JPS6164152A - C-mos circuit - Google Patents

C-mos circuit

Info

Publication number
JPS6164152A
JPS6164152A JP59186785A JP18678584A JPS6164152A JP S6164152 A JPS6164152 A JP S6164152A JP 59186785 A JP59186785 A JP 59186785A JP 18678584 A JP18678584 A JP 18678584A JP S6164152 A JPS6164152 A JP S6164152A
Authority
JP
Japan
Prior art keywords
mos
mos circuit
power supply
input
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59186785A
Other languages
Japanese (ja)
Inventor
Atsuo Koshizuka
淳生 越塚
Kazuto Koyou
古用 和人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59186785A priority Critical patent/JPS6164152A/en
Publication of JPS6164152A publication Critical patent/JPS6164152A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electronic Switches (AREA)

Abstract

PURPOSE:To prevent a latch-up generated in a C-MOS circuit at a time when excess voltage is applied by connecting a Zener diode between an input/output terminal for the C-MOS circuit connected to a terminal pin and a power supply. CONSTITUTION:When Zener diodes D1, D2 are connected between an input terminal IN and a power supply VSS, no latch-up is generated even when excess positive voltage is applied to the input terminal IN. That is, the Zener diodes D1, D2 are broken down before a P-N junction between layers 28 and 10 is broken down at that time, and excess positive voltage is dropped to the power supply VSS (a ground). Accordingly, since the P-N junction between the layers 28 and 10 is not broken down, the potential rise of a substrate 10, the forward bias of a P-N junction between layers 14 and 10 and the ON of a transistor Qa, the latch-up of C-MOS inverters Q1, Q2, are not generated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、P型基板に形成されたC−MO5回路に関し
、過大入力時に生じるラッチアップを防止しようとする
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a C-MO5 circuit formed on a P-type substrate, and is intended to prevent latch-up that occurs when an excessive input is applied.

〔従来の技術〕[Conventional technology]

C−MO5回路はPチャネルMOSI−ランジスタとN
チャネルMOS)ランジスタを直列に電源V cc、 
 V ss間に接続し、これらのトランジスタのゲート
に共通に入力を加え、これらのトランジスタの直列接続
点を出力端とする。C−MOS回路を形成する半導体基
板はP型、N型いずれでもよいが、P型の場合を第3図
に示す。この図で10はP型半導体基板、12は基板1
0に形成したN型のウェル、14.16はP型基板10
に形成したN 型拡散層、20.22はN型のウェル1
2に形成したP+型拡散層、18.24はゲート電極で
ある。20,22.24はPチャネルMOSトランジス
タQ1を形成し、20.22はそのドレイン、ソース、
24がゲートである。14,16,18はNチャネルM
OSトランジスタを形成し、14.16がソース、ドレ
イン、18がゲートである。トランジスタQ1のソース
22は、ウェル12と共に電源Vccへ接続され、トラ
ンジスタQl、Q2のドレイン16.20は互いに接続
されて出力端OUTとなり、トランジスタQ2のソース
14は電源Vssへ接続される。一般にVccは5V、
Vssは0■であり、基4反10はグランドへ接続され
る。しかし、高速化や寄生素子効果の抑制を狙って基F
j、10へは−3,5〜−4,OVの負のバソクゲート
ハイアス電圧を与えるものがある。
The C-MO5 circuit consists of a P-channel MOSI-transistor and an N
channel MOS) transistor in series with power supply V cc,
Vss, a common input is applied to the gates of these transistors, and the series connection point of these transistors is used as an output terminal. The semiconductor substrate forming the C-MOS circuit may be of either P type or N type, and FIG. 3 shows the case of P type. In this figure, 10 is a P-type semiconductor substrate, 12 is a substrate 1
0 is an N-type well formed, 14.16 is a P-type substrate 10.
20.22 is the N type well 1 formed in the N type diffusion layer.
The P+ type diffusion layer formed at 2 and 18.24 are gate electrodes. 20, 22.24 form a P-channel MOS transistor Q1, and 20.22 is its drain, source,
24 is a gate. 14, 16, 18 are N channel M
An OS transistor is formed, and 14 and 16 are the source and drain, and 18 is the gate. The source 22 of the transistor Q1 is connected to the power supply Vcc together with the well 12, the drains 16 and 20 of the transistors Q1 and Q2 are connected to each other to form an output terminal OUT, and the source 14 of the transistor Q2 is connected to the power supply Vss. Generally Vcc is 5V,
Vss is 0■, and base 4 and 10 are connected to ground. However, with the aim of increasing speed and suppressing parasitic element effects,
There is one that applies a negative bathok gate high-ass voltage of -3.5 to -4.OV to j and 10.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

P型基板に負電圧を与えるC−MOS回路では、次の問
題がある。即ちP型基板のC−MOS回路ではN型ウェ
ル12とP型基板10とN++ソース領域14でNPN
 !−ランジスタ(Qaとする)を構成し、またP+型
ソース領域22とN型ウェル12とP型基板10でPN
P )ランリスク(Qbとする)を構成し、これらを全
体では第4図に示すようにサイリスクを構成する。この
サイリスクは2層10とN層14との間が導通伏感にな
れば全体が導通し、層22,12,10.14を通って
電源VccからVssへ電流が流れる。この電流は抵抗
などの電流制限素子がなければ短絡電流となり、場合に
よっては素子を破壊する。
A C-MOS circuit that applies a negative voltage to a P-type substrate has the following problem. That is, in a C-MOS circuit with a P-type substrate, the N-type well 12, the P-type substrate 10, and the N++ source region 14 are NPN.
! - A transistor (designated as Qa) is formed, and the P+ type source region 22, the N type well 12, and the P type substrate 10 form a PN transistor.
P) constitutes a run risk (referred to as Qb), and these collectively constitute a Sai risk as shown in Fig. 4. When this SiRisk becomes conductive between the second layer 10 and the N layer 14, the whole becomes conductive, and current flows from the power source Vcc to Vss through the layers 22, 12, 10.14. This current becomes a short-circuit current if there is no current limiting element such as a resistor, and may destroy the element in some cases.

しかし通常はこのようなことは起らない。即ち基板10
は負電位にバイアスされ、ソース領域14はVss(グ
ランド)へ接続されているなら、層14.10間のPN
接合は逆バイアスされており、電流は流れない。該電流
はトランジスタQaのヘース電流となるものであるから
、結局Qaはオフである。
However, this usually does not happen. That is, the substrate 10
is biased to a negative potential and source region 14 is connected to Vss (ground), the PN between layer 14.10
The junction is reverse biased and no current flows. Since this current becomes the hess current of the transistor Qa, Qa is turned off after all.

しかし入力INに過大な電圧が加わると、層14.10
間のPN接合がオンになることがある。
However, if too much voltage is applied to the input IN, layer 14.10
The PN junction between them may turn on.

即ちこの種のC−MOS回路ではトランジスタQ1、Q
2のゲート保護のために第5図に示すように、ゲート、
ソース間を短絡したMOS、トランジスタQ3が入力端
子IN、電源Vss間に接続される。第5図で26.2
8はN+型領領域、トランジスタQ3のソース、ドレイ
ン領域を形成する。
That is, in this type of C-MOS circuit, transistors Q1 and Q
As shown in FIG. 5, the gate,
A MOS transistor Q3 whose sources are short-circuited is connected between the input terminal IN and the power supply Vss. 26.2 in Figure 5
8 forms an N+ type region and the source and drain regions of the transistor Q3.

30はゲート電極でソース領域26と共に電源Vssへ
接続され、そしてドレイン領域28は入力端子INへ接
続される。入力端INにノイズなどにより正の過大電圧
例えば+24V程度が印加されるとドレイン領域28と
基板10との間のPN接合がブレークダウンし、過大電
圧はバルクへ落されて基板10の電位が上昇し、P型基
板10とN++層26との間のPN接合が順バイアスさ
れるという問題が生じる。即ち、基板10は負電位にバ
イアスされているが、この負電位はチャージポンプ型の
基板バイアス発生器によって与えられており、これは基
板を強力に負電圧に保持する能力はなくて、上記ブレー
クダウンで基板に多量の電荷が注入されると基板電位を
変動させてしまう。前述のように26.10間が順バイ
アスされて電流がaこれると、サイリスク (14,1
0,12,22)はオンになり、C−MOS回路がラッ
チアップする。
A gate electrode 30 is connected together with the source region 26 to the power supply Vss, and the drain region 28 is connected to the input terminal IN. When a positive excessive voltage, for example, about +24 V, is applied to the input terminal IN due to noise or the like, the PN junction between the drain region 28 and the substrate 10 breaks down, the excessive voltage is dropped to the bulk, and the potential of the substrate 10 increases. However, a problem arises in that the PN junction between the P-type substrate 10 and the N++ layer 26 is forward biased. That is, the substrate 10 is biased to a negative potential, but this negative potential is provided by a charge pump type substrate bias generator, which does not have the ability to strongly hold the substrate at a negative voltage, and does not cause the above-mentioned break. If a large amount of charge is injected into the substrate when the device is down, the substrate potential will fluctuate. As mentioned above, when the current is forward biased between 26.10 and the current is a, the si risk (14,1
0, 12, 22) are turned on, and the C-MOS circuit latches up.

本発明はか\る点を改善し、簡単な手段でC−MOS回
路のラッチアップを防止しようとするものである。
The present invention aims to improve these points and prevent latch-up of C-MOS circuits by simple means.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、バソクゲートハイアスの与えられる半導体基
板に形成されたC−MOS回路において、端子ピンに接
続される該C−MOS回路の入/出力端と電源間にゼナ
ーダイオードを接続して、該入出力端に過大電圧が印加
されるときC−MOS回路に発生するラッチアップを阻
止するようにしてなることを特徴とするものである。次
に実施例を参照しながら構成作用を説明する。
The present invention relates to a C-MOS circuit formed on a semiconductor substrate provided with a bathock gate bias, in which a Zener diode is connected between the input/output terminal of the C-MOS circuit connected to a terminal pin and the power supply. , is characterized in that latch-up that occurs in the C-MOS circuit when an excessive voltage is applied to the input/output terminal is prevented. Next, the structure and operation will be explained with reference to embodiments.

〔実施例〕〔Example〕

第1図は本発明の実施例を示し、(a+はC−MOS 
 LSIの入力段に通用した例、(blは同出力段に通
用した例を示す。QI  Q2はC−MOSインバータ
を構成するPチャネル、Nチャネル各MOSI−ランリ
スク、Q3はダ・イオード接続されたMOS)ランリス
クである。第1図(211に示すようにツェナーダイオ
ードDl、D2を入力端INと電流VSSとの間に接続
すれば、入力端INに過大正電圧が印加してもラソチア
・ノブは生じない。即ちこの場合は第5図の層28.1
0間のPN接合がブレークダウンする前にゼナーダイオ
ードD1゜D2がブレークダウンし、過大正電圧を電源
Vss(グランド)へ落としてしまうので、該層28゜
10間のPN接合のブレークダウンは発生せず、従って
基板10の電位上昇、層14,10間のPN接合の順バ
イアス、トランジスタQaのオン従ってC−MOSイン
バータQl、Q2のラッチアップは発生しない。
FIG. 1 shows an embodiment of the present invention, (a+ is C-MOS
An example that is applicable to the input stage of an LSI, (bl is an example that is applicable to the output stage of the same.QI Q2 is a P-channel, N-channel MOSI-run risk that constitutes a C-MOS inverter, and Q3 is a diode-connected (MOS) run risk. If Zener diodes Dl and D2 are connected between the input terminal IN and the current VSS as shown in FIG. 1 (211), the Lassocia knob will not occur even if an excessively positive voltage is applied to the input terminal IN. In this case, layer 28.1 in Figure 5
Before the PN junction between layers 28 and 10 breaks down, Zener diode D1゜D2 breaks down and drops the excessive positive voltage to the power supply Vss (ground), so the breakdown of the PN junction between layers 28 and 10 is Therefore, no rise in the potential of the substrate 10, no forward bias of the PN junction between the layers 14 and 10, no turning on of the transistor Qa, and no latch-up of the C-MOS inverters Q1 and Q2 occur.

第1図山)のような出力段回路でも、出力端OUTにノ
イズなどにより過大正電圧が印加されると、C−MOS
インバータQl、Q2にラッチアップが発生する。即ち
この場合もP型基板上のトランジスタQl、Q2は第3
図から推測されるようにサイリスクを構成しており、出
力端OUTに過大正電圧が印加すると層16.10間の
PN接合がブレークダウンし、基板10の電位を押し上
げ、層14.10間のPN接合を順バイアスし、サイリ
スク(14,10,12,22)をオンにする。
Even in an output stage circuit like the one shown in Fig. 1, if excessive positive voltage is applied to the output terminal OUT due to noise etc., the C-MOS
Latch-up occurs in inverters Ql and Q2. That is, in this case as well, the transistors Ql and Q2 on the P-type substrate are
As inferred from the figure, it constitutes a silicon risk, and when an excessively positive voltage is applied to the output terminal OUT, the PN junction between the layers 16 and 10 breaks down, pushing up the potential of the substrate 10 and increasing the voltage between the layers 14 and 10. Forward bias the PN junction and turn on the silicon risks (14, 10, 12, 22).

これを防くには出力端OUTと電源Vssとの間にツェ
ナーダイオードDi、D2を接続し、出力端OUTに過
大正電圧が加われば該ゼナーダイオードがブレークダウ
ンして該過大正電圧を電源Vssへ落すようにするのが
よい。
To prevent this, Zener diodes Di and D2 are connected between the output terminal OUT and the power supply Vss. It is better to let it fall.

ツェナーダイオ−)”Di、D2の直列接続個数及びツ
ェナーダイオード単体のブレークダウン電圧などは、上
記の層16.10間又は層28,10間のブレークダウ
ンが生じる前に該ゼナーダイオードがブレークダウンし
、そして正常な入出力信号電圧ではブレークダウンしな
いような値に選定する。ツェナーダイオードのブレーク
ダウン電圧は通常9■程度である。なお第1図(al、
 (b)の入力端IN及び出力端OUTはLSIパッケ
ージの端子ピンになるものであり、作業者の手が触れた
等により過大電圧が加わり易いものである。VcC。
The number of series-connected zener diodes (Di, D2) and the breakdown voltage of a single zener diode are such that the zener diode breaks down before the breakdown occurs between layers 16 and 10 or between layers 28 and 10. Then, select a value that will not cause breakdown under normal input/output signal voltages.The breakdown voltage of a Zener diode is usually about 9μ.
The input terminal IN and output terminal OUT in (b) serve as terminal pins of the LSI package, and are easily subject to excessive voltage when touched by an operator's hand. VcC.

Vssも端子ピンを通して外部より供給される電源であ
る。
Vss is also a power supply supplied from the outside through a terminal pin.

第2図はゼナーダイオードDI、D2のP型箔Fi10
上の構造を示す。P型基板10にN型ウェル36を形成
し、酸ウェルにP+型層34.N”型層40を形成し、
P型層34にはN+型層32をまたN 型層40にはP
 型層38を形成し、532.34でゼナーダイオード
D1をそして層38.40でゼナーダイオードD2を構
成する。
Figure 2 shows Zener diode DI, D2 P-type foil Fi10
The structure above is shown. An N-type well 36 is formed in the P-type substrate 10, and a P+-type layer 34 is formed in the acid well. forming an N” type layer 40;
The P type layer 34 has an N+ type layer 32, and the N type layer 40 has a P type layer 32.
A mold layer 38 is formed, forming a zener diode D1 at 532.34 and a zener diode D2 at layer 38.40.

Nウェル36により分離されているので、ゼナーダイオ
ードDi、D2がブレークダウンしても、チャージポン
プ型基板バイアス発生器により負電位を与えられている
基Fj、10の電位に変動を生じることはない。なおゼ
ナーダイオードD2側のNウェルは省略してもよい。
Since they are separated by the N well 36, even if the zener diodes Di and D2 break down, the potential of the groups Fj and 10, which are given a negative potential by the charge pump type substrate bias generator, will not change. do not have. Note that the N-well on the Zener diode D2 side may be omitted.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明ではゼナーダイオードを接続
するという簡単な手段でP基板搭載C−MOSインバー
タの過大正入力電圧時のラッチアップを防止でき、甚だ
有効である。
As explained above, the present invention is extremely effective in preventing latch-up of the P-substrate-mounted C-MOS inverter at the time of excessive positive input voltage by the simple means of connecting Zener diodes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す回路図、第2図はゼナー
ダイオードの構造を示す説明図、第3図〜第5図はラッ
チアップの説明図である。 図面で、10はP型半導体基板、Ql、Q2はC−MO
Sインバータを構成するMos+−ランリスク、IN、
OUTは人、出力端子ピン、Vcc。 Vssは電源、Di、D2はゼナーダイオード、Q3は
ダイオード接続されたMoSトランジスタである。
FIG. 1 is a circuit diagram showing an embodiment of the present invention, FIG. 2 is an explanatory diagram showing the structure of a Zener diode, and FIGS. 3 to 5 are explanatory diagrams of latch-up. In the drawing, 10 is a P-type semiconductor substrate, Ql, Q2 are C-MO
Mos + - run risk, IN, which constitutes the S inverter
OUT is human, output terminal pin, Vcc. Vss is a power supply, Di and D2 are Zener diodes, and Q3 is a diode-connected MoS transistor.

Claims (3)

【特許請求の範囲】[Claims] (1)バックゲートバイアスが与えられる半導体基板に
形成されたC−MOS回路において、端子ピンに接続さ
れる該C−MOS回路の入/出力端と電源間にゼナーダ
イオードを接続して、該入出力端に過大電圧が印加され
るときC−MOS回路に発生するラッチアップを阻止す
るようにしてなることを特徴とするC−MOS回路。
(1) In a C-MOS circuit formed on a semiconductor substrate to which a back gate bias is applied, a Zener diode is connected between the input/output terminal of the C-MOS circuit connected to the terminal pin and the power supply. A C-MOS circuit characterized in that it is configured to prevent latch-up occurring in the C-MOS circuit when an excessive voltage is applied to an input/output terminal.
(2)C−MOS回路が入力段C−MOS回路であり、
入力端とグランド側電源との間にダイオード接続された
MOSトランジスタが接続され、ゼナーダイオードは該
MOSトランジスタに並列に接続されたことを特徴とす
る特許請求の範囲第1項記載のC−MOS回路。
(2) The C-MOS circuit is an input stage C-MOS circuit,
The C-MOS according to claim 1, characterized in that a diode-connected MOS transistor is connected between the input terminal and the ground side power supply, and the Zener diode is connected in parallel to the MOS transistor. circuit.
(3)C−MOS回路が出力段C−MOS回路であり、
出力端とグランド側電源との間にゼナーダイオードが接
続されてなることを特徴とする特許請求の範囲第2項記
載のC−MOS回路。
(3) The C-MOS circuit is an output stage C-MOS circuit,
3. The C-MOS circuit according to claim 2, further comprising a Zener diode connected between the output terminal and a ground side power supply.
JP59186785A 1984-09-06 1984-09-06 C-mos circuit Pending JPS6164152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59186785A JPS6164152A (en) 1984-09-06 1984-09-06 C-mos circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59186785A JPS6164152A (en) 1984-09-06 1984-09-06 C-mos circuit

Publications (1)

Publication Number Publication Date
JPS6164152A true JPS6164152A (en) 1986-04-02

Family

ID=16194548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59186785A Pending JPS6164152A (en) 1984-09-06 1984-09-06 C-mos circuit

Country Status (1)

Country Link
JP (1) JPS6164152A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5276350A (en) * 1991-02-07 1994-01-04 National Semiconductor Corporation Low reverse junction breakdown voltage zener diode for electrostatic discharge protection of integrated circuits
JP2004512685A (en) * 2000-10-16 2004-04-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Integrated circuit with overvoltage protection and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211880A (en) * 1975-07-18 1977-01-29 Toshiba Corp Semiconductor integrated circuit device
JPS5771179A (en) * 1980-10-22 1982-05-01 Hitachi Ltd Input protective circuit device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211880A (en) * 1975-07-18 1977-01-29 Toshiba Corp Semiconductor integrated circuit device
JPS5771179A (en) * 1980-10-22 1982-05-01 Hitachi Ltd Input protective circuit device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5276350A (en) * 1991-02-07 1994-01-04 National Semiconductor Corporation Low reverse junction breakdown voltage zener diode for electrostatic discharge protection of integrated circuits
JP2004512685A (en) * 2000-10-16 2004-04-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Integrated circuit with overvoltage protection and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP3386042B2 (en) Semiconductor device
EP0305937B1 (en) Mos i/o protection using switched body circuit design
EP0145004A2 (en) Bipolar Transistor-Field Effect Transistor Composite Circuit
JP2528794B2 (en) Integrated circuit with latch-up protection circuit
JPS5869124A (en) Semiconductor integrated circuit
JPS63279491A (en) Semiconductor dynamic ram
JP3499578B2 (en) Semiconductor integrated circuit
JPS6164152A (en) C-mos circuit
JPS58197870A (en) Semiconductor device
US6433407B2 (en) Semiconductor integrated circuit
KR100223671B1 (en) Semiconductor memory device having multi-voltage
JPS5852869A (en) Semiconductor device
JPH0532908B2 (en)
JPH03102912A (en) Static electricity protecting circuit
JPS63301558A (en) Semiconductor integrated circuit device
JPH0444262A (en) Input circuit for mos integrated circuit
JPH058584B2 (en)
JPH0639455Y2 (en) MOS device protection circuit device
JPH0553075B2 (en)
JPH0945853A (en) Semiconductor device
JPS6337646A (en) C-mos output circuit
JPS60254651A (en) Input protection circuit for cmos circuit
JP2738277B2 (en) Interface circuit
JPS60160650A (en) Cmos integrated circuit
TW448604B (en) Power-on sequence induced latch-up protection device