコ
ンタクト層、108はn型オーミック電極、109はp
型オーミック電極、110は劈開面に形成された酸化け
い素からなる無反射膜である。上記n型InGaAsP
層102からp型InGaAsオーミックコンタクト層
107に至る各層は、長さ12μm、幅4μmのハイメ
サ形状に加工されている。
Reference Example In FIG. 1 for explaining the structure of a reference example related to the present invention, 101 is a semi-insulating InP substrate, 102 is a first semiconductor layer having a thickness of 0.6 μm and a band gap wavelength of 1.3 μm.
m, an n-type InGaAsP layer; 103, a 0.6 μm-thick n-type low carrier concentration InGaAs light absorption layer as a second semiconductor layer; 104, a third semiconductor layer with a thickness of 0.2 μm and a bandgap wavelength of 1. 3 μm n-type low carrier concentration I
An nGaAsP layer 105 is a fourth semiconductor layer having a thickness of 0.1 mm.
P-type InGa with a band gap wavelength of 1.3 μm at 4 μm
An AsP layer 106 is a p-type InP layer having a thickness of 0.5 μm,
07 is a 0.2 μm thick p-type InGaAs ohmic contact layer, 108 is an n-type ohmic electrode, and 109 is a p-type ohmic electrode.
The type ohmic electrode 110 is a non-reflective film made of silicon oxide formed on the cleavage plane. The above n-type InGaAsP
Each layer from the layer 102 to the p-type InGaAs ohmic contact layer 107 is processed into a high mesa shape having a length of 12 μm and a width of 4 μm.

【0013】上記構成の半導体導波路型受光素子におい
ては、p型半導体層とn型半導体層との境界、すなわち
pn接合はn型低キャリア濃度InGaAsP層104
とp型InGaAsP層105からなるバンドギャップ
波長1.3μmのInGaAsP層内に形成されてい
る。実際、本発明を用いて製作した半導体受光素子にお
いて無反射膜として酸化けい素を用いた場合は、暗電流
が1nAとなり雑音を抑制するための許容値である30
nAを十分に満足することができた。
In the semiconductor waveguide type light receiving device having the above structure, the boundary between the p-type semiconductor layer and the n-type semiconductor layer, that is, the pn junction is formed at the n-type low carrier concentration InGaAsP layer 104.
And a p-type InGaAsP layer 105 having a bandgap wavelength of 1.3 μm. In fact, when silicon oxide is used as a non-reflective film in a semiconductor light receiving element manufactured using the present invention, the dark current becomes 1 nA, which is an allowable value for suppressing noise.
nA was fully satisfied.

【0014】本参考例においては、pn接合をバンドギ
ャップ波長1.3μmのInGaAsP層内に形成した
例を示したが、pn接合を上部のInP層内に形成して
も同様の効果が期待できる。また本参考例では、光入射
端面として劈開面を用いた例を示したが、光入射端面と
してエッチングで形成した面を用いても同様の効果を期
待することができる。
[0014] In this reference example, an example of forming a pn junction InGaAsP layer bandgap wavelength 1.3 .mu.m, the same effect can form a pn junction on top of the InP layer can be expected . In the present embodiment, although an example of using the cleavage plane as a light incident end face, it can be expected a similar effect by using a surface formed by etching as the light incident end face.

【0015】第実施例 本発明の第実施例を示す半導体導波路型受光素子の構
造と製造工程を示す図2および図3において、201は
半絶縁性InP基板、202は厚さ0.6μmでバンド
ギャップ波長1.3μmのn型InGaAsP層、20
3は厚さ0.6μmのn型低キャリア濃度InGaAs
光吸収層、204は厚さ0.6μmでバンドギャップ波
長1.3μmのn型低キャリア濃度InGaAsP層、
205は光入射端面付近での厚さが0.7μmで光入射
端面から離れた場所での厚さが0.5μmであるn型低
キャリア濃度InP層、206はp型拡散領域、208
はn型オーミック電極、209はp型オーミック電極、
210は劈開面に形成した酸化けい素からなる無反射膜
である。上記n型InGaAsP層202からn型低キ
ャリア濃度InP層に至る各積層は、長さ12μm、幅
4μmのハイメサ形状に加工されている。この半導体導
波路型受光素子においてはp型半導体層とn型半導体層
との境界、すなわちpn接合は、導波路内部では光吸収
層203内に形成されるが、光入射面ではバンドギャッ
プ波長1.3μmのInGaAsP層204内に形成さ
れている。
First Embodiment In FIGS. 2 and 3 showing a structure and a manufacturing process of a semiconductor waveguide type photodetector according to a first embodiment of the present invention, reference numeral 201 denotes a semi-insulating InP substrate, and 202 denotes a 0.1 mm thick substrate. An n-type InGaAsP layer having a band gap wavelength of 1.3 μm and a thickness of 6 μm;
3 is an n-type low carrier concentration InGaAs having a thickness of 0.6 μm.
A light absorption layer 204, an n-type low carrier concentration InGaAsP layer having a thickness of 0.6 μm and a band gap wavelength of 1.3 μm,
Reference numeral 205 denotes an n-type low carrier concentration InP layer having a thickness of 0.7 μm near the light incident end face and 0.5 μm away from the light incident end face, 206 denotes a p-type diffusion region, 208
Is an n-type ohmic electrode, 209 is a p-type ohmic electrode,
210 is a non-reflective film made of silicon oxide formed on the cleavage plane. Each lamination from the n-type InGaAsP layer 202 to the n-type low carrier concentration InP layer is processed into a high mesa shape having a length of 12 μm and a width of 4 μm. In this semiconductor waveguide type light receiving element, the boundary between the p-type semiconductor layer and the n-type semiconductor layer, that is, the pn junction is formed in the light absorption layer 203 inside the waveguide, but the band gap wavelength 1 on the light incident surface. It is formed in a 0.3 μm InGaAsP layer 204.

【0016】本実施例による半導体導波路型受光素子
は、つぎに示す工程により製造する。図2(a)に示
すように、半絶縁性InP基板201上に、n型InG
aAsP層202、n型低キャリア濃度InGaAs光
吸収層203、n型低キャリア濃度InGaAsP層2
04および0.7μmのn型低キャリア濃度InP層2
05を順次エピタキシャル成長し、図2(b)に示す
ように、上記n型低キャリア濃度InP層205の一部
を0.2μmエッチングし、光入射端面から離れた場所
の厚さが0.5μmになるようにする。つぎに図2
(c)に示すように、上記エピタキシャル層の表面から
Znを拡散し、表面から1.2μmの深さまでの領域を
p型の導電型にする。図3(a)に示すよに、上記エ
ピタキシャル層を長さ12μm、幅4μmのハイメサ形
状に加工し、さらに上記ハイメサ形状のエピタキシャル
層の一部分をエッチングしてn型InGaAsP層20
2を露出させ、そこにn型オーミック電極208を形成
し、またn型低キャリア濃度InP層205上の一部に
p型オーミック電極209を形成する。図3(b)に
示すように、エピタキシャル層を劈開して光入射端面を
形成し、該光入射端面に酸化けい素からなる無反射膜2
10を堆積する。
The semiconductor waveguide type light receiving device according to the present embodiment is manufactured by the following steps. As shown in FIG. 2A, an n-type InG
aAsP layer 202, n-type low carrier concentration InGaAs light absorbing layer 203, n-type low carrier concentration InGaAsP layer 2
04 and 0.7 μm n-type low carrier concentration InP layer 2
2 is epitaxially grown in order, and as shown in FIG. 2B, a part of the n-type low carrier concentration InP layer 205 is etched by 0.2 μm, and the thickness at a position away from the light incident end face is reduced to 0.5 μm. To be. Next, FIG.
As shown in (c), Zn is diffused from the surface of the epitaxial layer, and a region from the surface to a depth of 1.2 μm is made to be a p-type conductivity type. As shown in FIG. 3A, the epitaxial layer is processed into a high mesa shape having a length of 12 μm and a width of 4 μm, and a part of the high mesa shape epitaxial layer is etched to form an n-type InGaAsP layer 20.
2 is exposed, an n-type ohmic electrode 208 is formed thereon, and a p-type ohmic electrode 209 is formed on a part of the n-type low carrier concentration InP layer 205. As shown in FIG. 3B, the epitaxial layer is cleaved to form a light incident end face, and the anti-reflection film 2 made of silicon oxide is formed on the light incident end face.
10 is deposited.

【0017】上記製造工程のにおいて、n型低キャリ
ア濃度InP層205は、光入射端面付近での厚さが
0.7μmで、光入射端面から離れた場所での厚さが
0.5μmとなるので、工程において表面から1.2
μmの深さに形成されるpn接合は、光入射端面付近で
はn型低キャリア濃度InGaAsP層204内に位置
し、光入射端面から離れた場所ではn型低キャリア濃度
InGaAs光吸収層203内に位置している。その結
果、光入射端面においては、光吸収層203よりもバン
ドギャップが大きいInGaAsP層204内に形成さ
れたpn接合に無反射膜が堆積されることになるので暗
電流が減少し、実際に本発明を用いて製造した半導体受
光素子において、無反射膜として酸化けい素を用いた場
合暗電流は5nAとなり、雑音抑制のための許容値であ
る30nAを十分に満足した。
In the above manufacturing process, the n-type low carrier concentration InP layer 205 has a thickness of 0.7 μm near the light incident end face and a thickness of 0.5 μm at a location away from the light incident end face. Therefore, in the process, 1.2 from the surface
The pn junction formed at a depth of μm is located in the n-type low carrier concentration InGaAsP layer 204 near the light incident end face, and is located in the n-type low carrier concentration InGaAs light absorption layer 203 away from the light incident end face. positioned. As a result, at the light incident end face, a non-reflective film is deposited on the pn junction formed in the InGaAsP layer 204 having a larger band gap than the light absorbing layer 203, so that the dark current is reduced. In the semiconductor light-receiving element manufactured according to the present invention, when silicon oxide was used as the antireflection film, the dark current was 5 nA, which sufficiently satisfied the allowable value of 30 nA for suppressing noise.

【0018】本実施例においてはp型オーミック電極2
09をn型低キャリア濃度InP層205上に形成した
例を示したが、上記工程の後に上記InP層205を
除去し、InGaAsP層204上にp型オーミック電
極を形成しても同様の効果が期待できる。また、本実施
例では光入射端面として劈開面を用いた例を示したが、
光入射端面としてエッチングで形成した面を用いても同
様の効果が期待できる。
In this embodiment, the p-type ohmic electrode 2
Although an example in which the InP layer 09 is formed on the n-type low carrier concentration InP layer 205 is shown, the same effect can be obtained even if the InP layer 205 is removed after the above steps and a p-type ohmic electrode is formed on the InGaAsP layer 204. Can be expected. Further, in this embodiment, an example in which the cleavage plane is used as the light incident end face has been described.
The same effect can be expected even if a surface formed by etching is used as the light incident end surface.

【0019】[0019]

【発明の効果】上記のように本発明による半導体導波路
型受光素子は、半導体導波路型受光素子の光入射端面に
おいて、光吸収層よりもバンドギャップが大きい半導体
層内にpn接合を形成するため、光入射端面上への無反
射膜形成による暗電流の増加を抑制し、低雑音な半導体
導波路型受光素子を実現することができるという効果が
ある。
Semiconductor waveguide type light receiving element according to the present invention as described above according to the present invention is the light incident end face of the semi-conductor waveguide type light receiving element, the pn junction in band gap than the light absorbing layer is larger semiconductor layer formed Accordingly, an increase in dark current due to the formation of a non-reflective film on the light incident end face is suppressed, and an effect is obtained that a low-noise semiconductor waveguide type light receiving element can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に関連する半導体導波路型受光素子の
例を示す図である。
Participation of the semiconductor waveguide type light receiving element that are related to the present invention; FIG
It is a diagram showing a considered example.

【図2】本発明の第実施例を示す図で、(a)、
(b)、(c)はそれぞれの製造工程の一部を示す図で
ある。
FIG. 2 is a view showing a first embodiment of the present invention, wherein (a),
(B), (c) is a figure which shows a part of each manufacturing process.

【図3】本発明の第実施例を示す図で、(a)および
(b)はそれぞれの製造工程の一部を示す図である。
FIGS. 3A and 3B are views showing a first embodiment of the present invention, wherein FIGS. 3A and 3B show a part of each manufacturing process. FIGS.

【図4】従来の半導体導波路型受光素子の構造を示す図
である。
FIG. 4 is a view showing a structure of a conventional semiconductor waveguide type light receiving element.

【符号の説明】[Explanation of symbols]

102 第1半導体層(n型InGaAsP層) 103 第2半導体層(n型低キャリア濃度InGa
As光吸収層) 104 第3半導体層(n型低キャリア濃度InGa
AsP層) 105 第4半導体層(p型InGaAsP層)
102 first semiconductor layer (n-type InGaAsP layer) 103 second semiconductor layer (n-type low carrier concentration InGa
As light absorbing layer) 104 Third semiconductor layer (n-type low carrier concentration InGa)
(AsP layer) 105 Fourth semiconductor layer (p-type InGaAsP layer)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくとも、第1半導体層と、該第1半導
体層よりエネルギーギャップが狭く屈折率が大きい第2
半導体層と、該第2半導体層よりエネルギーギャップが
広く屈折率が小さい第3半導体層とが、順次積層されて
導波路構造をなし、上記導波路構造が少なくとも1つの
光入力端面と、該光入力端面に続き上記第1半導体層お
よび第2半導体層ならびに第2半導体層に隣接し上記第
3半導体層の一部を構成する半導体層が第1の導電型を
有し、上記半導体層に属さない上記第3半導体層が第2
の導電型を有する第1の導波路構造と、該第1の導波路
構造に続き、第1半導体層および上記第1半導体層に隣
接し上記第2半導体層の一部を構成する半導体層が第1
の導電型を有し、上記半導体層が属さない上記第2半導
体層を構成する半導体層ならびに上記第3半導体層が、
第2の導電型を有する第2の導波路構造とを備えた半導
体導波路型受光素子。
At least a first semiconductor layer and a second semiconductor layer having a smaller energy gap and a larger refractive index than the first semiconductor layer.
A semiconductor layer and a third semiconductor layer having a larger energy gap and a smaller refractive index than the second semiconductor layer are sequentially stacked to form a waveguide structure, wherein the waveguide structure has at least one light input end face, and Subsequent to the input end face, the first semiconductor layer, the second semiconductor layer, and a semiconductor layer adjacent to the second semiconductor layer and constituting a part of the third semiconductor layer have a first conductivity type and belong to the semiconductor layer. Not the third semiconductor layer is the second
A first waveguide structure having the following conductivity type, and a semiconductor layer adjacent to the first semiconductor layer and constituting a part of the second semiconductor layer, following the first waveguide structure. First
Semiconductor layer constituting the second semiconductor layer to which the semiconductor layer does not belong, and the third semiconductor layer,
A semiconductor waveguide type light receiving element comprising: a second waveguide structure having a second conductivity type.
【請求項2】少なくとも、第1半導体層と、該第1半導
体層よりエネルギーギャップが狭く屈折率が大きい第2
半導体層と、該第2半導体層よりエネルギーギャップが
広く屈折率が小さい第3半導体層とが、順次積層されて
導波路構造をなし、上記導波路構造が少なくとも1つの
光入力端面と、該光入力端面に続き上記第1半導体層の
一部を構成し上記第2半導体層に隣接しない半導体層が
第1の導電型を有し、上記半導体層に属さない上記第1
半導体層および上記第2半導体層ならびに上記第3半導
体層とが、第2の導電型を有する第1の導波路構造と、
該第1の導波路構造に続き、第1半導体層および上記第
1半導体層に隣接し上記第2半導体層の一部を構成する
半導体層が第1の導電型を有し、上記半導体層が属さな
い上記第2半導体層を構成する半導体層および第3半導
体層が、第2の導電型を有する第2の導波路構造を備え
た半導体導波路型受光素子。
2. At least a first semiconductor layer and a second semiconductor layer having a smaller energy gap and a larger refractive index than the first semiconductor layer.
A semiconductor layer and a third semiconductor layer having a larger energy gap and a smaller refractive index than the second semiconductor layer are sequentially stacked to form a waveguide structure, wherein the waveguide structure has at least one light input end face, and The semiconductor layer that forms part of the first semiconductor layer following the input end face and is not adjacent to the second semiconductor layer has a first conductivity type, and the first semiconductor layer does not belong to the semiconductor layer.
A semiconductor layer, the second semiconductor layer, and the third semiconductor layer, wherein a first waveguide structure having a second conductivity type;
Following the first waveguide structure, a first semiconductor layer and a semiconductor layer adjacent to the first semiconductor layer and constituting a part of the second semiconductor layer have a first conductivity type, and the semiconductor layer is A semiconductor waveguide type light receiving element in which the semiconductor layer and the third semiconductor layer that do not belong to the second semiconductor layer have a second waveguide structure having a second conductivity type.
【請求項3】少なくとも第1半導体層と、該第1半導体
層よりエネルギーギャップが狭く屈折率が大きい第2半
導体層と、該第2半導体層よりエネルギーギャップが広
く屈折率が小さい第3半導体層とが、順次積層された導
波路構造を半導体基板上に形成する工程と、上記導波路
構造が少なくとも1つの光入力端面を有し、上記光入力
端面に続き、第1半導体層および第2半導体層、ならび
に第2半導体層に隣接し上記第3半導体層の一部を構成
する半導体層が第1の導電型を有し、上記半導体層に属
さない第3半導体層が第2の導電型を有する第1の導波
路構造に続き、上記第1半導体層および第1半導体層に
隣接し上記第2半導体層の一部を構成する半導体層が第
1の導電型を有し、上記半導体層が属さない上記第2半
導体層を構成する半導体層が第2の導電型を有する第2
の導波路構造の表面を除去する工程と、除去された第2
の導波路構造に第2の導電型を形成する不純物を拡散
し、上記第1および第2の導波路の導電型構造を形成す
る工程と、上記導電型構造が形成された導波路構造を加
工して受光素子にする工程とを有する半導体導波路型受
光素子の製造方法。
3. A semiconductor layer having at least a first semiconductor layer, a second semiconductor layer having a narrower energy gap and a larger refractive index than the first semiconductor layer, and a third semiconductor layer having a wider energy gap and a smaller refractive index than the second semiconductor layer. Forming a sequentially laminated waveguide structure on a semiconductor substrate, wherein the waveguide structure has at least one light input end face, and a first semiconductor layer and a second semiconductor layer are provided following the light input end face. A semiconductor layer adjacent to the second semiconductor layer and constituting a part of the third semiconductor layer has a first conductivity type, and a third semiconductor layer not belonging to the semiconductor layer has a second conductivity type. Following the first waveguide structure, the first semiconductor layer and a semiconductor layer adjacent to the first semiconductor layer and constituting a part of the second semiconductor layer have a first conductivity type, and the semiconductor layer has a first conductivity type. Constituting the second semiconductor layer which does not belong The second conductor layer has a second conductivity type
Removing the surface of the waveguide structure of the second step;
Diffusing an impurity for forming the second conductivity type into the waveguide structure of (a), forming the conductivity type structures of the first and second waveguides, and processing the waveguide structure on which the conductivity type structure is formed. Producing a semiconductor waveguide type light receiving element.
JP07305629A 1995-11-24 1995-11-24 Semiconductor waveguide type light receiving element and method of manufacturing the same Expired - Lifetime JP3138199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07305629A JP3138199B2 (en) 1995-11-24 1995-11-24 Semiconductor waveguide type light receiving element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07305629A JP3138199B2 (en) 1995-11-24 1995-11-24 Semiconductor waveguide type light receiving element and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH09148616A JPH09148616A (en) 1997-06-06
JP3138199B2 true JP3138199B2 (en) 2001-02-26

Family

ID=17947437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07305629A Expired - Lifetime JP3138199B2 (en) 1995-11-24 1995-11-24 Semiconductor waveguide type light receiving element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3138199B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002091484A1 (en) * 2001-05-07 2002-11-14 Anritsu Corporation Semiconductor light receiving element transmitting incident light repeatedly in light absorbing layer and method for fabricating the same
JP2010239005A (en) * 2009-03-31 2010-10-21 Kinki Univ Method of manufacturing back-illuminated image sensor, back-illuminated image sensor manufactured by the manufacturing method, and image capturing apparatus with the same
JP2023178006A (en) * 2022-06-03 2023-12-14 浜松ホトニクス株式会社 Semiconductor light receiving element

Also Published As

Publication number Publication date
JPH09148616A (en) 1997-06-06

Similar Documents

Publication Publication Date Title
US5190883A (en) Method for making an integrated light guide detector structure made of a semiconductive material
JP2748914B2 (en) Semiconductor device for photodetection
JPH022691A (en) Semiconductor light receiving device
US5942771A (en) Semiconductor photodetector
JP2000323746A (en) Avalanche photodiode and its manufacture
JP3138199B2 (en) Semiconductor waveguide type light receiving element and method of manufacturing the same
JPH09283786A (en) Waveguide-type semiconductor light-receiving element and its manufacture method
JP3276836B2 (en) Semiconductor waveguide receiver
JP3111982B2 (en) Waveguide type semiconductor optical device
JPH0272679A (en) Semiconductor photodetector having optical waveguide
JP3224192B2 (en) Semiconductor waveguide receiver
JP3030394B2 (en) Semiconductor light receiving element
JP4284781B2 (en) MSM type photodiode
JP2742358B2 (en) Semiconductor photodetector and method of manufacturing the same
JP3739273B2 (en) Semiconductor photodetector
JP2962069B2 (en) Waveguide structure semiconductor photodetector
JP3247599B2 (en) Semiconductor light receiving element and method of manufacturing the same
JP4786440B2 (en) Surface incidence type light receiving element and light receiving module
JP2711052B2 (en) Semiconductor waveguide photodetector
JPH0722641A (en) Photodetector
JP2766761B2 (en) Semiconductor photodetector and method of manufacturing the same
JP3538061B2 (en) Semiconductor light receiving element and method of manufacturing the same
JP2005086028A (en) Semiconductor light receiver
JP2709008B2 (en) Method for manufacturing semiconductor photodetector
JP2685703B2 (en) Semiconductor photodetector and method of manufacturing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071208

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term