JPH0123880B2 - - Google Patents

Info

Publication number
JPH0123880B2
JPH0123880B2 JP55182147A JP18214780A JPH0123880B2 JP H0123880 B2 JPH0123880 B2 JP H0123880B2 JP 55182147 A JP55182147 A JP 55182147A JP 18214780 A JP18214780 A JP 18214780A JP H0123880 B2 JPH0123880 B2 JP H0123880B2
Authority
JP
Japan
Prior art keywords
charge
electrode
storage section
potential
charge storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55182147A
Other languages
Japanese (ja)
Other versions
JPS57105893A (en
Inventor
Tetsuo Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP18214780A priority Critical patent/JPS57105893A/en
Publication of JPS57105893A publication Critical patent/JPS57105893A/en
Publication of JPH0123880B2 publication Critical patent/JPH0123880B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

【発明の詳細な説明】 本発明は電荷転送回路に関し、特にアナログ信
号量を、電荷転送原理に基づいて量子化する電荷
結合形量子化回路に用いて好適な技術に関するも
のである。 従来アナログ信号量を量子化する回路として
は、アナログ信号量を電荷量として取り扱い、そ
の電荷量を所望の単位量に分割し、量子化を行う
ものが良く用いられている。これは、電荷量とし
て取り扱うことにより、電圧性雑音の混入を防
ぎ、S/N比(信号雑音比)の高い、しかも高速
の処理回路が得られるためである。第1図aに従
来の電荷転送形量子化回路の断面構造図を示す。
1はp形半導体板、2は埋込みチヤネルを形成す
る低濃度n-形不純物層、3は転送チヤネルに非
対称電位を形成し、2相駆動を可能ならしめるた
めのp-形不純物層、4はMOS(etal xide
Semiconductor)形電荷蓄積電極、5は電荷注
入用障壁電極、6は電荷入力転送用電極で同電極
下に形成されたポテンシヤルを押し上げることに
より電荷注入用障壁電極5の下に形成されている
障壁ポテンシヤルを越えて、電荷が蓄積電極下の
ポテンシヤル井戸に入力される。7は電荷蓄積井
戸に蓄えられたアナログ信号電荷を、単位量に分
割し、転送レジスタへ汲み出すための分割電極、
8は7から量子化された信号電荷束を受け取り、
紙面に向つて左側へ転送するための転送電極、1
5は絶縁膜を各々示す。即ち、電荷入力電極5,
6下のチヤネルから蓄積電極4下のチヤネル注入
されたアナログ信号電荷は、非対称ポテンシヤル
を有する分割電極7に高電圧を印加することによ
りそのチヤネルを満たし、低電圧の印加により前
記非対称ポテンシヤルの差に応じた単位電荷量に
分割され汲み出される。この様子は第1図b〜f
に示したポテンシヤル分布図で具体的に示されて
いる。破線10は分割電極下のチヤネルポテンシ
ヤル分布を示し、11はアナログ信号電荷、12
は分割された量子化信号電荷束を各々示す。第1
図gは、印加パルスのタイミング図であり、パル
スφ*は分割電極7、パルスφ1は転送電極8に加
える電圧パルスを示し、パルスφ2は転送電極8
左方に隣接しており同一構造の2相駆動電極に印
加する逆位相の電圧パルスを示す。 第1図のb〜fは各々第1図gのt=t1,t2
t3,t4,t5に対応する時間に形成された各電極下
のポテンシヤル分布を示す図である。第1図gに
従がい信号の量子動作を繰り返すことにより量子
化された時系列信号が、順次紙面左方向へ転送さ
れることになる。これらの量子化信号列は、必要
に応じた処理の後又は、直接、周知の電荷−電圧
変換回路を経て出力される。 以上説明したように、従来例においてアナログ
信号の量子化が可能となるが、取り扱う信号量が
大きくなるか又は、高速性が要求された場合次の
ような欠点を有する。即ち、大きな信号電荷量を
量子化する場合、電荷蓄積部の電荷蓄積量はそれ
に応じて大きくしなければならない。具体的には
蓄積電極4の面積を大きくして蓄積領域を拡大す
ることになる。これに伴つて量子化分割電極7に
対して蓄積電極4の最も遠方の領域迄の距離が増
加する。従来例においては、蓄積電極4には一定
の電圧が印加されているため、蓄積領域はほゞ一
定のポテンシヤルに保たれ、従つて分割電極7下
へ流れ込む信号電荷は、主に拡散電流として移動
する。即ち、前記分割電極7へ至る距離の約2乗
に比例して移動時間が増加し、蓄積領域内の電荷
量が小さくなると、致命的に移動速度は減少、高
速かつ高精度の量子化は不可能になつてしまう。 本発明は上記点に鑑みなされたもので、第1導
電形半導体基板上に絶縁膜を介して配設された少
なくとも1個の導電性電極と、前記第1導電形半
導体基板表面に選択的に形成された電荷蓄積部
と、この電荷蓄積部へ信号電荷を注入する電荷入
力部と、前記注入された信号電荷を所定の単位電
荷束に分割し時系列量子化信号電荷束列に変換す
る電荷分割部と、前記電荷蓄積部に注入された信
号電荷が前記電荷入力部から前記電荷分割部へ向
かつて常時移動するようにチヤネル電位を形成す
るバイアス手段とを具備したことによつて、大き
な信号電荷量に対しても、高速でしかも高性能な
電荷結合形量子化回路を提供することを目的とす
るものである。 以下、図面を参照して本発明を、実施例に基づ
き詳細に説明する。 第2図は本発明の第1の実施例の平面構成図を
示す。入力障壁電極16は従来例における電荷注
入用電極5に相当し、続いて各々異つた電圧が印
加される電荷蓄積電極群17〜23及び量子化を
行う分割電極24,25が形成されており、転送
パルスφ1が転送電極26,27、転送パルスφ2
が転送電極28,29に各々印加される。この場
合2相転送電極を示す。30は電源31の電圧を
分割するための分割抵抗で、この場合、同一チツ
プ内に形成された基板と反対導電形のイオン注入
層を抵抗素子としている。本発明の第1の実施例
においては2層ポリシリコンを用いた複数の重ね
合わせ電極(この場合7電極)の各々に、分割抵
抗30により抵抗分割された異なる電圧を印加
し、17,18,19,20,21,22,23
の順に低電圧から徐々に上昇した電圧が印加さ
れ、対向する蓄積領域のチヤネルに階段状のポテ
ンシヤルを形成し、従来例と同様に入力障壁電極
を通して、蓄積領域に注入されたアナログ信号電
荷は、前記階段状ポテンシヤル中を移動しポテン
シヤルの最も低い蓄積電極23下のチヤネルから
蓄積が行われる。次に第3図aに第2図のX−
X′切断断面構造図を示し動作原理を説明する。
尚、第2図と同一箇所は同一符号を付して説明す
る。34は本実施例ではp形半導体基板、35は
n形埋込みチヤネル層36はCCD(harge
oupled evice)を2相駆動するのに必要なポ
テンシヤルの方向性を与えるためのp-形低濃度
不純物層、32,33は量子化された電荷を29
から受けて紙面の左方へ転送するための転送電極
を示す。第1の実施例では信号電荷の蓄積、量子
化、転送は全て埋込みチヤネル35内で行われ
る。第3図b〜gは第3図aの各領域に対応する
チヤネルポテンシヤル分布図で、本発明の動作原
理を説明するためのものである。第3図bはアナ
ログ信号電荷束が蓄積領域に入力された状態を示
し、39は信号電荷を示し、37は信号電荷が存
在しない時の階段状に分布した蓄積領域のポテン
シヤル分布、38は分割電極下のポテンシヤル、
40は転送電極26,27下のポテンシヤルを
各々示す。第3図hは分割電極24,25に加え
るパルスφ*、転送電極26,27,32に加え
る転送パルスφ1、同じく転送電極28,29,
33に加える転送パルスφ2のタイミング図であ
り、図の時間t1のに形成されるポテンシヤル分布
図が第3図bに相当する。即ち第3図bにおいて
アナログ信号電荷39は全て蓄積領域に保持され
ている。次に時間t2に至つて分割電極に高電圧が
印加され、第3図cに示すように分割電極下のポ
テンシヤルが下降し、信号電荷は分割電極24,
25下迄流れ込む。t=t3はφ*が再び低電圧へ下
降する過渡状態であり第3図dに示すように分割
電極24と25の電位差に相当する電荷束41を
残して、ポテンシヤルの上昇と共に再び蓄積領域
へ逆流を起こす。この時分割電極25下に残され
た電荷束41が量子化された単位電荷となる。t
=t4では量子化された第1番目の電荷束が2相駆
動の電荷転送レジスタへ移され、転送を開始す
る。同様の動作をくり返して量子化が行われ、量
子化動作が進むに従つて蓄積領域に保持される信
号電荷は減少してゆく。本発明においては蓄積領
域内のポテンシヤル分布37が階段状に形成され
ているため、電荷の減少に伴つて、その重心が分
割電極24,25側へ移動してゆく。たとえば最
後の量子化電荷は分割電極24と隣接した蓄積電
極23の下にだけ局在し、従つて、fに示すよう
に分割電極下のポテンシヤルが下降すると瞬時に
分割電極下へ移動し、高速の量子化が可能にな
る。これが本発明の大きな特徴である。第3図g
は最後(n番目)の量子化単位荷束であり、43
は(n−1)番目の量子化電荷束を示す。このよ
うにして、アナログ信号電荷量が減少しても、安
定した高速の量子化回路が実現できる。 ここで埋論上は蓄積領域の全電荷が量子化され
るのであるが、実際には転送効率(転送効率は
100%にはならない)等の理由で必ずしも全ての
電荷は量子化されず、微量の電荷が蓄積領域に残
留する場合がある。しかしながら、一般にそのよ
うな残留電荷の量は量子化された信号電荷の量に
比べて非常に小さなものであり、実質上は全ての
電荷が量子化されている。従つて、本願において
は、量子化後に蓄積領域に若干の残留電荷が存在
する場合も、全信号電荷が量子化されたと表現す
ることとする。 なお、高速性をより効果的に行うために、本発
明の第1の実施例においては、第2図に破線で示
した蓄積領域(チヤネル領域)44が図のように
分割電極24,25方向へ向つて細められており
実効的なチヤネル長をできるだけ小さくしてお
り、蓄積電極21〜23下の信号電荷密度が増し
より高速性が増す。 また、第2図に示すように蓄積電極17〜23
のそれぞれは分割電極24,25方向への長さが
短くなつており、この事によつて前述同様、分割
電極24,25方向へ向かつて蓄積電極下の信号
電荷密度が増し、より安定した高速動作が可能で
ある。 次に本発明の第2の実施例を図面を参照して詳
細に説明する。 第4図aに本発明の第2の実施例の断面構造図
を示す。尚、以下第2図及び第3図と同一箇所に
は同一符号を付して説明する。半導体基板34に
絶縁膜を介して蓄積電極45〜51が設けられて
おり、埋込みチヤネル層35が蓄積電極45,4
6,47の下に存在しない、ところが、第1の実
施例と異なり、この領域が表面チヤネルとなつて
いる。即ち、第2の実施例においては、蓄積領域
のチヤネルポテンシヤルを階段状に形成するにあ
たり、同一電極電圧に対して埋込みチヤネルと表
面チヤネルでは形成されるポテンシヤルが異な
り、前者がより深いという現象を利用している。
このことにより、各蓄積電極へ印加すべき電圧の
数を減少させることができ、回路の小形化が可能
になる。53は分岐の減少した分割抵抗素子の等
価回路である。このようにして第4図bに示す第
1の実施例と同等なポテンシヤル分布を実現する
ことができる。55は電荷がないときのポテンシ
ヤル分布、54はアナログ信号電荷束を各々示
す。 第5図は本発明の第3の実施例の断面構造図で
あり、61〜67は蓄積電極であり、この場合偶
数番目の電極下のn形埋込みチヤネル内に低濃度
p-形不純物がイオン注入されており、蓄積電極
62と63,64と65,66と67に同一電圧
が印加されても、階段状ポテンシヤルが形成され
る。つまり、2相CCD構造と同一構造が形成さ
れ、従つて、実効電極数は1/2になる。56,5
7,58が前記p-形不純物注入領域である。従
つて、分割抵抗素子59は非常に小さくなり、チ
ツプ上での配線も単純にすることができより微細
技術に適している。なお、本発明を実施するに当
つては、以上の構造の他にも種々考えられる。即
ち、蓄積領域のチヤネルポテンシヤルを階段状に
形成できる手段であれば良い。又、実施例では、
全て信号電荷として電子を考えて説明したが、当
然のことながら正孔であつても良いし、転送手段
は、CCD、BBD(ucket rigade evice)
等種々考えられる。又、量子化された時系列出力
は周知の手段で時系列電圧信号として外部に取り
出しても良いが、カウンター回路と組合せて、2
進、8進、16進等のデイジタル出力として取り出
すことも出来る。 尚、上記実施例においては蓄積チヤネルポテン
シヤルを階段状に形成したが、量子化されるべき
アナログ信号電荷を保持し蓄積するための蓄積領
域のチヤネルポテンシヤルを信号電荷入力部から
分割部に向かつて下降する傾斜を有するように形
成することも可能である。この場合の第4の実施
例の断面構造図を第6図a、第7図、第8図aに
示し、ポテンシヤル分布図を第6図b、第8図b
に示す。 また、チヤネルポテンシヤルを上記実施例を組
合わせることにより階段・傾斜状にすることも可
能である。 以上のように、本発明によれば、電荷蓄積部の
蓄積信号電荷が、電荷入力部から電荷分割部に近
接した領域へ向う方向に常時移動するようにチヤ
ネル電位が形成されているため、大きな信号電荷
量に対しても高速かつ高性能な電荷結合形量子化
回路を提供できる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a charge transfer circuit, and particularly to a technique suitable for use in a charge-coupled quantization circuit that quantizes an analog signal amount based on a charge transfer principle. Conventionally, as a circuit for quantizing an analog signal amount, a circuit that treats the analog signal amount as a charge amount, divides the charge amount into a desired unit amount, and performs quantization is often used. This is because by treating the amount of charge as an amount of charge, voltage noise can be prevented from being mixed in, and a high-speed processing circuit with a high S/N ratio (signal-to-noise ratio) can be obtained. FIG. 1a shows a cross-sectional structural diagram of a conventional charge transfer type quantization circuit.
1 is a p-type semiconductor board, 2 is a low concentration n - type impurity layer forming a buried channel, 3 is a p-type impurity layer for forming an asymmetric potential in the transfer channel and enabling two-phase drive, and 4 is a p - type impurity layer. MOS( M etal Oxide
5 is a charge injection barrier electrode, and 6 is a charge input transfer electrode, which is a barrier potential formed under the charge injection barrier electrode 5 by pushing up the potential formed under the same electrode. Beyond that, charge is input into the potential well below the storage electrode. 7 is a dividing electrode for dividing the analog signal charge stored in the charge storage well into unit amounts and pumping it to the transfer register;
8 receives the quantized signal charge flux from 7;
Transfer electrode for transferring to the left side toward the paper surface, 1
5 indicates an insulating film. That is, the charge input electrode 5,
The analog signal charge injected from the channel below the storage electrode 4 to the channel below the storage electrode 4 fills that channel by applying a high voltage to the divided electrode 7 having an asymmetric potential, and by applying a low voltage to the difference in the asymmetric potential. It is divided into corresponding unit charges and pumped out. This situation is shown in Figure 1 b-f.
This is specifically shown in the potential distribution diagram shown in . The broken line 10 shows the channel potential distribution under the divided electrode, 11 the analog signal charge, 12
denote the divided quantized signal charge fluxes, respectively. 1st
Figure g is a timing diagram of the applied pulses, where pulse φ * indicates the voltage pulse applied to the dividing electrode 7, pulse φ 1 indicates the voltage pulse applied to the transfer electrode 8, and pulse φ 2 indicates the voltage pulse applied to the transfer electrode 8.
It shows voltage pulses of opposite phases applied to two-phase drive electrodes that are adjacent on the left and have the same structure. b to f in FIG. 1 are t=t 1 , t 2 , and g in FIG. 1, respectively.
FIG. 7 is a diagram showing the potential distribution under each electrode formed at times corresponding to t 3 , t 4 , and t 5 . By repeating the quantum operation of the follow signal in FIG. 1g, the quantized time-series signal is sequentially transferred to the left on the paper. These quantized signal sequences are outputted after being processed as necessary or directly through a well-known charge-voltage conversion circuit. As explained above, in the conventional example, it is possible to quantize analog signals, but when the amount of signals to be handled becomes large or high speed is required, the following drawbacks arise. That is, when quantizing a large amount of signal charge, the amount of charge stored in the charge storage section must be increased accordingly. Specifically, the area of the storage electrode 4 is increased to expand the storage region. Along with this, the distance from the quantization division electrode 7 to the farthest region of the storage electrode 4 increases. In the conventional example, since a constant voltage is applied to the storage electrode 4, the storage region is kept at a substantially constant potential, and therefore the signal charge flowing under the divided electrode 7 mainly moves as a diffusion current. do. In other words, if the travel time increases in proportion to the square of the distance to the divided electrode 7 and the amount of charge in the storage region decreases, the travel speed will fatally decrease, making high-speed and high-precision quantization impossible. It becomes possible. The present invention has been made in view of the above points, and includes at least one conductive electrode disposed on a first conductivity type semiconductor substrate with an insulating film interposed therebetween, and selectively disposed on the surface of the first conductivity type semiconductor substrate. a charge storage section formed, a charge input section for injecting signal charges into the charge storage section, and charges for dividing the injected signal charges into predetermined unit charge fluxes and converting them into a time-series quantized signal charge flux sequence. By including a dividing section and a bias means for forming a channel potential so that the signal charge injected into the charge storage section constantly moves from the charge input section toward the charge dividing section, it is possible to generate a large signal. It is an object of the present invention to provide a charge-coupled quantization circuit that is high-speed and has high performance with respect to the amount of charge. Hereinafter, the present invention will be described in detail based on examples with reference to the drawings. FIG. 2 shows a plan configuration diagram of the first embodiment of the present invention. The input barrier electrode 16 corresponds to the charge injection electrode 5 in the conventional example, and is followed by charge storage electrode groups 17 to 23 to which different voltages are applied, and divided electrodes 24 and 25 for quantization. Transfer pulse φ 1 connects to transfer electrodes 26, 27, transfer pulse φ 2
is applied to transfer electrodes 28 and 29, respectively. In this case, a two-phase transfer electrode is shown. Reference numeral 30 denotes a dividing resistor for dividing the voltage of the power supply 31, and in this case, an ion-implanted layer formed in the same chip and having a conductivity type opposite to that of the substrate is used as a resistive element. In the first embodiment of the present invention, different voltages divided by a dividing resistor 30 are applied to each of a plurality of stacked electrodes (7 electrodes in this case) using two-layer polysilicon. 19, 20, 21, 22, 23
A voltage that gradually increases from a low voltage is applied in the order of , forming a stepped potential in the channel of the opposing storage region, and analog signal charges injected into the storage region through the input barrier electrode as in the conventional example, Accumulation is performed from the channel below the storage electrode 23 that moves through the stepped potential and has the lowest potential. Next, in Figure 3a,
The operating principle will be explained by showing a cross-sectional structure diagram cut along X′.
Note that the same parts as in FIG. 2 will be described with the same reference numerals. In this embodiment, 34 is a p-type semiconductor substrate, 35 is an n-type buried channel layer 36 is a CCD (Charge C
The p - type low concentration impurity layers 32 and 33 provide the directionality of the potential necessary for two-phase driving of the oupled device.
A transfer electrode is shown for receiving the image from the image and transferring it to the left side of the page. In the first embodiment, signal charge accumulation, quantization, and transfer are all performed within the embedded channel 35. FIGS. 3b to 3g are channel potential distribution diagrams corresponding to each region of FIG. 3a, and are for explaining the operating principle of the present invention. Fig. 3b shows the state in which the analog signal charge flux is input to the storage region, 39 shows the signal charge, 37 shows the potential distribution of the storage region which is distributed stepwise when there is no signal charge, and 38 shows the division. potential under the electrode,
Reference numeral 40 indicates the potential under the transfer electrodes 26 and 27, respectively. FIG. 3h shows the pulse φ * applied to the divided electrodes 24, 25, the transfer pulse φ1 applied to the transfer electrodes 26, 27, 32, the transfer electrodes 28, 29,
FIG. 3b is a timing diagram of the transfer pulse φ 2 applied to the timing 33, and the potential distribution diagram formed at time t 1 in the diagram corresponds to FIG. 3b. That is, in FIG. 3b, all analog signal charges 39 are held in the storage region. Next, at time t2 , a high voltage is applied to the divided electrodes, the potential under the divided electrodes decreases as shown in FIG.
Flowing down to below 25. At t= t3 , there is a transient state in which φ * again falls to a low voltage, leaving behind a charge flux 41 corresponding to the potential difference between the divided electrodes 24 and 25, and as the potential increases, the accumulation region returns again. causing reflux to. The charge flux 41 left under this time division electrode 25 becomes a quantized unit charge. t
At = t4 , the first quantized charge flux is transferred to the two-phase drive charge transfer register and transfer begins. Quantization is performed by repeating similar operations, and as the quantization operation progresses, the signal charge held in the storage region decreases. In the present invention, since the potential distribution 37 in the storage region is formed in a stepwise manner, the center of gravity thereof moves toward the divided electrodes 24 and 25 as the charge decreases. For example, the last quantized charge is localized only under the storage electrode 23 adjacent to the divided electrode 24, and therefore, as shown in f, when the potential under the divided electrode falls, it instantly moves under the divided electrode and moves at high speed. quantization becomes possible. This is a major feature of the present invention. Figure 3g
is the last (nth) quantized unit load, and 43
represents the (n-1)th quantized charge flux. In this way, even if the analog signal charge amount decreases, a stable and high-speed quantization circuit can be realized. In theory, the total charge in the storage region is quantized, but in reality the transfer efficiency (transfer efficiency is
Not all charges are necessarily quantized, and a small amount of charge may remain in the storage region. However, the amount of such residual charges is generally very small compared to the amount of quantized signal charges, and virtually all charges are quantized. Therefore, in this application, even if there is some residual charge in the storage region after quantization, it is expressed that all signal charges have been quantized. In order to achieve high speed more effectively, in the first embodiment of the present invention, the storage region (channel region) 44 indicated by the broken line in FIG. The effective channel length is made as small as possible, and the signal charge density under the storage electrodes 21 to 23 increases, resulting in higher speed. In addition, as shown in FIG. 2, storage electrodes 17 to 23
The length in the direction of the divided electrodes 24 and 25 is shortened, and as mentioned above, this increases the signal charge density under the storage electrode in the direction of the divided electrodes 24 and 25, resulting in more stable and high-speed operation. Operation is possible. Next, a second embodiment of the present invention will be described in detail with reference to the drawings. FIG. 4a shows a cross-sectional structural diagram of a second embodiment of the present invention. Hereinafter, the same parts as in FIGS. 2 and 3 will be described with the same reference numerals. Storage electrodes 45 to 51 are provided on the semiconductor substrate 34 via an insulating film, and the buried channel layer 35 is connected to the storage electrodes 45, 4.
However, unlike the first embodiment, this region is a surface channel. That is, in the second embodiment, in forming the channel potential of the storage region in a stepped manner, the phenomenon is utilized that the buried channel and the surface channel have different potentials for the same electrode voltage, and the former is deeper. are doing.
This allows the number of voltages to be applied to each storage electrode to be reduced, making it possible to downsize the circuit. 53 is an equivalent circuit of a divided resistance element with reduced branches. In this way, a potential distribution equivalent to that of the first embodiment shown in FIG. 4b can be realized. Reference numeral 55 indicates a potential distribution when there is no charge, and 54 indicates an analog signal charge flux. FIG. 5 is a cross-sectional structural diagram of a third embodiment of the present invention, in which 61 to 67 are storage electrodes, in which a low concentration is placed in an n-type buried channel under an even-numbered electrode.
P - type impurities are ion-implanted, and even if the same voltage is applied to storage electrodes 62 and 63, 64 and 65, and 66 and 67, a stepped potential is formed. In other words, the same structure as the two-phase CCD structure is formed, and therefore the effective number of electrodes is halved. 56,5
7 and 58 are the p - type impurity implanted regions. Therefore, the divided resistive element 59 becomes very small, and the wiring on the chip can be simplified, making it more suitable for fine technology. In addition, in carrying out the present invention, various structures other than the above-mentioned structure can be considered. That is, any means that can form the channel potential of the storage region in a stepped manner may be used. In addition, in the example,
All explanations have been made considering electrons as signal charges, but of course holes may also be used, and the transfer means can be CCD, BBD ( Bucket Brigade Device ).
There are many other possibilities. Furthermore, the quantized time series output may be extracted externally as a time series voltage signal using well-known means, but in combination with a counter circuit, 2
It can also be output as digital output in decimal, octal, hexadecimal, etc. In the above embodiment, the accumulation channel potential is formed in a step-like manner, but the channel potential of the accumulation region for holding and accumulating the analog signal charge to be quantized is lowered from the signal charge input section to the dividing section. It is also possible to form it so that it has an inclination. The cross-sectional structural diagrams of the fourth embodiment in this case are shown in Fig. 6a, Fig. 7, and Fig. 8a, and the potential distribution diagrams are shown in Fig. 6b, Fig. 8b.
Shown below. Further, by combining the above embodiments, the channel potential can be made into a stepped or inclined shape. As described above, according to the present invention, the channel potential is formed such that the accumulated signal charge in the charge storage section always moves in the direction from the charge input section to the region close to the charge division section, so that a large It is possible to provide a charge-coupled quantization circuit with high speed and high performance even for signal charge amounts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは、従来の電荷結合形量子化回路の断
面構造図、第1図b〜fは、従来の電荷結合形量
子化回路の動作原理を説明するためのポテンシヤ
ル分布図、第1図gは第1図a〜fのポテンシヤ
ル分布を説明するためのタイミングパルスを示す
図、第2図は、本発明の第1の実施例を説明する
ための電荷結合形量子化回路の平面構造図、第3
図aは、第2図のX−X′線で切断した断面構造
図、第3図b〜gは本発明の第1の実施例の動作
原理を説明するためのポテンシヤル分布図、第3
図hは、本発明の第1の実施例におけるタイミン
グ、パルスを示す図、第4図aは本発明の第2の
実施例を示す断面構造図、第4図bは第4図aの
ポテンシヤル分布図、第5図は本発明の第3の実
施例を示す断面構造図、第6図a、第7図、第8
図aは本発明の第4の実施例を示す断面構造図、
第6図b、第8図bは第6図a、第7図、第8図
aのポテンシヤル分布図である。図において、 16……入力障壁電極、17〜23……電荷蓄
積電極、24,25……分割電極、26〜29,
32,33……転送電極、34……p形半導体基
板、35……n形埋込みチヤネル層、36……
p-形低濃度不純物層、37……蓄積部のチヤネ
ルポテンシヤル、38……分割電極下のポテンシ
ヤル、39……アナログ信号電荷束、40……信
号電極下のポテンシヤル、41……量子化単位電
荷束。
FIG. 1a is a cross-sectional structural diagram of a conventional charge-coupled quantization circuit, and FIGS. 1b to 1f are potential distribution diagrams for explaining the operating principle of the conventional charge-coupled quantization circuit. g is a diagram showing timing pulses for explaining the potential distributions in FIGS. 1a to 1f, and FIG. 2 is a planar structural diagram of a charge-coupled quantization circuit for explaining the first embodiment of the present invention. , 3rd
Figure a is a cross-sectional structural diagram taken along the line X-X' in Figure 2, Figures 3 b to g are potential distribution diagrams for explaining the operating principle of the first embodiment of the present invention, and Figure 3
Figure h is a diagram showing the timing and pulses in the first embodiment of the present invention, Figure 4 a is a cross-sectional structural diagram showing the second embodiment of the present invention, and Figure 4 b is the potential of Figure 4 a. Distribution diagram, Figure 5 is a sectional structural diagram showing the third embodiment of the present invention, Figure 6a, Figure 7, Figure 8.
Figure a is a cross-sectional structural diagram showing a fourth embodiment of the present invention,
6b and 8b are potential distribution diagrams of FIGS. 6a, 7, and 8a. In the figure, 16...input barrier electrode, 17-23...charge storage electrode, 24, 25...divided electrode, 26-29,
32, 33... Transfer electrode, 34... P-type semiconductor substrate, 35... N-type buried channel layer, 36...
p - type low concentration impurity layer, 37...Channel potential of storage section, 38...Potential under divided electrode, 39...Analog signal charge flux, 40...Potential under signal electrode, 41...Quantization unit charge bundle.

Claims (1)

【特許請求の範囲】 1 半導体基板の電荷蓄積部上に絶縁膜を介して
形成された第1及び第2の電極を含む電極列と、
前記第1の電極に隣接して設けられ前記電荷蓄積
部に蓄積された信号電荷を所定の単位電荷束に分
割し時系列量子化信号電荷束列に変換する電荷分
割部と、前記電極列に所定の電圧を印加して前記
電荷分割部に向かつて深くなるポテンシヤルを前
記電荷蓄積部に形成するバイアス手段とを具備
し、前記第1の電極に対応する電荷蓄積部の面積
が前記第2の電極に対応する電荷蓄積部の面積よ
りも小さく、前記電荷蓄積部に蓄積された全信号
電荷が量子化されることを特徴とする電荷結合形
量子化回路。 2 前記電荷蓄積部の幅が、前記電荷分割部に向
かつて短くなつていることを特徴とする特許請求
の範囲第1項記載の電荷結合形量子化回路。 3 前記第1の電極の電極列方向の長さが、前記
第2の電極の長さよりも短いことを特徴とする特
許請求の範囲第1項または第2項記載の電荷結合
形量子化回路。
[Claims] 1. An electrode array including first and second electrodes formed on a charge storage portion of a semiconductor substrate with an insulating film interposed therebetween;
a charge dividing section provided adjacent to the first electrode and dividing the signal charge accumulated in the charge storage section into predetermined unit charge fluxes and converting the signal charge into a time-series quantized signal charge flux sequence; biasing means for applying a predetermined voltage to the charge storage section to form a potential that becomes deeper toward the charge splitting section, such that the area of the charge storage section corresponding to the first electrode is larger than the area of the charge storage section corresponding to the first electrode. A charge-coupled quantization circuit characterized in that the area is smaller than the area of a charge storage section corresponding to an electrode, and all signal charges accumulated in the charge storage section are quantized. 2. The charge-coupled quantization circuit according to claim 1, wherein the width of the charge storage section becomes shorter toward the charge division section. 3. The charge-coupled quantization circuit according to claim 1 or 2, wherein the length of the first electrode in the electrode column direction is shorter than the length of the second electrode.
JP18214780A 1980-12-24 1980-12-24 Charge coupling type quantizing circuit Granted JPS57105893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18214780A JPS57105893A (en) 1980-12-24 1980-12-24 Charge coupling type quantizing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18214780A JPS57105893A (en) 1980-12-24 1980-12-24 Charge coupling type quantizing circuit

Publications (2)

Publication Number Publication Date
JPS57105893A JPS57105893A (en) 1982-07-01
JPH0123880B2 true JPH0123880B2 (en) 1989-05-09

Family

ID=16113174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18214780A Granted JPS57105893A (en) 1980-12-24 1980-12-24 Charge coupling type quantizing circuit

Country Status (1)

Country Link
JP (1) JPS57105893A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4231327B2 (en) 2003-04-23 2009-02-25 浜松ホトニクス株式会社 Solid-state imaging device
JP2005116754A (en) * 2003-10-07 2005-04-28 Hamamatsu Photonics Kk Semiconductor energy line detecting element
KR101108026B1 (en) * 2010-02-10 2012-01-25 이규태 Gantry crane device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5327382A (en) * 1976-08-26 1978-03-14 Philips Nv Photosensitive device and photosensitive element used therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5327382A (en) * 1976-08-26 1978-03-14 Philips Nv Photosensitive device and photosensitive element used therefor

Also Published As

Publication number Publication date
JPS57105893A (en) 1982-07-01

Similar Documents

Publication Publication Date Title
US4873561A (en) High dynamic range charge-coupled device
US4012759A (en) Bulk channel charge transfer device
US3969634A (en) Bucket background subtraction circuit for charge-coupled devices
US4173765A (en) V-MOS imaging array
GB2026769A (en) Charge transfer image sensors
US4807005A (en) Semiconductor device
US4131950A (en) Charge transfer device
US3902186A (en) Surface charge transistor devices
IE54240B1 (en) Charge-coupled device
US5902995A (en) CCD image sensor with overflow barrier for discharging excess electrons at high speed
JPH0123880B2 (en)
GB2054961A (en) Excess Charge Removal in Charge Transfer Devices
JP3259573B2 (en) Charge transfer device and driving method thereof
JPS6337994B2 (en)
JPS6249748B2 (en)
JPH02211640A (en) Charge transfer device
US4169231A (en) Buried channel to surface channel CCD charge transfer structure
JP4649989B2 (en) Solid-state imaging device
US4211937A (en) Multi-channel charge coupled transfer device
JPS60260154A (en) Driving method of charge coupled device
JPS6138624B2 (en)
DE3327075C1 (en) Infrared image sensor arrangements
JPS5853861A (en) Charge coupled element
JP3128338B2 (en) Charge transfer element
JP2745125B2 (en) Charge storage device