JPH03239378A - Semiconductor photodetector - Google Patents

Semiconductor photodetector

Info

Publication number
JPH03239378A
JPH03239378A JP2035195A JP3519590A JPH03239378A JP H03239378 A JPH03239378 A JP H03239378A JP 2035195 A JP2035195 A JP 2035195A JP 3519590 A JP3519590 A JP 3519590A JP H03239378 A JPH03239378 A JP H03239378A
Authority
JP
Japan
Prior art keywords
area
semiconductor layer
layer
ingaas
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2035195A
Other languages
Japanese (ja)
Inventor
Hisahiro Ishihara
久寛 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2035195A priority Critical patent/JPH03239378A/en
Publication of JPH03239378A publication Critical patent/JPH03239378A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a surface incidence type photodetector allowing easy assembly process and operation and providing excellent low capacity characteristic by providing one electrode on an area where the surface of a first semiconductor layer is exposed and providing the other electrode on a third semiconductor layer or on a other layer laid on the third semiconductor layer. CONSTITUTION:The crystal of p<+>-InGaAs 2 is grown on a semi-insulating InP substrate 1, then, the p<+>-InGaAs 2 is removed leaving only the prescribed area composed of a circular light receiving area, a short bonding area and a connecting part which connects both area by selective etching. Then, an n<->- InGaAs light absorbing layer 3 and an n-InP window layer 4 are continually grown on the prescribed area including the circular light receiving area, then, a (p) side electrode 5 is formed on the part of the p<+>-InGaAs 2 whose surface is exposed and an (n) side electrode 6 is formed on the part of the n-InP window layer 4, respectively. Since the (p) side electrode is formed on the semi-insulating InP substrate 1, the bonding pad area does not contribute to junction capacity. Thus, a surface incidence type photodetector allowing easy assembly process and operation is obtained with excellent low capacity characteristic.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光通信や光情報処理等に於て用いられる半導
体受光素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor light-receiving element used in optical communications, optical information processing, and the like.

(従来の技術) 近年化合物半導体受光素子は、光通信或いは光情報処理
用の高感度受光器として活発に研究開発並びに実用化が
進められている。特にpinフォトダイオード(以下p
in−PDと記す)は、アバランシェフォトダイオード
(APD)に比べて内部電流利得を持たない為、受信感
度の点では若干劣るものの、APDで見られる様なアバ
ランシェ立ち上がり時間に起因する利得帯域幅積(GB
積)による帯域の制限が無い。従って素子の帯域は、キ
ャリアの走行時間及びCR時定数で決まり、50GHz
を越す値が報告されており、高速光信号検出器としてp
in−PDが注目されている(エレクトロニクス・レタ
ーズ(Electron。
(Prior Art) In recent years, compound semiconductor photodetectors have been actively researched, developed, and put into practical use as high-sensitivity photodetectors for optical communication or optical information processing. In particular, the pin photodiode (hereinafter p
In-PD) has no internal current gain compared to an avalanche photodiode (APD), so it is slightly inferior in terms of receiving sensitivity, but it has a gain-bandwidth product due to the avalanche rise time seen in an APD. (GB
There is no bandwidth limit due to product). Therefore, the band of the device is determined by the carrier transit time and CR time constant, and is 50 GHz.
It has been reported that values exceeding p
in-PD is attracting attention (Electronics Letters (Electron.

Lett、) 22巻、p633〜635.1986年
参照)。また低バイアスで使用する為、信頼性に優れ、
集積化にも適している。
Lett, ) vol. 22, p. 633-635. 1986). In addition, since it is used with a low bias, it has excellent reliability.
It is also suitable for integration.

光通信用として注目を集めている光ファイバーの低損失
帯域にあたる1.0〜1.6pm帯域波長域では、半導
体受光素子の光吸収層材料としてInGaAsが広く用
いられている。このInGaAs系pin−PDの基本
構造の例を第3図(aXb)に示す。(a)はメサ型裏
面入射タイプ、(b)はプレーナ型表面入射タイプの例
である。(a)のメサ型の場合n +InP基板7上に
n−InGaAs3を結晶成長し、次にZnn等型を呈
させる不純物を熱拡散してInGaAs中にpn接合を
形成した後、メザエノチングにより受光部以外のIn、
GaAsを除去している。一方(b)のブレーナ型表面
入射タイプの場合、n −InGaAs3に加え表面再
結合損を抑える為のウィンドウ層としてn−InF3も
連続した後選択熱拡散によりInGaAs3中にpn接
合を設け、受光領域を形成している。
In the 1.0 to 1.6 pm wavelength band, which is the low loss band of optical fibers that are attracting attention for optical communications, InGaAs is widely used as a material for the light absorption layer of semiconductor light receiving elements. An example of the basic structure of this InGaAs-based pin-PD is shown in FIG. 3 (aXb). (a) is an example of a mesa type back-illuminated type, and (b) is an example of a planar type front-illuminated type. In the case of the mesa type shown in (a), crystals of n-InGaAs3 are grown on the n+InP substrate 7, and then an impurity that exhibits a Znn-like shape is thermally diffused to form a pn junction in the InGaAs. In other than
GaAs is removed. On the other hand, in the case of the Brehner type surface-incident type shown in (b), in addition to n-InGaAs3, n-InF3 is also successively used as a window layer to suppress surface recombination loss, and then a pn junction is formed in InGaAs3 by selective thermal diffusion, and a pn junction is formed in InGaAs3 in the light-receiving area. is formed.

(発明が解決しようとする課題) ところで上述の二側では、人躬゛光を素子表面から取り
入れる所謂表面入射タイプにする為には、第3図(b)
の様に受光部に隣接してポンディングパッド用のp+領
領域設ける必要があり、これは接合面積を大きくし容量
を増加させる為、CR制限による応答劣化を招き、また
雑音特性の点でも劣っていた。
(Problems to be Solved by the Invention) However, in the above two cases, in order to make the device a so-called surface incidence type in which the stray light is taken in from the surface of the element, the method shown in FIG. 3(b) is required.
It is necessary to provide a p+ region for the bonding pad adjacent to the light receiving part, which increases the junction area and increases the capacitance, which leads to response deterioration due to CR limitations and also causes poor noise characteristics. was.

一方、第3図(a)の様な裏面入射型素子の場合は受光
部p+領領域上にボンディングをすれば良い為余分な容
量は除去できるものの、素子の組み立て工程が非常に煩
雑となり取り扱いも面倒であった。
On the other hand, in the case of a back-illuminated element as shown in Figure 3(a), the excess capacitance can be removed by bonding onto the p+ region of the light receiving part, but the assembly process of the element is extremely complicated and handling is difficult. It was a hassle.

本発明の目的は、この様な従来の欠点を除去+。The purpose of the present invention is to eliminate such conventional drawbacks.

低容量(即ち高速・低雑音)特性を有し且つ表面入射タ
イプで取り扱いが簡単なpin−PDを提供する事にあ
る。
The object of the present invention is to provide a pin-PD that has low capacitance (that is, high speed and low noise) characteristics, is a front-illuminated type, and is easy to handle.

(課題を解決するための手段) 前述の問題点を解決する為に本発明が提供する半導体受
光素子は、半絶縁性半導体基板上の一部の領域に、第一
の導電型を呈するバンドギャップE1なる第一の半導体
層を有しており、該第一の半導体層の一部特定領域上に
第二の導電型を呈するバンドギャップE1なる第二の半
導体層及びバンドギャップE2(E2〉E1)なる第三
の半導体層がそれぞれ前記基板側より順次積層されてお
り、且つ前記第一の半導体層の表面の露出した領域上に
一方の電極を、第三の半導体層上、または間に他の層を
介してその上に他方の電極を備えることを特徴とする。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the semiconductor light receiving element provided by the present invention has a band gap exhibiting a first conductivity type in a partial region on a semi-insulating semiconductor substrate. It has a first semiconductor layer named E1, and a second semiconductor layer named bandgap E1 exhibiting a second conductivity type on a certain region of the first semiconductor layer, and a bandgap E2 (E2>E1). ) are stacked sequentially from the substrate side, and one electrode is provided on the exposed area of the surface of the first semiconductor layer, and another electrode is provided on the third semiconductor layer or between the third semiconductor layers. It is characterized in that the other electrode is provided thereon via a layer of.

(作用) 本発明は」一連の横取をとる事により従来技術の問題点
を解決した。即ち本発明によるpin−PDは表面入射
タイプであるので、組み立て工程及び取り扱いが容易に
できる。且つポンディングパッドは、受光領域に隣接し
た半絶縁性基板上に存在する為接合容量に寄与しない。
(Operation) The present invention solves the problems of the prior art by taking a series of preemptions. That is, since the pin-PD according to the present invention is a front-illuminated type, assembly and handling are easy. Moreover, since the bonding pad exists on the semi-insulating substrate adjacent to the light receiving area, it does not contribute to the junction capacitance.

従って受光領域以外に余分な接合容量が無く、低容量(
即ち高速・低雑音)特性を有する。
Therefore, there is no extra junction capacitance other than the light receiving area, and the capacitance is low (
In other words, it has characteristics of high speed and low noise.

(実施例) 以下本発明の実施例について、図面を参照して詳細に説
明する。
(Example) Examples of the present invention will be described in detail below with reference to the drawings.

第2図は本発明に依るpin−PDの製造方法の一例を
説明する為の、各工程に於ける素子断面構造の模式図第
2図(aXbXe)及び平面模式図第2図(dXeXf
)である。本実施例によればまず第2図(a)及び(d
)に示す様に、半絶縁性InP基板1上に気相成長法に
よりp+−InGaAs2(キャリア密度〜1×101
8cm−32層厚〜0.5pm)を結晶成長する。しか
る後に選択エツチングを施して、第2図(b)及び(e
)に示すよう直径50pmの円形の受光領域、矩形のボ
ンディング領域及び両者を結ぶ接続部からなる特定領域
のみを残してp +−InGaAs2を除去する。その
後気相成長法による選択成長で、円形の受光領域を含む
特定領域上にn−−InGaAsnGaAs光吸収層下
密度〜1×1015cm−3層厚〜0.5pm)、n−
InPウィンド層4(キャリア密度〜1×l016cm
−32層厚−0,’5pm)を連続成長する(第2図(
C)及び(0)。然る後、表面の露出したp +−In
GaAs2の一部にp側電極5、n−InPウィンド層
4上の一部にn側電極6を各々形成して第1図に示す構
造の素子を得る。
FIG. 2 is a schematic diagram (aXbXe) of the device cross-sectional structure in each step and a schematic plan view (dXeXf
). According to this embodiment, first, FIGS. 2(a) and (d)
), p+-InGaAs2 (carrier density ~1×101
8cm-32 layer thickness ~0.5pm) is grown. After that, selective etching is performed to obtain the results shown in FIGS. 2(b) and (e).
), the p + -InGaAs2 is removed leaving only a specific area consisting of a circular light-receiving area with a diameter of 50 pm, a rectangular bonding area, and a connecting portion connecting the two. Thereafter, by selective growth using a vapor phase epitaxy method, an n--InGaAsnGaAs light-absorbing layer (lower density ~1 x 1015 cm-3 layer thickness ~0.5 pm) and n-
InP wind layer 4 (carrier density ~1×l016 cm
-32 layers (thickness -0,'5 pm) are grown continuously (Fig. 2 (
C) and (0). After that, the exposed p + -In on the surface
A p-side electrode 5 is formed on a portion of the GaAs 2 and an n-side electrode 6 is formed on a portion of the n-InP window layer 4 to obtain an element having the structure shown in FIG.

本素子は表面入射タイプでありながら、p側電極が半絶
縁性InP基板1上に形成されているのでポンディング
パッド領域の面積が接合容量に寄与しない。また段差配
線やエアブリッジ形成などの微細加工工程を用いないの
で、プロセス時の歩留まり低下の懸念も無い。併せて半
絶縁性基板を用いている為、FET等の他素子との集積
化にも適している。
Although this device is a front-illuminated device, since the p-side electrode is formed on the semi-insulating InP substrate 1, the area of the bonding pad region does not contribute to the junction capacitance. Furthermore, since microfabrication processes such as step wiring and air bridge formation are not used, there is no concern that the yield will decrease during the process. Additionally, since a semi-insulating substrate is used, it is also suitable for integration with other elements such as FETs.

本実施例では受光領域は50pm径の円形としたが22
0−1O0pの直径の円形又は、−辺220−1O0p
の矩形等でもよい。また本実施例でn−InP4の一部
の上にn側電極6を形成したが、コンタクトを良くする
ために禁制帯幅の小さな、例えばInGaAsやInG
aAsP層をn側電極6の下に形成してもよい。
In this example, the light receiving area is circular with a diameter of 50 pm, but 22
A circle with a diameter of 0-1O0p or -side 220-1O0p
It may be a rectangle, etc. Further, in this embodiment, the n-side electrode 6 was formed on a part of the n-InP4, but in order to improve the contact, a material such as InGaAs or InG with a small forbidden band width, such as InGaAs or InP, is used.
An aAsP layer may be formed under the n-side electrode 6.

(発明の効果) 以上説明した様に、本発明によれば表面入射タイプで組
み立て工程や取り扱いが簡素で、且つ低容量特性(即ち
高速特性)に優れ、集積化に適した半導体受光素子が得
られる。
(Effects of the Invention) As explained above, according to the present invention, it is possible to obtain a semiconductor light-receiving element that is a front-illuminated type, has simple assembly process and handling, has excellent low capacitance characteristics (that is, high-speed characteristics), and is suitable for integration. It will be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す半導体受光素子の構造
模式図、第2図(a)〜(e)は本発明による半導体受
光素子製造方法の一実施例を説明する為の、各工程に於
ける素子断面構造の模式図、第2図(dXeXf)はそ
れぞれ(aXbXc)に対応する平面模式図、第3図(
a)、(b)は従来例を示す半導体受光素子の断面構造
模式図である。 図に於て、1は半絶縁性InP基板、2はp+−InG
aAs、3はn −InGaAs、 4,8はn−In
P、 5はp側電極、6はn側電極、7はn−InP基
板、9はp+−InPを各々示す。
FIG. 1 is a schematic structural diagram of a semiconductor light-receiving device showing an embodiment of the present invention, and FIGS. A schematic diagram of the device cross-sectional structure in the process, Figure 2 (dXeXf) is a schematic plan view corresponding to (aXbXc), and Figure 3 (
1A and 2B are schematic cross-sectional structural diagrams of a semiconductor light-receiving device showing a conventional example. In the figure, 1 is a semi-insulating InP substrate, 2 is a p+-InG
aAs, 3 is n-InGaAs, 4 and 8 are n-In
P, 5 represents a p-side electrode, 6 represents an n-side electrode, 7 represents an n-InP substrate, and 9 represents a p+-InP.

Claims (1)

【特許請求の範囲】[Claims]  半絶縁性半導体基板上の一部の領域に、第一の導電型
を呈するバンドギャップE_1なる第一の半導体層を有
しており、該第一の半導体層の一部特定領域上に第二の
導電型を呈するバンドギャップE_1なる第二の半導体
層及びバンドギャップE_2(E_2>E_1)なる第
三の半導体層がそれぞれ前記基板側より順次積層されて
おり、且つ前記第一の半導体層の表面の露出した領域上
に一方の電極を、第三の半導体層上、または間に他の層
を介してその上に他方の電極を備えることを特徴とする
半導体受光素子。
A first semiconductor layer having a bandgap E_1 exhibiting a first conductivity type is provided in a part of the semi-insulating semiconductor substrate, and a second semiconductor layer is provided on a part of the specific region of the first semiconductor layer. A second semiconductor layer with a band gap E_1 and a third semiconductor layer with a band gap E_2 (E_2>E_1) exhibiting a conductivity type are laminated sequentially from the substrate side, and the surface of the first semiconductor layer 1. A semiconductor light-receiving element, comprising one electrode on an exposed region of the semiconductor layer, and the other electrode on a third semiconductor layer or on the third semiconductor layer with another layer interposed therebetween.
JP2035195A 1990-02-16 1990-02-16 Semiconductor photodetector Pending JPH03239378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2035195A JPH03239378A (en) 1990-02-16 1990-02-16 Semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2035195A JPH03239378A (en) 1990-02-16 1990-02-16 Semiconductor photodetector

Publications (1)

Publication Number Publication Date
JPH03239378A true JPH03239378A (en) 1991-10-24

Family

ID=12435080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2035195A Pending JPH03239378A (en) 1990-02-16 1990-02-16 Semiconductor photodetector

Country Status (1)

Country Link
JP (1) JPH03239378A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340339A (en) * 2004-05-25 2005-12-08 Mitsubishi Electric Corp Semiconductor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340339A (en) * 2004-05-25 2005-12-08 Mitsubishi Electric Corp Semiconductor element

Similar Documents

Publication Publication Date Title
JPS6016474A (en) Hetero multiple junction type photo detector
US4761383A (en) Method of manufacturing avalanche photo diode
JPH03239378A (en) Semiconductor photodetector
JPH04360585A (en) Semiconductor photodetector
JPH04263475A (en) Semiconductor photodetector and manufacture thereof
JPS63124475A (en) Semiconductor photodetector
JPS59149070A (en) Photodetector
JP2785265B2 (en) Semiconductor light receiving element
JP2685703B2 (en) Semiconductor photodetector and method of manufacturing the same
JPS6157716B2 (en)
JPH0480973A (en) Semiconductor photodetector
JP2841876B2 (en) Semiconductor light receiving element
JPH0316275A (en) Manufacture of semiconductor photodetector
JP2711055B2 (en) Semiconductor photodetector and method of manufacturing the same
JP2709008B2 (en) Method for manufacturing semiconductor photodetector
JP2995751B2 (en) Semiconductor light receiving element
JPH02105584A (en) Semiconductor photodetector
JPS63160283A (en) Semiconductor photodetector
JPS6130085A (en) Photoconductivity detecting element
JPH04263474A (en) Manufacture of semiconductor photodetective element
JPS6384081A (en) Semiconductor photodetector
JPS62169376A (en) Photodiode
JPS6373570A (en) Semiconductor photodetector
JPS63226974A (en) Semiconductor photodetector
JPS6112087A (en) Avalanche photodiode