JPH058584B2 - - Google Patents

Info

Publication number
JPH058584B2
JPH058584B2 JP57216821A JP21682182A JPH058584B2 JP H058584 B2 JPH058584 B2 JP H058584B2 JP 57216821 A JP57216821 A JP 57216821A JP 21682182 A JP21682182 A JP 21682182A JP H058584 B2 JPH058584 B2 JP H058584B2
Authority
JP
Japan
Prior art keywords
power supply
voltage
channel
circuit
supply voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57216821A
Other languages
Japanese (ja)
Other versions
JPS59107560A (en
Inventor
Osamu Minato
Toshiaki Masuhara
Toshio Sasaki
Akira Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57216821A priority Critical patent/JPS59107560A/en
Publication of JPS59107560A publication Critical patent/JPS59107560A/en
Publication of JPH058584B2 publication Critical patent/JPH058584B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0927Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising a P-well only in the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体集積回路装置に係り、特に微
細化MOSトランジスタより成るLSIに最適なLSI
の構成に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a semiconductor integrated circuit device, and in particular to an LSI that is optimal for an LSI consisting of miniaturized MOS transistors.
Regarding the configuration of

〔従来技術〕[Prior art]

従来、半導体集積回路においては、第1図に示
したように外部電源端子2と、接地端子3の間に
メモリ回路、論理回路、アナログ回路などから成
る回路部分1を接続して用いていた。近年、これ
らのIC、LSIは周辺ICとのインタフエースを重視
し、使い易さの点から外部電源電圧を5Vで用い
ている。
Conventionally, in a semiconductor integrated circuit, a circuit portion 1 consisting of a memory circuit, a logic circuit, an analog circuit, etc. has been connected between an external power supply terminal 2 and a ground terminal 3 as shown in FIG. In recent years, these ICs and LSIs have placed emphasis on interfacing with peripheral ICs, and have used an external power supply voltage of 5V for ease of use.

一方、内部回路を構成する絶縁ゲート形電界効
果トランジスタ(以下MOSトランジスタと略記
する)においては、比例縮少側にもとずいてデバ
イスの寸法が年々小さくなつており、LSIの高集
積、高性能化を可能にしてきた。ところが、デバ
イスの寸法を小さくしていくと、高エネルギの電
子がゲート絶縁膜に注入され、しきい電圧の変化
が相互コンダクタンスの低下などを生じる現象が
顕著になつてくる。例えば、ゲートとドレインに
所定の電圧を印加し30秒後に素子のしきい電圧を
測定するとその絶対値が変化する現象である。こ
のような条件での測定結果、ただしこのときドレ
インとソースを電圧印加時とは逆転させて測定を
行なつた結果を、第2図A,Bに示す。第2図A
はnチヤネルMOSトランジスタのしきい値電圧
変化を示し、第2図Bに示すpチヤネルMOSト
ランジスタよりもしきい電圧の変化が低い電圧で
起こりやすいことがわかる。また、特にnチヤネ
ルMOSトランジスタの場合には、もはや電源電
圧5Vでは信頼性の点で使用できない領域に近ず
きつつある。当然ながら、デバイスをさらに微細
化すれば上記現象が生じる電圧が増々低くなり、
電源電圧5ボルトで使用した場合、LSIの動作速
度が遅くなつたり、最悪の場合破壊に至るように
なる。
On the other hand, the dimensions of insulated gate field effect transistors (hereinafter abbreviated as MOS transistors) that make up internal circuits are becoming smaller year by year due to proportional shrinkage, and the high integration and high performance of LSIs are increasing. has made it possible to However, as the dimensions of devices are reduced, high-energy electrons are injected into the gate insulating film, and changes in threshold voltage cause a decrease in mutual conductance. For example, when a predetermined voltage is applied to the gate and drain and the threshold voltage of the element is measured 30 seconds later, the absolute value changes. The results of measurements under these conditions, provided that the drain and source were reversed from when voltage was applied, are shown in FIGS. 2A and 2B. Figure 2A
shows the change in threshold voltage of an n-channel MOS transistor, and it can be seen that the change in threshold voltage tends to occur at a lower voltage than that of the p-channel MOS transistor shown in FIG. 2B. Furthermore, especially in the case of n-channel MOS transistors, a power supply voltage of 5V is approaching a region where it can no longer be used in terms of reliability. Naturally, as devices become further miniaturized, the voltage at which the above phenomenon occurs becomes lower and lower.
If the LSI is used with a power supply voltage of 5 volts, the operating speed of the LSI will slow down, or in the worst case, it will be destroyed.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、微細化MOSトランジスタを
用いた相補型MOS(以下、CMOSと略記する)集
積回路において、上記の特性変動を生じないで高
集積、高性能のLSIを実現しうる集積回路装置を
提供することにある。
An object of the present invention is to realize an integrated circuit device that can realize a highly integrated, high-performance LSI without causing the above characteristic fluctuations in a complementary MOS (hereinafter abbreviated as CMOS) integrated circuit using miniaturized MOS transistors. Our goal is to provide the following.

〔発明の概要〕[Summary of the invention]

本発明の原理概念を第3図Aで説明する。第3
図Aにおいて、2は外部電源電圧端子(電圧
Vc1)5はVc1をもとにVc1よりも低く、微細化
MOSトランジスタで構成された主要回路部6の
特性変動をきたさない程度の電圧Vc2を発生させ
る電源回路部、7はVc2の端子である。本発明
は、第3図の破線で示した領域4を同一基板に集
積化し、外部から供給される電圧はVc1である
が、同一基板内で発生したVc2(<Vc1)によつて
主要回路を動作させることにある。
The principle concept of the present invention will be explained with reference to FIG. 3A. Third
In Figure A, 2 is an external power supply voltage terminal (voltage
V c1 ) 5 is lower than V c1 based on V c1 , and is refined
A power supply circuit section 7 generates a voltage V c2 that does not cause characteristic fluctuations of the main circuit section 6 composed of MOS transistors, and 7 is a terminal of V c2 . In the present invention, the region 4 indicated by the broken line in FIG. 3 is integrated on the same substrate, and the voltage supplied from the outside is V c1 , but it is The purpose is to operate the main circuits.

第3図BはVc1とVc2の関係を示したものであ
る。本発明では外部電源電圧がある値(Vc1′)
以上になるとVc2が一定値のままクランプされる
様な電源回路5を用いる。
FIG. 3B shows the relationship between V c1 and V c2 . In the present invention, the external power supply voltage is set to a certain value (V c1 ′)
If the voltage exceeds that level, a power supply circuit 5 is used in which V c2 is clamped at a constant value.

以上の様な構成をとることにより、(1)外部から
供給される電源電圧は従来と同様5Vが使用でき、
周辺ICとのインタフエースが容易で使い易いLSI
が実現できる、(2)内部回路を微細化MOSトラン
ジスタで構成しても、この電源電圧は外部より供
給される電圧より低いため特性変動などの悪影響
を受けることがない、(3)微細化MOSトランジス
タを用いて大容量、高速、低消費電力のメモリ
LSIや大規模論理LSIなどが信頼性よく実現でき
る。さらには、従来よりCMOS構造の内部に寄
生するpnpn型素子が低抵抗状態になつて異常な
大電流が電源と接地端子間に流れる、いわゆるラ
ツチアツプ現象に対しても、強い耐性を示す。何
故なら、n型基板にVc1、pチヤネルMOSトラン
ジスタのドレインとなるp+層にVc2、p型ウエル
に接地電圧、をそれぞれ印加することができ、従
来のVc1=Vc2となつている構造に比べ横形pnpバ
イポーラ・トランジスタが外部からの雑音電流に
対して動作しにくくなつているためである。
By adopting the above configuration, (1) an externally supplied power supply voltage of 5V can be used as before;
Easy-to-use LSI with easy interface with peripheral ICs
(2) Even if the internal circuit is configured with miniaturized MOS transistors, this power supply voltage is lower than the voltage supplied from the outside, so there will be no adverse effects such as characteristic fluctuations. (3) Miniaturized MOS Large capacity, high speed, low power consumption memory using transistors
LSI and large-scale logic LSI can be realized with high reliability. Furthermore, it is highly resistant to the so-called latch-up phenomenon, in which the parasitic pnpn type elements inside the conventional CMOS structure enter a low-resistance state and an abnormally large current flows between the power supply and ground terminals. This is because V c1 can be applied to the n-type substrate, V c2 to the p + layer which becomes the drain of the p-channel MOS transistor, and the ground voltage to the p-type well, and the conventional V c1 = V c2 . This is because lateral PNP bipolar transistors are less likely to operate against external noise currents than conventional structures.

〔実施例〕〔Example〕

まず第4図に示すのは、前項でのべたCMOS
構造を有する半導体回路に本発明を適用した実施
例を示す。外部電源電圧端子2から印加される電
圧Vc1はn+領域226を介してn型基板202に
印加される。またこの電圧Vc1は電源回路部5を
介して電圧Vc2に変換され、主要回路の各部に印
加される。図では便宜上電源回路部5を基板20
2とは別に記載しているが、実際には基板202
上にこの回路を形成する。p型ウエル204、及
び206はそれぞれp+領域208,210を介
して接地されている。また基板202の表面の
p+領域216,218で形成するp型MOSトラ
ンジスタと、p型ウエル204中のn+領域21
2,214で形成するn型MOSトランジスタと
でCMOSインバータを構成しており、p型トラ
ンジスタのドレイン216には電源回路部から電
圧Vc2が供給される。一方、p型ウエル206に
はn+領域220,222,224などで形成さ
れるnMOSトランジスタにより回路が形成され、
抵抗228を介して電圧Vc2が供給されている。
First, Figure 4 shows the CMOS described in the previous section.
An embodiment in which the present invention is applied to a semiconductor circuit having a structure will be described. Voltage V c1 applied from external power supply voltage terminal 2 is applied to n-type substrate 202 via n + region 226 . Further, this voltage V c1 is converted into a voltage V c2 via the power supply circuit section 5, and is applied to each section of the main circuit. In the figure, for convenience, the power supply circuit section 5 is replaced by the board 20.
Although it is described separately from 2, it is actually the board 202.
Form this circuit on top. P-type wells 204 and 206 are grounded via p + regions 208 and 210, respectively. Also, the surface of the substrate 202
A p-type MOS transistor formed by p + regions 216 and 218 and an n + region 21 in the p-type well 204
A CMOS inverter is configured with an n-type MOS transistor formed by transistors 2 and 214, and a voltage V c2 is supplied to the drain 216 of the p-type transistor from the power supply circuit section. On the other hand, a circuit is formed in the p-type well 206 by nMOS transistors formed of n + regions 220, 222, 224, etc.
A voltage V c2 is supplied via a resistor 228 .

第5図Aは第3図の構成を実現した実施例の回
路構成図、第5図Bは所定の電圧Vc2を得るため
の基準電圧VR発生回路構成図である。第5図に
おいて、401,402,403はpチヤネル
MOSトランジスタ、404,405,406,
407,408,423,424はnチヤネル
MOSトランジスタである。5の部分が第3図に
おける電源回路で401,402,404,47
5で構成される差動増幅器と、407なる定電流
源、407のゲート電圧を発生させるための41
5の抵抗とMOSダイオード406より成る回路
部分に分かれこれが、最終のpチヤネルMOSト
ランジスタ403を駆動する構成となつている。
FIG. 5A is a circuit configuration diagram of an embodiment that realizes the configuration of FIG. 3, and FIG. 5B is a circuit configuration diagram for generating a reference voltage V R for obtaining a predetermined voltage V c2 . In Figure 5, 401, 402, 403 are p channels
MOS transistor, 404, 405, 406,
407, 408, 423, 424 are n channels
It is a MOS transistor. The part 5 is the power supply circuit in Figure 3 and is 401, 402, 404, 47.
5, a constant current source 407, and 41 for generating the gate voltage of 407.
The circuit is divided into circuit parts each consisting of a resistor of 5 and a MOS diode 406, which drives the final p-channel MOS transistor 403.

従つて、電源回路5の差動増幅器は、差動接続
のMOSトランジスタ404,405と、この差
動接続のMOSトランジスタ404,405のド
レインにそのドレインが接続されたカレントミラ
ー接続の負荷MOSトランジスタ401,402
と定電流源MOSトランジスタ407とから構成
され、MOSトランジスタ405のゲートとMOS
トランジスタ404のゲートとはこの差動増幅器
の反転入力端子412と非反転入力端子411と
なり、MOSトランジスタ402,405のドレ
インはこの差動増幅器の出力となり、この出力は
pチヤネル出力MOSトランジスタ403のゲー
トに印加されている。405のゲート412(差
動増幅器の反転入力端子)に基準電圧VRを設定
すると、pチヤネル出力MOSトランジスタ40
3のドレイン出力413が404のゲート端子4
11と接続されているためフイードバツクがかか
り、出力413にはVRとほぼ同じ電圧Vc2が現わ
れる。
Therefore, the differential amplifier of the power supply circuit 5 includes differentially connected MOS transistors 404 and 405, and a current mirror connected load MOS transistor 401 whose drain is connected to the drains of the differentially connected MOS transistors 404 and 405. ,402
and a constant current source MOS transistor 407, and the gate of the MOS transistor 405 and the MOS
The gate of the transistor 404 becomes the inverting input terminal 412 and the non-inverting input terminal 411 of this differential amplifier, the drains of the MOS transistors 402 and 405 become the output of this differential amplifier, and this output becomes the gate of the p-channel output MOS transistor 403. is applied to. When a reference voltage V R is set to the gate 412 (inverting input terminal of the differential amplifier) of the p-channel output MOS transistor 40
The drain output 413 of 3 is the gate terminal 4 of 404
11, a feedback is applied, and a voltage V c2 approximately the same as V R appears at the output 413.

また、主要回路6に急激な電流変化があつた場
合に出力電圧の値が急激に変化しない様に、端子
7に大きな容量を付加するとよい。
Further, it is preferable to add a large capacitance to the terminal 7 so that the value of the output voltage does not change suddenly when there is a sudden change in current in the main circuit 6.

上記基準電圧VRの発生回路は、第5図Bに示
した様に、抵抗421とダイオード接続されたn
チヤネルMOSトランジスタ423,424等で
構成される。したがつて、nチヤネルMOSトラ
ンジスタのしきい電圧をVToとすると、VRn×
VToとなる。なお、nは縦属接続するnチヤネル
MOSトランジスタの個数で、この値は所望によ
り任意に設定すればよい。また、本実施例では、
nチヤネルMOSトランジスタと抵抗を用いて説
明したが、pチヤネルおよびnチヤネルMOSト
ランジスタと抵抗あるいは、すべてpチヤネル
MOSトランジスタを用いても容易に実現できる。
As shown in FIG. 5B, the reference voltage V R generation circuit consists of a resistor 421 and a diode-connected n
It is composed of channel MOS transistors 423, 424, etc. Therefore, if the threshold voltage of an n-channel MOS transistor is V To , then V R
It becomes V To . Note that n is vertically connected n channels.
This is the number of MOS transistors, and this value may be set arbitrarily as desired. In addition, in this example,
The explanation has been made using n-channel MOS transistors and resistors, but p-channel and n-channel MOS transistors and resistors, or all p-channel MOS transistors and resistors are used.
It can also be easily realized using MOS transistors.

従つて第5図A,Bの実施例によれば、差動接
続のMOSトランジスタ404,405と、カレ
ントミラー接続の負荷MOSトランジスタ401,
402とから構成された差動増幅器とpチヤネル
出力MOSトランジスタ403とは、基準電圧VR
が入力され、その出力から低出力インピーダンス
で同じ基準電圧VRを取り出すボルテージフオロ
ワーとして動作するので、電源端子7に接続され
た内部回路6の電流変動にもかかわらず、略一定
の第2の電源電圧Vc2を得ることができる。
Therefore, according to the embodiments shown in FIGS. 5A and 5B, the differentially connected MOS transistors 404 and 405 and the current mirror connected load MOS transistor 401,
402 and the p-channel output MOS transistor 403 are connected to a reference voltage V R
is input and operates as a voltage follower that extracts the same reference voltage V R from its output with low output impedance. The power supply voltage V c2 can be obtained.

また第5図Aの電源回路の実施例によれば、外
部からの第1の電源電圧Vc1が第5図Bの基準電
圧発生回路から発生される基準電圧VR≒n×VTo
以下に低下すると、第5図Bの基準電圧発生回路
のダイオード接続nチヤネルMOSトランジスタ
423,424がカツトオフするので、基準電圧
発生回路から発生される基準電圧VRは外部から
の第1の電源電圧Vc1とほぼ等しくなり、この場
合もpチヤネル出力MOSトランジスタ403の
ドレイン出力413から差動増幅器の非反転入力
端子411へのフイードバツクにより出力413
から得られる第2の電源電圧Vc2も外部からの第
1の電源電圧Vc1とほぼ等しくなろうとする。こ
の際に、差動増幅器の出力413としてのMOS
トランジスタ402,405の共通ドレインは低
レベルの接地電位に向かつて変化することができ
るので、pチヤネル出力MOSトランジスタ40
3は充分導通状態に駆動され、外部からの第1の
電源電圧Vc1は導通状態のpチヤネル出力MOSト
ランジスタ403のソース・ドレイン経路を介し
て第2の電源電圧Vc2として出力413から得ら
れることができる。このように、外部からの第1
の電源電圧Vc1が基準電圧VR以下に低下した場合
に、第5図A,Bの電源回路はほぼ電圧ロスする
ことなくほぼそのまま第2の電源電圧Vc2として
内部回路に供給することが可能となるものであ
る。
Further, according to the embodiment of the power supply circuit shown in FIG. 5A, the first power supply voltage V c1 from the outside is the reference voltage V R ≒n×V To generated from the reference voltage generation circuit shown in FIG. 5B.
When the voltage decreases to below, the diode-connected n-channel MOS transistors 423 and 424 of the reference voltage generation circuit shown in FIG. V c1 , and in this case as well, the output 413 is caused by feedback from the drain output 413 of the p-channel output MOS transistor 403 to the non-inverting input terminal 411 of the differential amplifier.
The second power supply voltage V c2 obtained from the second power supply voltage V c2 also tends to be approximately equal to the first power supply voltage V c1 from the outside. At this time, the MOS as the output 413 of the differential amplifier
Since the common drains of transistors 402 and 405 can be varied towards a low level ground potential, p-channel output MOS transistor 40
3 is driven to a sufficiently conductive state, and the first power supply voltage V c1 from the outside is obtained as the second power supply voltage V c2 from the output 413 via the source-drain path of the p-channel output MOS transistor 403 in the conductive state. be able to. In this way, the first
When the power supply voltage Vc1 drops below the reference voltage VR , the power supply circuits shown in FIGS. 5A and B can supply the second power supply voltage Vc2 almost unchanged to the internal circuits with almost no voltage loss. It is possible.

以上の半導体集積回路は、主要回路部6と同一
チツプ上に集積されるが、上記電源回路部自体が
特性変動を生じてはならない。そこで、第5図A
の回路ブロツク6以外のMOSトランジスタは、
回路ブロツク6のMOSトランジスタよりチヤネ
ル長の長いものが望ましい。特に、nチヤネル
MOSトランジスタは、前記したように高電圧に
弱いため、長いチヤネル長のものを使用する必要
がある。例えば、Vc1を5Vで動作させるとき、主
要回路部6にチヤネル長1ミクロン〜1.5ミクロ
ンあるいはそれ以下のnチヤネルMOSトランジ
スタを用いた場合、電源回路部5のnチヤネル
MOSトランジスタは2ミクロン以上のチヤネル
長で十分である。また、pチヤネルMOSトラン
ジスタは、その特性に応じて、主要回路部6と同
じチヤネル長か、もしくは上述したnチヤネル
MOSトランジスタの場合と同様の対応をとるこ
とが望ましい。
Although the semiconductor integrated circuit described above is integrated on the same chip as the main circuit section 6, the power supply circuit section itself must not cause characteristic fluctuations. Therefore, Figure 5A
The MOS transistors other than circuit block 6 are as follows:
It is desirable that the channel length be longer than that of the MOS transistor of circuit block 6. In particular, n-channel
Since MOS transistors are sensitive to high voltages as described above, it is necessary to use ones with long channel lengths. For example, when operating V c1 at 5V, if an n-channel MOS transistor with a channel length of 1 to 1.5 microns or less is used in the main circuit section 6, the n-channel MOS transistor in the power supply circuit section 5
A channel length of 2 microns or more is sufficient for a MOS transistor. Depending on its characteristics, the p-channel MOS transistor may have the same channel length as the main circuit section 6, or may have the same channel length as the above-mentioned n-channel MOS transistor.
It is desirable to take the same measures as in the case of MOS transistors.

第6図は、本発明の参考例を示したものであ
る。第6図において、5は電源回路部、413は
5の出力端子部、411は電源回路へのフイード
バツク端子で、主要回路部6の電源端子7に接続
されている。さらに、413と7の間にはnpn型
バイポーラトランジスタ501と502がダーリ
ントン接続されている。本参考例の特徴は、微細
化MOSトランジスタで構成された主要回路部6
に大電流を供給しやすくし、かつ、413の負荷
を小さくして第4図の電源回路5が高速動作でき
る様に、上記バイポーラ・トランジスタを電流供
給用デバイスとして用いた点にある。本参考例で
は、バイポーラ・トランジスタ2段のダーリント
ン接続で説明したが、高性能のバイポーラ・トラ
ンジスタを用いれば1段だけでよく、また、複数
個のバイポーラ・トランジスタのダーリントン接
続あるいは並列接続でもよい。413と411
(7)の間に上記バイポーラ・トランジスタを設
けても、本発明の目的であるVRVc2の特性がえ
られることは言うまでもなく、大電流領域に至る
まで、Vc2の電位低下がなく良好な特性が実験結
果からえられている。503なる容量は、主要回
路部6で急激な電流変化があつても端子7の電圧
が急激に変動せず、6の電気的特性に支障を与え
ない様にするために設けたものである。
FIG. 6 shows a reference example of the present invention. In FIG. 6, reference numeral 5 denotes a power supply circuit section, 413 an output terminal section of 5, and 411 a feedback terminal to the power supply circuit, which is connected to the power supply terminal 7 of the main circuit section 6. Further, between 413 and 7, npn type bipolar transistors 501 and 502 are connected in Darlington. The feature of this reference example is that the main circuit section 6 is composed of miniaturized MOS transistors.
The above-mentioned bipolar transistor is used as a current supply device so that a large current can be easily supplied to the circuit 413, and the load on the circuit 413 can be reduced so that the power supply circuit 5 shown in FIG. 4 can operate at high speed. In this reference example, a Darlington connection of two stages of bipolar transistors has been described, but if high-performance bipolar transistors are used, only one stage is sufficient, or a Darlington connection or parallel connection of a plurality of bipolar transistors may be used. 413 and 411
Even if the above-mentioned bipolar transistor is provided between (7), it goes without saying that the characteristics of V R V c2 , which is the object of the present invention, can be obtained, and there is no potential drop in V c2 even in the large current region, which is good. These characteristics have been obtained from experimental results. The capacitor 503 is provided in order to prevent the voltage at the terminal 7 from changing rapidly even if there is a sudden change in current in the main circuit section 6, and to prevent the electrical characteristics of the main circuit section 6 from being adversely affected.

上述したnpn型バイポーラ・トランジスタは、
通常のCMOS構造で容易に実現できる。すなわ
ち、n形基板をコレクタ、p形ウエルをベース、
n形高濃度層をエミツタとすればよい。コレクタ
が同一基板で共通であり、ダーリントン接続も容
易にできる。
The npn bipolar transistor mentioned above is
This can be easily realized using a normal CMOS structure. That is, the n-type substrate is the collector, the p-type well is the base,
The n-type high concentration layer may be used as an emitter. The collectors are common on the same board, making Darlington connections easy.

第6図で示した本参考例では、第1の電源電圧
Vc1が基準電圧VRより高い場合は、第2の電源電
圧Vc2≒VRとなり、正常な動作を達成することが
できるが、第1の電源電圧Vc1が基準電圧発生回
路の基準電圧VR以下に低下すると、下記の理由
により第2の電源電圧Vc2≒第1の電源電圧Vc1
とすることができず、電圧ロスが生じてしまうも
のである。
In this reference example shown in Fig. 6, the first power supply voltage
When V c1 is higher than the reference voltage VR , the second power supply voltage V c2 ≒ V R and normal operation can be achieved. When the voltage drops below V R , the second power supply voltage V c2 ≒ the first power supply voltage V c1 due to the following reason.
Therefore, voltage loss will occur.

すなわち、電源回路5の出力413からのフイ
ードバツク411により、出力7から得られる第
2の電源電圧Vc2が第1の電源電圧Vc1と等しく
なるためには、ダーリントン接続されたnpn型バ
イポーラトランジスタ501,502のベース・
エミツタ間電圧2VBEだけ出力7より高い電圧を
電源回路5の出力413が出力して、トランジス
タ501のベースを駆動する必要がある。
That is, in order for the second power supply voltage V c2 obtained from the output 7 to become equal to the first power supply voltage V c1 due to the feedback 411 from the output 413 of the power supply circuit 5, the Darlington-connected npn bipolar transistor 501 must be ,502 base・
The output 413 of the power supply circuit 5 must output a voltage higher than the output 7 by the emitter voltage 2V BE to drive the base of the transistor 501.

これに必要なベース駆動電圧はVc1+2VBEであ
るのに対し、第1の電源電圧Vc1が供給される電
源回路5の出力413の最大出力はVc1でり、到
底Vc1+2VBEの電圧は出力することができない。
The base drive voltage required for this is V c1 +2V BE , whereas the maximum output of the output 413 of the power supply circuit 5 to which the first power supply voltage V c1 is supplied is V c1 , and it is impossible to exceed V c1 +2V BE . Voltage cannot be output.

従つて、第6図の本参考例では、出力7より得
られる第2の電源電圧Vc2はVc1−2VBEとなり、
外部からの第1の電源電圧Vc1が基準電圧VR以下
に低下した場合に電圧ロスすることなくそのまま
第2の電源電圧Vc2として内部回路に供給するこ
とが不可能となるものである。
Therefore, in this reference example shown in FIG. 6, the second power supply voltage V c2 obtained from the output 7 becomes V c1 −2V BE ,
When the first power supply voltage V c1 from the outside falls below the reference voltage VR , it becomes impossible to directly supply it to the internal circuit as the second power supply voltage V c2 without voltage loss.

このような、電圧ロスは第6図のダーリントン
接続npn型バイポーラトランジスタ501,50
2をnチヤネル出力MOSトランジスタに置換し
た場合も生じるものとなり、かかる置換の際の電
圧ロスはnチヤネル出力MOSトランジスタのゲ
ート・ソース間のしきい値電圧Vthとなることが
理解できる。
Such voltage loss is caused by the Darlington-connected npn bipolar transistors 501 and 50 in FIG.
This also occurs when 2 is replaced with an n-channel output MOS transistor, and it can be understood that the voltage loss at the time of such replacement becomes the threshold voltage V th between the gate and source of the n-channel output MOS transistor.

第7図は、本発明の他の実施例を示したもので
ある。第7図において、601,602は電源回
路部、603,604は微細化MOSトランジス
タで構成された主要回路部である。本実施例の特
徴は、主要回路部を複数に分割し、それぞれの電
源605,606を個々の電源回路から供給する
ことにある。本構成により、主要回路部に流れる
電流を分散して供給することができ、急激な電流
の変化、あるいは大電流に対しても、同一チツプ
内で十分に対処することができる。
FIG. 7 shows another embodiment of the invention. In FIG. 7, 601 and 602 are power supply circuit sections, and 603 and 604 are main circuit sections composed of miniaturized MOS transistors. The feature of this embodiment is that the main circuit section is divided into a plurality of parts, and the respective power supplies 605 and 606 are supplied from individual power supply circuits. With this configuration, the current flowing to the main circuits can be distributed and supplied, and even sudden changes in current or large currents can be adequately coped with within the same chip.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、主要回路の素子
を微細化しても、これに伴なう特性変動などの悪
影響がなく、しかも従来の集積回路と同一の電源
で用いることができる高集積、高信頼性の集積回
路を得ることができ、CMOS構造のラツチアツ
プ現象に対しても強い耐性をもたせることができ
る。
As described above, according to the present invention, even if the elements of the main circuit are miniaturized, there is no adverse effect such as characteristic fluctuations due to this, and moreover, the present invention is a highly integrated circuit that can be used with the same power supply as a conventional integrated circuit. A highly reliable integrated circuit can be obtained, and it can also be made highly resistant to the latch-up phenomenon of a CMOS structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の集積回路の構成、第2図A,B
はMOSトランジスタのしきい値変化を示す特性
図、第3図A,Bは本発明の基本構成を示すブロ
ツク図、及びその特性図、第4図は本発明の実施
例の断面図、第5図、第7図はそれぞれ本発明の
実施例を示すブロツク図、第6図は本発明の参考
例を示すブロツク図である。 2…外部電源電圧端子、5…電源回路、6…主
要回路、401,402,403…pチヤネル
MOSトランジスタ、404,405,406,
407,408,423,424…nチヤネル
MOSトランジスタ。
Figure 1 shows the configuration of a conventional integrated circuit, Figure 2 A and B
3A and 3B are block diagrams showing the basic configuration of the present invention and their characteristic diagrams. FIG. 4 is a sectional view of an embodiment of the present invention. 7 are block diagrams showing embodiments of the present invention, and FIG. 6 is a block diagram showing a reference example of the present invention. 2... External power supply voltage terminal, 5... Power supply circuit, 6... Main circuit, 401, 402, 403... p channel
MOS transistor, 404, 405, 406,
407, 408, 423, 424...n channel
MOS transistor.

Claims (1)

【特許請求の範囲】 1 外部から供給される第1の電源電圧で動作
し、該第1の電源電圧より低い第2の電源電圧を
出力する電源回路を半導体集積回路装置の基板上
に設け、 該基板上に形成されるとともに1ミクロン乃至
1.5ミクロンあるいはそれ以下のチヤネル長の
MOSトランジスタを有する内部回路を上記電源
回路から出力された上記第2の電源電圧で動作せ
しめ、 上記電源回路は、 上記第1の電源電圧が供給されることにより基
準電圧を発生する基準電圧発生回路と、 その反転入力端子に上記基準電圧発生回路から
発生された上記基準電圧が供給される差動増幅器
と、 そのゲートが該差動増幅器の出力に接続され、
そのソースが上記第1の電源電圧に接続され、そ
のドレイン出力が上記差動増幅器の非反転入力端
子にフイードバツクされるpチヤネル出力MOS
トランジスタから構成され、 該pチヤネル出力MOSトランジスタの該ドレ
イン出力より上記第2の電源電圧を得ることを特
徴とする半導体集積回路装置。 2 上記電源回路の上記差動増幅器は、 上記反転入力端子と上記非反転入力端子とにそ
のゲートが接続された差動接続のMOSトランジ
スタと、 該差動接続のMOSトランジスタのドレインに
そのドレインが接続されたカレントミラー接続の
負荷MOSトランジスタとを含むことを特徴とす
る特許請求の範囲第1項記載の半導体集積回路装
置。 3 上記電源回路の上記基準電圧発生回路は従属
接続されたダイオード接続の複数のMOSトラン
ジスタを含むことを特徴とする特許請求の範囲第
1項または第2項記載の半導体集積回路装置。 4 上記電源回路は、上記内部回路で用いるpチ
ヤネルおよびnチヤネルMOSトランジスタのチ
ヤネル長よりも長いチヤネル長を有するpチヤネ
ルおよびnチヤネルMOSトランジスタを基本構
成とする素子で構成されることを特徴とする特許
請求の範囲第1項から第3項のいずれかに記載の
半導体集積回路装置。 5 上記第2の電源電圧に、上記基板上に集積し
た容量を付加したことを特徴とする特許請求の範
囲第4項記載の半導体集積回路装置。 6 上記電源回路は、上記基板上で複数個設けら
れ、該電源回路より出力される複数個の第2の電
源で複数個に分割した内部回路を動作させること
を特徴とする特許請求の範囲第4項または第5項
に記載の半導体集積回路装置。 7 内部回路を上記電源回路から出力された上記
第2の電源電圧で動作せしめることにより上記チ
ヤネル長を有するMOSトランジスタのしきい値
電圧の変化を防止したことを特徴とする特許請求
の範囲第1項から第6項のいずれかに記載の半導
体集積回路装置。
[Scope of Claims] 1. A power supply circuit that operates with a first power supply voltage supplied from the outside and outputs a second power supply voltage lower than the first power supply voltage is provided on the substrate of the semiconductor integrated circuit device, 1 micron to 1 micron while being formed on the substrate.
Channel lengths of 1.5 microns or less
An internal circuit having a MOS transistor is operated by the second power supply voltage outputted from the power supply circuit, and the power supply circuit is a reference voltage generation circuit that generates a reference voltage by being supplied with the first power supply voltage. and a differential amplifier whose inverting input terminal is supplied with the reference voltage generated from the reference voltage generation circuit, the gate of which is connected to the output of the differential amplifier,
A p-channel output MOS whose source is connected to the first power supply voltage and whose drain output is fed back to the non-inverting input terminal of the differential amplifier.
A semiconductor integrated circuit device comprising a transistor, wherein the second power supply voltage is obtained from the drain output of the p-channel output MOS transistor. 2 The differential amplifier of the power supply circuit includes a differentially connected MOS transistor whose gate is connected to the inverting input terminal and the non-inverting input terminal, and whose drain is connected to the drain of the differentially connected MOS transistor. 2. The semiconductor integrated circuit device according to claim 1, further comprising a current mirror connected load MOS transistor. 3. The semiconductor integrated circuit device according to claim 1 or 2, wherein the reference voltage generation circuit of the power supply circuit includes a plurality of cascaded diode-connected MOS transistors. 4. The power supply circuit is characterized in that it is composed of elements whose basic configuration is p-channel and n-channel MOS transistors having channel lengths longer than those of the p-channel and n-channel MOS transistors used in the internal circuit. A semiconductor integrated circuit device according to any one of claims 1 to 3. 5. The semiconductor integrated circuit device according to claim 4, wherein a capacitor integrated on the substrate is added to the second power supply voltage. 6. A plurality of the power supply circuits are provided on the substrate, and a plurality of second power supplies outputted from the power supply circuit operate internal circuits divided into a plurality of parts. The semiconductor integrated circuit device according to item 4 or 5. 7. Claim 1, characterized in that a change in the threshold voltage of the MOS transistor having the channel length is prevented by operating the internal circuit with the second power supply voltage output from the power supply circuit. 7. The semiconductor integrated circuit device according to any one of items 6 to 6.
JP57216821A 1982-12-13 1982-12-13 Semiconductor integrated circuit device Granted JPS59107560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57216821A JPS59107560A (en) 1982-12-13 1982-12-13 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57216821A JPS59107560A (en) 1982-12-13 1982-12-13 Semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPS59107560A JPS59107560A (en) 1984-06-21
JPH058584B2 true JPH058584B2 (en) 1993-02-02

Family

ID=16694414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57216821A Granted JPS59107560A (en) 1982-12-13 1982-12-13 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS59107560A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2869791B2 (en) * 1988-08-31 1999-03-10 株式会社日立製作所 Semiconductor integrated circuit device and electronic device using the same
JPH02196469A (en) * 1989-01-25 1990-08-03 Fujitsu Ltd Semiconductor device
DE69532553T2 (en) 1994-11-30 2004-12-23 Sharp K.K. processor
JP3068513B2 (en) * 1997-07-04 2000-07-24 日本電気株式会社 Semiconductor device and manufacturing method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5423340A (en) * 1977-07-22 1979-02-21 Hitachi Ltd Mis semiconductor integrated circuit
JPS5539412A (en) * 1978-09-13 1980-03-19 Hitachi Ltd Insulating gate field effect transistor integrated circuit and its manufacture
JPS5673468A (en) * 1979-11-21 1981-06-18 Toshiba Corp Mos type semiconductor device
JPS5693360A (en) * 1979-12-26 1981-07-28 Mitsubishi Electric Corp Semiconductor device
JPS56115570A (en) * 1980-02-18 1981-09-10 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS56146275A (en) * 1980-02-29 1981-11-13 Chiyou Lsi Gijutsu Kenkyu Kumiai Insulating gate type field-effect transistor
JPS56146276A (en) * 1980-02-29 1981-11-13 Chiyou Lsi Gijutsu Kenkyu Kumiai Insulating gate type field-effect transistor
JPS5710822A (en) * 1980-06-23 1982-01-20 Toshiba Corp Integrated circuit device
JPS5741721A (en) * 1980-08-26 1982-03-09 Seiko Instr & Electronics Ltd Constant voltage power circuit
JPS57126161A (en) * 1981-01-28 1982-08-05 Nec Corp Integrated circuit device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5423340A (en) * 1977-07-22 1979-02-21 Hitachi Ltd Mis semiconductor integrated circuit
JPS5539412A (en) * 1978-09-13 1980-03-19 Hitachi Ltd Insulating gate field effect transistor integrated circuit and its manufacture
JPS5673468A (en) * 1979-11-21 1981-06-18 Toshiba Corp Mos type semiconductor device
JPS5693360A (en) * 1979-12-26 1981-07-28 Mitsubishi Electric Corp Semiconductor device
JPS56115570A (en) * 1980-02-18 1981-09-10 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS56146275A (en) * 1980-02-29 1981-11-13 Chiyou Lsi Gijutsu Kenkyu Kumiai Insulating gate type field-effect transistor
JPS56146276A (en) * 1980-02-29 1981-11-13 Chiyou Lsi Gijutsu Kenkyu Kumiai Insulating gate type field-effect transistor
JPS5710822A (en) * 1980-06-23 1982-01-20 Toshiba Corp Integrated circuit device
JPS5741721A (en) * 1980-08-26 1982-03-09 Seiko Instr & Electronics Ltd Constant voltage power circuit
JPS57126161A (en) * 1981-01-28 1982-08-05 Nec Corp Integrated circuit device

Also Published As

Publication number Publication date
JPS59107560A (en) 1984-06-21

Similar Documents

Publication Publication Date Title
KR0132053B1 (en) Semiconductor integrated circuit device and its composite electronic device
JPS60500433A (en) Substrate bias control circuit and method
US5751168A (en) Bus switch integrated circuit with voltage translation
JPS62272620A (en) Logic circuit
US5942784A (en) Semiconductor device
JP2724872B2 (en) Input circuit for semiconductor integrated circuit
US5338986A (en) Latch-up resistant CMOS output circuit
JPH08181598A (en) Semiconductor device
JPS63279491A (en) Semiconductor dynamic ram
JP2560018B2 (en) CMOS circuit
KR940004402B1 (en) Semiconductor memory device containing sense amplifier
EP0320582A2 (en) Bicmos driver circuit including submicron on-chip voltage source
JPH058584B2 (en)
JPH06325569A (en) Middle voltage generating circuit for semiconductor integrated circuit
US4855624A (en) Low-power bipolar-CMOS interface circuit
US5682120A (en) Differential amplifier circuit using lateral-type bipolar transistors with back gates
JPS58130557A (en) C-mos device
US6982597B2 (en) Differential input circuit
JP3165751B2 (en) Semiconductor integrated circuit device
JP2549729B2 (en) Semiconductor integrated circuit
JP3274561B2 (en) Semiconductor integrated circuit
JPH07235608A (en) Semiconductor integrated circuit device
JPS6233752B2 (en)
JPH0157504B2 (en)
JP3190169B2 (en) Semiconductor integrated circuit