JPS6167963A - Charge coupling element - Google Patents

Charge coupling element

Info

Publication number
JPS6167963A
JPS6167963A JP59190301A JP19030184A JPS6167963A JP S6167963 A JPS6167963 A JP S6167963A JP 59190301 A JP59190301 A JP 59190301A JP 19030184 A JP19030184 A JP 19030184A JP S6167963 A JPS6167963 A JP S6167963A
Authority
JP
Japan
Prior art keywords
electrode
electrodes
potential
potential well
electrical resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59190301A
Other languages
Japanese (ja)
Other versions
JPH0697669B2 (en
Inventor
Tomoji Dobashi
土橋 友次
Masahiko Takimoto
昌彦 滝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59190301A priority Critical patent/JPH0697669B2/en
Publication of JPS6167963A publication Critical patent/JPS6167963A/en
Publication of JPH0697669B2 publication Critical patent/JPH0697669B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42396Gate electrodes for field effect devices for charge coupled devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To prevent a backflow phenominon of carriers by making an electrical resistance of the first electrode for forming potential well higher than that of the second electrode for forming a potential well. CONSTITUTION:An electrode array in which the first electrodes 31, 32, 31, 32... and the second electrodes 41', 42', 41', 42'... are arranged alternately composes the continuous electrode couples. In this constitution, a film thickness of the second electrodes 41', 42'... is made thicker than that of the first electrodes 31, 32... thereby making an electrical resistance of the first electrodes higher than that of the second electrodes. By such constitution, a moving formation of a potential barrier is always effected prior to a moving formation of a potential well. Accordingly, the electrons as carriers are regulated their transfer direction by the potential barrier constantly and a backflow transfer of the electrons does not occur.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 j−発明は電荷結合素子(以下CODと称す)に関する
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field j--The invention relates to a charge-coupled device (hereinafter referred to as COD).

(ロ)従来の技術 この種CCDは遅延素子、アナログメモリの他に例えば
特公昭57−32548号公報に示諮れている如く固体
撮像装置としての利用゛が注目されており、テレビカメ
ラの小型化に寄与するものである。
(B) Prior Art This type of CCD is attracting attention for its use as a solid-state imaging device in addition to delay elements and analog memories, as proposed in Japanese Patent Publication No. 57-32548, and has been used in compact television cameras. This contributes to the

第2図〈イ)、(ロ)にこの種従来CODの平面図、及
びそのA−A線断面図を示す、これ等の図に於いて、(
1)はシリコン基板、(2)はシリコン酸化膜、(31
)(32)(31)(32)・・・は多結晶シリコンか
らなる第11に極、(41)(42>(41)(42)
・・・は同じく多結晶シリコンからなる第2電極である
。これ等第1電極と第27F極とが交互に配置きれた電
極列は、連続した多数の電極対(41)(31)、 (
42)(32)。
Figures 2 (a) and (b) show a plan view of this kind of conventional COD and a cross-sectional view taken along the line A-A.
1) is a silicon substrate, (2) is a silicon oxide film, (31
)(32)(31)(32)... is the 11th pole made of polycrystalline silicon, (41)(42>(41)(42)
. . . is a second electrode also made of polycrystalline silicon. These electrode rows in which the first electrode and the 27th F pole are arranged alternately are a large number of consecutive electrode pairs (41), (31), (
42) (32).

(41)(31)、・・・を構成し、奇数番目の電極対
(41)(31)、 (41)(31)、・・・にはク
ロックパルスφ1が供給され、偶数番目の電極対(42
)(32)、 (42)(32)。
(41) (31), . . . , the odd numbered electrode pairs (41) (31), (41) (31), . . . are supplied with a clock pulse φ1, and the even numbered electrode pairs (42
)(32), (42)(32).

・・・にクロックパルスφ2が供給されている。これ等
電極(41)(31)(42)(32)・・・下のP型
のシリコン基板(1)表面部には、燐あるいは砒素を導
入した埋込みチャンネル層(141)(131)(14
2)(132)・・・が設けられており、第2電極(4
2)(32)・・・下の埋込みチャンネル層(142)
(132)・・・のN型化された領域は逆にP型化させ
るような硼素を導入する事に依って第1電極(41)(
31)・・・下のN型不純物領域の埋込みチャンネル層
(141)<131)・・・よりN型化の弱められたN
−型不純物領域となっている。
... is supplied with clock pulse φ2. These electrodes (41) (31) (42) (32)... On the surface of the P-type silicon substrate (1) below, there are buried channel layers (141) (131) (14) doped with phosphorus or arsenic.
2) (132)... are provided, and the second electrode (4
2) (32)... Lower buried channel layer (142)
The N-type region of (132)... is transformed into a P-type region by introducing boron to the first electrode (41) (
31)...Buried channel layer in the lower N-type impurity region (141)<131)...N with weaker N-type conversion
− type impurity region.

尚、同図(イ)の平面図に於ける領域(a)(a)・・
・は並列配置された同図(ロ)の断面図に示す如きチャ
ンネル領域であり、これ等領域(aHa)・・・間はP
゛型不純物からなるチャンネルストッパ領域(b)(b
)・が設けられている。
In addition, area (a) (a) in the plan view of figure (a)...
・are channel regions arranged in parallel as shown in the cross-sectional view of the same figure (b), and these regions (aHa)...are spaced apart by P.
Channel stopper region (b) made of ゛ type impurity (b
)・is provided.

斯様な従来CCDに於いては第3図に示す如き2相のク
ロックパルスΦ1.Φ2にて駆動され第1TL極(31
)(32)(31)(32)・・とこれと電極対をなす
第2電極(41)(42)(41)(42)・・とには
同一のクロックパルスΦ1又はφ2が印加される事とな
るが、上述の如くテ〜ンネル層の不純物濃度が異なる為
に第1を極(31)(32)(31)(32)・・・下
のポテンシャルが第2電極(41)(42)(41)(
42)・・・下のそれよりも深く形成きれる。即ち、第
3図の時刻t1(φ1−H1φ2−L)でのポテンシャ
ル形態は第4図t1で示す如く、偶数番目の電極対の第
2電1m (42>(42)・・・下のポテンシャルが
ポテンシャル障壁を形成するべく最も浅くなり、奇数番
目の電極対の第1電極(31)(31)・・・下のポテ
ンシャルがポテンシャル井戸を形成するべく最も深くな
る。
In such a conventional CCD, two-phase clock pulses Φ1. as shown in FIG. The first TL pole (31
)(32)(31)(32)... and the second electrodes (41)(42)(41)(42)... that form an electrode pair with these are applied with the same clock pulse Φ1 or φ2. However, as mentioned above, since the impurity concentration of the tunnel layer is different, the potential below the first electrode (31) (32) (31) (32)... is the second electrode (41) (42). )(41)(
42)...It can be formed deeper than the one below. That is, the potential form at time t1 (φ1-H1φ2-L) in FIG. 3 is as shown in t1 in FIG. becomes the shallowest to form a potential barrier, and the potential below the first electrodes (31) (31) of the odd-numbered electrode pairs becomes the deepest to form a potential well.

又時刻12(Φs−L、Φ2−H)でのポテンシャル形
態は第4図t2で示−す如く、奇数番目の電極対の第2
′rt極(41)(41>・・・下のポテンシャルがポ
テンシャル障壁を形成すると共に偶数番目の電極対の第
1it極(32)(32)・・・下のポテンシャルがポ
テンシャル井戸を形成する事となる。この様に同図のt
lの状態とt2の状態とがくり返されるとキャリアであ
る電子がポテンシャル井戸の移動に従って同図の矢印で
示す如く左から右へと転送きれるのである。
Also, the potential form at time 12 (Φs-L, Φ2-H) is the second one of the odd-numbered electrode pairs, as shown at t2 in Figure 4.
'rt pole (41) (41>...The lower potential forms a potential barrier, and the 1st it pole of even-numbered electrode pairs (32) (32)...The lower potential forms a potential well. In this way, t in the same figure
When the state 1 and the state t2 are repeated, electrons, which are carriers, are transferred from left to right as shown by the arrow in the figure, following the movement of the potential well.

斯様な従来のCODを多数ビットを必要とする固体撮像
素子あるいはメモリとして用いる場合、多数ピノ)・即
ち多数チャンネルとなる為に、大面積化を招き、多結晶
シリコンからなる各電極(31)(32)(41)(4
2)・−の長さが1cm近くなり、又この電極数も増加
するので、1本の電極巾も数μmと細くなり、斯る電極
(31)(32)(41>(42)・・・1本1本の電
気抵抗が無視できない程大きな値となっているのが現状
である。
When such a conventional COD is used as a solid-state image sensor or memory that requires a large number of bits, it becomes a large number of pins (i.e., a large number of channels), which leads to a large area and the need for each electrode (31) made of polycrystalline silicon. (32) (41) (4
2) As the length of ・- becomes close to 1 cm and the number of electrodes increases, the width of each electrode becomes thinner to several μm, and such electrodes (31) (32) (41>(42)...・The current situation is that the electrical resistance of each wire is too large to be ignored.

一方、上述の如き2相駆動方式のCCDに於いては、第
2を極(at)(42)自・はキャリアである電子の逆
流を妨止する目的を達成する為のポテンシャル障壁を形
成できればよいので、電極巾は極力細く設定してCCD
全体の小型集積化を図るのが一般的であるが、この場合
第2電極(41)(42>・・・の電気抵抗値が第1電
極<31)<32)・・・のそれよりもさらに大きくな
ってしまう欠点が生じる。
On the other hand, in the two-phase drive type CCD as described above, the second pole (at) (42) can form a potential barrier to prevent the reverse flow of electrons, which are carriers. Therefore, set the electrode width as thin as possible and use the CCD.
It is common to aim for miniaturization of the whole, but in this case the electrical resistance value of the second electrodes (41) (42>... is higher than that of the first electrodes <31) <32)... This creates an even bigger drawback.

即ち、この場合第2電極(41)(42)・・・の電気
抵抗値が第1電極(31)(32)・・・のそれより大
きいので、第5図に示す如くクロックパルスΦ1及びφ
2に依る第2電極(41)(42)・・・位置への印加
電圧ΦIt 、及びφセの立上り又は立下り時の時定数
がクロックパルスΦ1及びΦ2に依る第1を極(31)
(32)・・・位置への印加電圧Φ11及びΦtKのそ
れよりも長くなる。従って第2電極(41)(42)・
・・下に形成されるポテンシャル障壁の応答時間が第1
電極(31)(32)・・・下に形成されるポテンシャ
ル井戸の応答時間より遅くなるので、ポテンシャル井戸
の移動が完了してからポテンシャル障壁の移動が完了す
るまでの間の遅延差時間にキャリアである電子が逆流し
てしまう不都合があった。この様子は第6図に示してお
り、同図に依れば第5rIAの時刻t1でのポテンシャ
ル形態から時刻t3でのポテンシャル形態に移る途中の
上記遅延差時間に於ける時刻t3での電子の逆流現象が
理解できる。この様にクロックパルスの変形に依って、
電子の逆流転送が生じるとただ単に転送効率の低下を来
たすだけでなくこの逆流電子がノイズとなり、COD固
体撮像装置に於いては再生画像のフントラストの劣化を
招いたり、CODメモリに於いては記憶内容の破壊を引
き起こす原因となっていた。
That is, in this case, since the electrical resistance value of the second electrodes (41), (42), etc. is larger than that of the first electrodes (31, (32),..., the clock pulses Φ1 and φ
The applied voltage ΦIt to the position and the time constant at the rise or fall of φSe depend on the clock pulses Φ1 and Φ2.
(32)...It is longer than that of the voltages Φ11 and ΦtK applied to the position. Therefore, the second electrodes (41) (42)・
...The response time of the potential barrier formed below is the first
Electrodes (31) (32)...Since the response time is slower than the response time of the potential well formed below, carriers are There was an inconvenience that some electrons would flow backwards. This situation is shown in FIG. 6, which shows that the electrons at time t3 during the delay difference time during the transition from the potential form at time t1 to the potential form at time t3 in the fifth rIA. Understand the reflux phenomenon. In this way, depending on the deformation of the clock pulse,
When reverse flow transfer of electrons occurs, it not only causes a decrease in transfer efficiency, but also the reverse flow electrons become noise, causing deterioration of the image quality of reproduced images in COD solid-state imaging devices, and in COD memory. This caused the destruction of memory contents.

(ハ) 発明が解決しようとする問題点本発明は上述の
点に鑑みてなされたものであり、キャリアの逆流現象を
解消したCODを提供するものである。
(c) Problems to be Solved by the Invention The present invention has been made in view of the above-mentioned points, and provides a COD that eliminates the carrier backflow phenomenon.

(ニ)  問題点を解決するための手段本発明のCOD
は半導体基板上に絶縁膜を介して電極列を配置した電荷
結合素子に於いて、該電棚列は共通の電圧源がらの印加
電圧に依って半導体基板中にポテンシャル井戸を形成す
る為の第1電極とこれと隣接してポテンシャル障壁を形
成する為の第2を極とからなる2枚1組の電極対からな
り、上記第1電極の電気抵抗を第2に極の電気抵抗より
大ならしめたものである。
(d) Means for solving the problem COD of the present invention
In a charge-coupled device in which an electrode array is arranged on a semiconductor substrate with an insulating film interposed therebetween, the electric shelf array is used to form a potential well in the semiconductor substrate by applying a voltage from a common voltage source. It consists of a pair of electrodes consisting of one electrode and a second electrode adjacent to it to form a potential barrier, and if the electrical resistance of the first electrode is greater than the electrical resistance of the second electrode. It is closed.

(ホ) 作用 本発明に依ればポテンシャル井戸を形成する為の第1T
L極の電気抵抗をポテンシャル井戸を形成する為の第2
を極のそれよりも大ならしめる事やこ依り、ポテンシャ
ル障壁形成の為の応答時間をポテンシャル井戸形成の為
の応答時間より短くしてこのポテンシャル#壁にてキャ
リアの逆流現象を解消する事ができる。
(E) Function According to the present invention, the first T for forming a potential well
The electrical resistance of the L pole is the second to form a potential well.
By making it larger than that of the pole, the response time for forming a potential barrier is shorter than the response time for forming a potential well, and the backflow phenomenon of carriers can be eliminated at this potential wall. .

(へ)実施例 第1図(イ)(ロ)に本発明のCODの一実施例の平面
図、及びそのA−A線断面図を示す、同図に於いて、第
2図(イ)(ロ)の従来CODと同一部分には第1図(
イバo)と同一符号を付している。本発明実施例CCD
が従来CCDと異なるところは、第2 ’tai (4
1’) (42’) ・・ノ膜厚を第1電極(31)(
32)・・のそれより大きくする事に依って、第1電極
(31)(32)・・・の電気抵抗を第2電極(at’
)(42’)・・・のそれより大ならしめた点にある。
(f) Embodiment Figures 1 (a) and (b) show a plan view of an embodiment of the COD of the present invention, and a sectional view thereof taken along the line A-A. The same parts as the conventional COD in (b) are shown in Figure 1 (
The same reference numerals as ``Ibao'' are given. Example CCD of the present invention
differs from conventional CCDs in that the second 'tai (4
1') (42') ... film thickness of the first electrode (31) (
By making the electrical resistance of the first electrode (31), (32)... larger than that of the second electrode (at'
) (42')...

断る実施例CCDは、ポテンシャル障壁を形成する為の
第2電極(41’) <42’)・・・の電極巾をポテ
ンシャル井戸を形成する為の第111:極(31)<3
2)・の電極巾の約273に狭めてCCD全体の集積化
を図ったものに於いて、電極巾の短縮に依る電気抵抗の
増大分を電極の膜厚を約2倍にまで厚くする事に依って
、ポテンシャル井戸を形成する為に電極巾が大きく形成
されている第1電極(31)(32)・の断面積を上記
第2電極(41’) (42’)のそれよい小きく設定
しているのである。
In the example CCD, the electrode width of the second electrode (41') <42') for forming a potential barrier is the 111th electrode width for forming a potential well: (31) <3
2) In an attempt to integrate the entire CCD by narrowing the electrode width to approximately 273 cm, the electrode film thickness is increased to approximately twice as much to compensate for the increase in electrical resistance due to the shortening of the electrode width. According to It is set.

従って、同一の多結晶シリコン材料(比抵抗的10−I
ΩclTl)からなる第1及び第2電極(31)(32
)。
Therefore, the same polycrystalline silicon material (resistivity 10-I
The first and second electrodes (31) (32
).

、  (41’)(42’)であっても第1電極(31
)(32)の電気抵抗が第2電極(41’) (42’
)のそれよりも大きくなるので、Tlt粍対(31)(
41’)に共通の電圧源である第3図図示のりaツクパ
ルスΦ1が、又電極対(32)(42’)に共通の’t
JE源である第3図図示のクロックパルスφ2が印力r
Jされた場合、各電極(41’)(31)(42’) 
<32)には第7図に示す如き遅延現象を有する電圧Φ
′12.Φ’II 、Φ′n、φ’ztが印加される事
となる。
, (41') (42'), the first electrode (31')
) (32) is the second electrode (41') (42'
) is larger than that of (31) (
41') is a voltage source common to the electrode pairs (32) and (42'), as shown in FIG.
The clock pulse φ2 shown in FIG. 3, which is the JE source, is the output r
J, each electrode (41') (31) (42')
<32), there is a voltage Φ with a delay phenomenon as shown in Figure 7.
'12. Φ'II, Φ'n, and φ'zt are applied.

第8図に第7図に於ける時刻t1.t2゜t3.t4時
の印加電圧Φ−1φ′11.φ′n・φ′11に応答す
るポテンシャル形態の状態変化を示す。
FIG. 8 shows time t1 in FIG. t2゜t3. Applied voltage Φ-1φ'11 at time t4. The state change of the potential form in response to φ′n·φ′11 is shown.

同図に依れば、印加電圧Φ′け、Φ′セ、の立上り時又
は立下り時(時刻ts、tz)の時定数、即ち遅延時間
が印加電圧φ’II 、Φ’11のそれよりも小さいの
で、時刻tlから時刻t4に至るポテンシャル井戸の移
動形成に常に先んしてポテンシャル障壁の移動形成が行
なわれる事がわかる。従ってキャリアである電子は上述
のポテンシャル障壁に依って常に転送方向が規制される
事となり、この電子の逆流転送はない。
According to the figure, the time constants at the rise or fall (times ts, tz) of the applied voltages Φ', Φ', i.e., the delay times are longer than those of the applied voltages Φ'II, Φ'11. It can be seen that the moving formation of the potential barrier always takes place prior to the moving formation of the potential well from time tl to time t4. Therefore, the transfer direction of electrons, which are carriers, is always restricted by the above-mentioned potential barrier, and there is no reverse flow transfer of the electrons.

上述の実施例のCODは第1及び第2電極として同一の
多結晶シリフン材料で構成したものであるが、この多結
晶シリフン材料は燐のドープ量に依っである程度比抵抗
を設定できるものであるので、これを利用してポテンシ
ャル井戸を形成する為の第it極(31)(32)・・
・の比抵抗を2X10−”9口とし、ポテンシャル障壁
を形成する為の第2電極(41’) (42’)・・の
比抵抗を101Ωmとする事ができる。この場合には第
2を極の膜厚を第1電極のそれよりも大きくする必要は
なく、これ等膜厚を従来通り等しく設計しても本発明は
実施できる。
In the COD of the above embodiment, the first and second electrodes are made of the same polycrystalline silicon material, but the specific resistance of this polycrystalline silicon material can be set to a certain degree depending on the amount of phosphorus doped. Therefore, using this to form a potential well, it is the it-th pole (31) (32)...
The specific resistance of the second electrode (41') (42') for forming a potential barrier can be set to 101 Ωm. It is not necessary to make the thickness of the electrode larger than that of the first electrode, and the present invention can be carried out even if these thicknesses are designed to be equal in the conventional manner.

さらに、上述の実施例に於いては、集積化を図る為に、
第2電極の電極巾を狭くした場合について説明したが、
第2電極と第1を極の電極巾がほぼ等しいCODに於い
ても、ポテンシャル井戸を形成する為の第1電極の電気
抵抗をポテンシャルwt壁を形成する為のvg2電極の
それより大きく設定しておれば、上述の如く電荷の逆流
転送の惧れは皆無となる。
Furthermore, in the above embodiment, in order to achieve integration,
Although we have explained the case where the electrode width of the second electrode is narrowed,
Even in a COD where the electrode widths of the second electrode and the first electrode are approximately equal, the electrical resistance of the first electrode for forming a potential well is set larger than that of the vg2 electrode for forming a potential wt wall. If this is the case, there will be no fear of reverse charge transfer as described above.

(ト〉 発明の効果 本発明のCCDは共通電圧源からの印加電圧に依って半
導体基板中にポテンシャル井戸を形成する為の第1電極
とこれと隣接してボテンノヤル障壁を形成する為の第2
電極とからなる2枚1組の電極対からなる電極列を備え
、第1!極の電気抵抗庖第2N、極の電気抵抗より大な
らしめているので、第1TIL極に依って形成されるポ
テンシャル井戸よりも第2[mに依って形成きれるポテ
ンシャル障壁の方が応答時間が短くなり、このポテンシ
ャル障壁にて転送方向が決定されるキャリアの逆流転送
を解消する事ができる。従って本発明に係るCCD固体
撮像装置に於いては、逆流キャリアの解消に依って再生
画像のフントラストの劣化を防止でき、CCDメモリに
於いては記憶内容が破壊きれる惧れはない。
(G) Effects of the Invention The CCD of the present invention has a first electrode for forming a potential well in a semiconductor substrate by a voltage applied from a common voltage source, and a second electrode for forming a potential well adjacent thereto.
The first ! Since the electric resistance of the pole is made larger than the electric resistance of the pole, the response time of the potential barrier formed by the second TIL is shorter than that of the potential well formed by the first TIL pole. Therefore, reverse flow transfer of carriers in which the transfer direction is determined by this potential barrier can be eliminated. Therefore, in the CCD solid-state imaging device according to the present invention, deterioration of the fundus of the reproduced image can be prevented by eliminating backflow carriers, and there is no fear that the stored contents in the CCD memory will be destroyed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)、(ロ)は本発明のCCDの一実施例の平
面図、及び断面図、第2図(イ)、(ロ)は従来のCC
Dの平面図、及び断面図、第3図及び第4図はクロック
パルスの波形図、及びそれに伴う理論的なポテンシャル
図、第5図及び第6図は従来CODに於ける各電極の電
圧波形図、及びそれに伴う実際のボテンシへ・ル図、第
7図及び第8図は本発明CCDに於ける各電極の電圧波
形図、及びそれに伴う実際のポテンシャル図である。 (1)・・・シリコン基板、(2)・・・シリコン酸化
膜、(31)(32)・・・第1電極、(41)(42
>(41つ(42’)・・第2電極。
Figures 1 (a) and (b) are a plan view and a sectional view of an embodiment of the CCD of the present invention, and Figures 2 (a) and (b) are a conventional CC
A plan view and a sectional view of D, FIGS. 3 and 4 are clock pulse waveform diagrams and accompanying theoretical potential diagrams, and FIGS. 5 and 6 are voltage waveforms of each electrode in conventional COD. 7 and 8 are voltage waveform diagrams of each electrode in the CCD of the present invention, and actual potential diagrams associated therewith. (1)... Silicon substrate, (2)... Silicon oxide film, (31) (32)... First electrode, (41) (42
>(41 (42')...second electrodes.

Claims (1)

【特許請求の範囲】[Claims] 1)半導体基板上に絶縁膜を介して電極列を配置した電
荷結合素子に於いて、該電極列は共通の電圧源からの印
加電圧に依って半導体基板中にポテンシャル井戸を形成
する為の第1電極とこれと隣接してポテンシャル障壁を
形成する為の第2電極とからなる2枚1組の電極対から
なり、上記第1電極の電気抵抗を第2電極の電極抵抗よ
り大ならしめた事を特徴とする電荷結合素子。
1) In a charge-coupled device in which an electrode array is arranged on a semiconductor substrate with an insulating film interposed therebetween, the electrode array is used to form a potential well in the semiconductor substrate by applying a voltage from a common voltage source. It consists of a pair of electrodes consisting of a first electrode and a second electrode adjacent to it to form a potential barrier, and the electrical resistance of the first electrode is made greater than the electrode resistance of the second electrode. A charge-coupled device characterized by:
JP59190301A 1984-09-11 1984-09-11 Charge coupled device Expired - Lifetime JPH0697669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59190301A JPH0697669B2 (en) 1984-09-11 1984-09-11 Charge coupled device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59190301A JPH0697669B2 (en) 1984-09-11 1984-09-11 Charge coupled device

Publications (2)

Publication Number Publication Date
JPS6167963A true JPS6167963A (en) 1986-04-08
JPH0697669B2 JPH0697669B2 (en) 1994-11-30

Family

ID=16255880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59190301A Expired - Lifetime JPH0697669B2 (en) 1984-09-11 1984-09-11 Charge coupled device

Country Status (1)

Country Link
JP (1) JPH0697669B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0496357A2 (en) * 1991-01-23 1992-07-29 Sony Corporation Charge coupled device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5178179A (en) * 1974-12-27 1976-07-07 Sony Corp
JPS5330282A (en) * 1976-09-01 1978-03-22 Hitachi Ltd Semiconductor device
JPS575361A (en) * 1980-06-11 1982-01-12 Toshiba Corp Charge transfer device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5178179A (en) * 1974-12-27 1976-07-07 Sony Corp
JPS5330282A (en) * 1976-09-01 1978-03-22 Hitachi Ltd Semiconductor device
JPS575361A (en) * 1980-06-11 1982-01-12 Toshiba Corp Charge transfer device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0496357A2 (en) * 1991-01-23 1992-07-29 Sony Corporation Charge coupled device

Also Published As

Publication number Publication date
JPH0697669B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
JP5243984B2 (en) Solid-state image sensor with built-in electron multiplication function
US4669100A (en) Charge-coupled device having a buffer electrode
EP0513666A1 (en) CCD shift register
JPS6167963A (en) Charge coupling element
JPS6249748B2 (en)
JPH02211640A (en) Charge transfer device
JPH0695536B2 (en) Charge transfer device
JPS6169173A (en) Charge coupled device
US6891243B2 (en) Solid-state image pick-up device
JP4178638B2 (en) Solid-state imaging device and driving method thereof
JP3060649B2 (en) Semiconductor device and driving method thereof
EP0159758A1 (en) Charge-coupled device
KR960015532B1 (en) Solid state image pick-up device and manufacturing and driving method
JPH0123880B2 (en)
JPH03246952A (en) Charge-coupled device
JPH03116841A (en) Charge-coupled element
JP2723063B2 (en) Charge transfer device
JP2853779B2 (en) Solid-state imaging device
JP2907841B2 (en) Line sensor
JPH06268923A (en) Drive method for solid-state image pickup device
JP2848257B2 (en) Imaging unit of charge transfer type solid-state imaging device and driving method thereof
JPS6410984B2 (en)
JPH0516717B2 (en)
JPH0669048B2 (en) Charge transfer device
JPH08316459A (en) Charge transfer device and solid-state image-pickup device