JPH07235608A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH07235608A
JPH07235608A JP6026421A JP2642194A JPH07235608A JP H07235608 A JPH07235608 A JP H07235608A JP 6026421 A JP6026421 A JP 6026421A JP 2642194 A JP2642194 A JP 2642194A JP H07235608 A JPH07235608 A JP H07235608A
Authority
JP
Japan
Prior art keywords
power supply
terminal
well
standby current
side control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6026421A
Other languages
Japanese (ja)
Inventor
Kenji Shiozawa
健治 塩沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6026421A priority Critical patent/JPH07235608A/en
Publication of JPH07235608A publication Critical patent/JPH07235608A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To select a standby current by a method wherein a signal is given from an outer terminal, and a depletion type MOS transistor is operated as an enhancement type MOS transistor by changing threshold voltage. CONSTITUTION:A power supply terminal 3A and a power supply side control terminal 3B are provided on an N-well 2A, and a ground terminal 4A and a ground side control terminal 4B are provided on a P-well 2B. Accordingly, the potential of power feeding of the P-well 2A can be controlled by either of the power supply side control terminal 3B and the ground side control terminal 4B in this constitution. As the potential of the well is separated from the power supply and the ground and it can be controlled by an external terminal, the threshold voltage (Vth) can be controlled by the substrate effect of a MOS Tr, a depletion type MOS Tr can be operated as an enhancement MOS Tr, and a standby current selection can be performed by suppressing the standby current.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高速化を図るためディ
プレッション型MOSトランジスタ(Tr)(低しきい
値電圧VthのTr含む)を用いた半導体集積回路装置に
関し、特に、選別時に、外部端子から信号を与えること
で、しきい値電圧Vthを変動させディプレッション型M
OSTr(低Vth)をエンハンスメント型MOSTrと
して動作させ、スタンバイ電流Iddsテストを可能にし
た半導体集積回路装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit device using a depletion type MOS transistor (Tr) (including Tr having a low threshold voltage Vth) in order to speed up the operation, and particularly to an external terminal at the time of selection. The threshold voltage Vth is changed by applying a signal from the depletion type M
The present invention relates to a semiconductor integrated circuit device in which an OSTr (low Vth) is operated as an enhancement type MOSTr to enable a standby current Idds test.

【0002】[0002]

【従来の技術】従来、VLSI等の半導体集積回路装置
の高集積化が進み、トランジスタの駆動能力の向上を図
る数々の方法が提案されている。その中の一手法が、低
Vth化である。低Vth化を図ったMOSデバイスは、ノ
ーマリーON(ディプレッション型)MOSTrとし
て、回路設計を行うことで、高速のLSIが実現でき
る。
2. Description of the Related Art Conventionally, a semiconductor integrated circuit device such as a VLSI has been highly integrated, and various methods for improving the driving capability of a transistor have been proposed. One of them is the reduction of Vth. A MOS device with a reduced Vth can be realized as a normally-on (depletion type) MOSTr by designing a circuit to realize a high-speed LSI.

【0003】[0003]

【発明が解決しようとする課題】本発明者は、前記従来
の半導体集積回路装置を検討した結果、以下の問題点を
見い出した。
The present inventor has found the following problems as a result of studying the conventional semiconductor integrated circuit device.

【0004】ノーマリーON(ディプレッション型:低
Vth含)MOSTrを用いた集積回路では、選別時にお
いてスタンバイ電流Iddsが、数十〜数百uA程度流れ
スタンバイ電流選別(ウエハプローブ検査)ができなく
なる。スタンバイ電流選別は、MOS集積回路の信頼度
を確保する上で重要なテスト項目である。
In an integrated circuit using a normally-on (depletion type: including low Vth) MOSTr, the standby current Idds flows in the order of several tens to several hundreds uA during the selection, and the standby current selection (wafer probe inspection) cannot be performed. Standby current selection is an important test item for ensuring the reliability of MOS integrated circuits.

【0005】本発明の目的は、高速のディプレッション
型半導体集積回路装置において、スタンバイ電流Idds
テストを可能にした半導体集積回路装置を提供すること
にある。
An object of the present invention is to provide a standby current Idds in a high speed depletion type semiconductor integrated circuit device.
An object is to provide a semiconductor integrated circuit device that enables a test.

【0006】本発明の前記ならびにその他の目的及び新
規な特徴は、本明細書の記述及び添付図面によって明ら
かになるであろう。
The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

【0007】[0007]

【課題を解決するための手段】本願において開示される
発明のうち代表的なものの概要を簡単に説明すれば、下
記のとおりである。
The outline of the representative ones of the inventions disclosed in the present application will be briefly described as follows.

【0008】ディプレッション型MOSTrを用いた半
導体集積回路装置において、選別時に、外部端子から信
号を与え、しきい値電圧を変動させてディプレッション
型MOSTrをエンハンスメント型MOSTrとして動
作させる手段を備えたものである。
A semiconductor integrated circuit device using a depletion type MOSTr is provided with means for applying a signal from an external terminal at the time of selection to change the threshold voltage to operate the depletion type MOSTr as an enhancement type MOSTr. .

【0009】[0009]

【作用】前述の手段によれば、外部端子より、WELL
の電位をコントロールすることで、MOSTrの基盤効
果により、Vthを制御し、ノーマリーON(ディプレッ
ション型:低Vth含)MOSTrを、エンハンスメント
型MOSTrとして動作させ、スタンバイ電流Iddsを
抑制してスタンバイ電流選別を行えるようにしたので、
高速のディプレッション型半導体集積回路装置におい
て、スタンバイ電流Iddsテストが可能となる。
According to the above-mentioned means, the WELL is connected from the external terminal.
Vth is controlled by controlling the potential of the MOSTr by the base effect of the MOSTr, and the normally-on (depletion type: including low Vth) MOSTr is operated as the enhancement-type MOSTr to suppress the standby current Idds and select the standby current. Because I was able to do it,
A standby current Idds test can be performed in a high-speed depletion type semiconductor integrated circuit device.

【0010】[0010]

【実施例】以下、本発明による実施例を図面を用いて詳
細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0011】図1は、本発明によるディプレッション型
半導体集積回路装置の一実施例であるCMOSインバー
タの要部の構成を示す平面図、図2は、図1のA−A線
で切った断面図であり、1はシリコン基板、2AはN-
WELL(電源側のWELL)、2BはP-WELL
(グランド側のWELL)、3Aは電源端子(Vdd)、
3Bは電源側コントロール端子、4Aはグランド端子、
4Bはグランド側コントロール端子、5は素子分離絶縁
体(ロコス)、6はゲート電極、7は入力端子、8は出
力端子、×印はコンタクトである。
FIG. 1 is a plan view showing the structure of a main part of a CMOS inverter which is an embodiment of a depletion type semiconductor integrated circuit device according to the present invention, and FIG. 2 is a sectional view taken along the line AA of FIG. , 1 is a silicon substrate, 2A is N-
WELL (WELL on the power supply side), 2B is P-WELL
(WELL on the ground side), 3A is a power supply terminal (Vdd),
3B is a power supply side control terminal, 4A is a ground terminal,
Reference numeral 4B is a ground side control terminal, 5 is an element isolation insulator (LOCOS), 6 is a gate electrode, 7 is an input terminal, 8 is an output terminal, and X is a contact.

【0012】本実施例のCMOSインバータは、図1及
び図2に示すように、N-WELL(電源側のWEL
L)2Aに電源端子(Vdd)3Aと電源側コントロール
端子3Bを、同様に、P-WELL(グランド側のWE
LL)2Bに、グランド端子4Aとグランド側コントロ
ール端子4Bをそれぞれ設け、N-WELL2Aの給電
の電位を前記電源側コントロール端子3Bとグランド側
コントロール端子4Bとのうち少なくとも一方によりコ
ントロールすることできる構成になっている。
As shown in FIGS. 1 and 2, the CMOS inverter of this embodiment has an N-WELL (WEL on the power supply side).
L) 2A, the power supply terminal (Vdd) 3A and the power supply side control terminal 3B, similarly, P-WELL (ground side WE
LL) 2B is provided with a ground terminal 4A and a ground side control terminal 4B, respectively, so that the power supply potential of the N-WELL 2A can be controlled by at least one of the power supply side control terminal 3B and the ground side control terminal 4B. Has become.

【0013】そして、選別時に、前記電源側コントロー
ル端子3Bとグランド側コントロール端子4Bとのうち
少なくとも一方に電圧を印加し、低Vth化を図った、ノ
ーマリーON(ディプレッション)MOSTrを、エン
ハンスメントMOSTrとして動作させ、スタンバイ電
流Iddsを抑制してスタンバイ電流選別を行う。
At the time of selection, a normally ON (depletion) MOSTr, which has a low Vth by applying a voltage to at least one of the power supply side control terminal 3B and the ground side control terminal 4B, operates as an enhancement MOSTr. Then, the standby current Idds is suppressed and the standby current selection is performed.

【0014】実動作時は、NMOS側のN-WELL
(電源側のWELL)2Aをグランド端子4Aに、PM
OS側のN-WELL(電源側のWELL)2Aを電源
端子(Vdd)3Aとそれぞれ接続することにより、通常
モードで動作させることができる。
In actual operation, N-WELL on the NMOS side
(WELL on the power supply side) 2A to the ground terminal 4A, PM
By connecting the N-WELL (WELL on the power supply side) 2A on the OS side and the power supply terminal (Vdd) 3A respectively, it is possible to operate in the normal mode.

【0015】図3は、本実施例のディプレッション型半
導体集積回路装置のスタンバイ電流Iddsテスト時のVg
−Idds特性を示す図であり、実線は本実施例の特性曲
線、点線は従来の特性曲線である。
FIG. 3 shows Vg during the standby current Idds test of the depletion type semiconductor integrated circuit device of this embodiment.
It is a figure showing -Idds characteristic, a solid line is a characteristic curve of this example, and a dotted line is a conventional characteristic curve.

【0016】この図3からわかるように、従来のVthの
点が0方向に平行移動して小さくなり、スタンバイ電流
Iddsが大きくなる。例えば、電源端子(Vdd)3Aに
3.3V、電源側コントロール端子3Bに2V、グラン
ド端子4Aに0V、グランド側コントロール端子4Bに
−2Vを印加し、従来のVthを0.5Vとすると、本発
明のVthは0.1Vとなった。
As can be seen from FIG. 3, the conventional Vth point moves in parallel in the 0 direction and becomes smaller, and the standby current Idds becomes larger. For example, if 3.3V is applied to the power supply terminal (Vdd) 3A, 2V is applied to the power supply side control terminal 3B, 0V is applied to the ground terminal 4A, -2V is applied to the ground side control terminal 4B, and the conventional Vth is 0.5V, then The Vth of the invention was 0.1V.

【0017】そして、数1で表わされるスタンバイ電流
Iddsは、次のようになる。
The standby current Idds expressed by the equation 1 is as follows.

【0018】[0018]

【数1】 Idds=wμCox/L{(Vg−Vth)Vdd−Vdd2/2} 数1において、Vgはゲート電圧、Vthはしきい値、Vd
dは電源電圧、wは20μm、μは1500cm2/VS、
Coxは384nF/m、Lは0.5μmである。
In Equation 1] Idds = wμCox / L {(Vg -Vth) Vdd-Vdd 2/2} Number 1, Vg is a gate voltage, Vth is the threshold, Vd
d is the power supply voltage, w is 20 μm, μ is 1500 cm 2 / VS,
Cox is 384 nF / m and L is 0.5 μm.

【0019】従来のスタンバイ電流は、Idds=wμCo
x/L{(3.3−0.5)3.3−3.32/2}となり、本
実施例のスタンバイ電流は、Idds=wμCox/L{(3.
3−0.1)3.3−3.32/2}となる。すなわち、本
実施例のスタンバイ電流Iddsは、約35%のスタンバ
イ電流Iddsの向上がはかれる。
The conventional standby current is Idds = wμCo
x / L {(3.3-0.5) 3.3-3.3 2/2} , and the standby current of the present embodiment, Idds = wμCox / L {( 3.
A 3-0.1) 3.3-3.3 2/2}. That is, the standby current Idds of this embodiment can be improved by about 35%.

【0020】以上の説明からわかるように、本実施例に
よれば、WELLの電位を電源及びグランド(GND)
から分離し、外部端子よりコントロールできるようにし
たので、MOSTrの基盤効果により、Vthを制御し、
ノーマリーON(ディプレッション型)MOSTrを、
エンハンスメントMOSTrとして動作させ、スタンバ
イ電流Iddsを抑制してスタンバイ電流選別を行うこと
ができる。
As can be seen from the above description, according to this embodiment, the potential of WELL is set to the power supply and the ground (GND).
Since it is separated from the external terminal and can be controlled from the external terminal, Vth is controlled by the base effect of MOSTr.
Normally ON (depletion type) MOSTr,
By operating as an enhancement MOSTr, the standby current Idds can be suppressed and the standby current can be selected.

【0021】以上、本発明を実施例に基づき具体的に説
明したが、本発明は、前記実施例に限定されるものでは
なく、その要旨を逸脱しない範囲において、種々変更し
得ることはいうまでもない。
Although the present invention has been specifically described based on the embodiments, it is needless to say that the present invention is not limited to the above embodiments and various modifications can be made without departing from the scope of the invention. Nor.

【0022】[0022]

【発明の効果】以上、説明したように、本発明によれ
ば、外部端子より、WELLの電位をコントロールする
ことにより、Vthを制御してノーマリーON(ディプレ
ッション型)MOSTrを、エンハンスメント型MOS
Trとして動作させ、スタンバイ電流を抑制してスタン
バイ電流選別を行うことができる。
As described above, according to the present invention, the normally ON (depletion type) MOSTr is controlled by controlling the potential of WELL from the external terminal to control the normally ON (depletion type) MOSTr.
By operating as Tr, the standby current can be suppressed and the standby current can be selected.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明によるディプレッション型半導体集積
回路装置の一実施例であるCMOSインバータの要部の
構成を示す平面図である。
FIG. 1 is a plan view showing a configuration of a main part of a CMOS inverter which is an embodiment of a depletion type semiconductor integrated circuit device according to the present invention.

【図2】 図1のA−A線で切った断面図である。FIG. 2 is a cross-sectional view taken along the line AA of FIG.

【図3】 本実施例のCMOSインバータのスタンバイ
電流Iddsテスト時のVg−Idds特性を示す図である。
FIG. 3 is a diagram showing Vg-Idds characteristics during a standby current Idds test of the CMOS inverter of the present embodiment.

【符号の説明】[Explanation of symbols]

1…シリコン基板、2A…N-WELL(電源側のWE
LL)、2B…P-WELL(グランド側のWEL
L)、3A…電源端子(Vdd)、3B…電源側コントロ
ール端子、4A…グランド端子、4B…グランド側コン
トロール端子、5…素子分離絶縁体(ロコス)、6…ゲ
ート電極、7…信号入力端子、8…信号出力端子、×印
…コンタクト、Vdd…電源電圧、Vss…基準電圧(接地
電圧)。
1 ... Silicon substrate, 2A ... N-WELL (WE on power supply side)
LL), 2B ... P-WELL (WEL on the ground side)
L), 3A ... Power supply terminal (Vdd), 3B ... Power supply side control terminal, 4A ... Ground terminal, 4B ... Ground side control terminal, 5 ... Element isolation insulator (locos), 6 ... Gate electrode, 7 ... Signal input terminal , 8 ... Signal output terminal, X mark ... Contact, Vdd ... Power supply voltage, Vss ... Reference voltage (ground voltage).

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/66 V 7630−4M 27/04 21/822 29/78 9170−4M H01L 27/08 321 B 7514−4M 29/78 301 J Continuation of the front page (51) Int.Cl. 6 Identification code Reference number within the agency FI Technical indication location H01L 21/66 V 7630-4M 27/04 21/822 29/78 9170-4M H01L 27/08 321 B 7514- 4M 29/78 301 J

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ディプレッション型MOSトランジスタ
を用いた半導体集積回路装置において、選別時に、外部
端子から信号を与え、しきい値電圧を変動させてディプ
レッション型MOSトランジスタをエンハンスメント型
MOSトランジスタとして動作させる手段を備えたこと
を特徴とする半導体集積回路装置。
1. A semiconductor integrated circuit device using a depletion type MOS transistor, comprising means for applying a signal from an external terminal at the time of selection to change the threshold voltage to operate the depletion type MOS transistor as an enhancement type MOS transistor. A semiconductor integrated circuit device characterized by comprising.
JP6026421A 1994-02-24 1994-02-24 Semiconductor integrated circuit device Pending JPH07235608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6026421A JPH07235608A (en) 1994-02-24 1994-02-24 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6026421A JPH07235608A (en) 1994-02-24 1994-02-24 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH07235608A true JPH07235608A (en) 1995-09-05

Family

ID=12193070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6026421A Pending JPH07235608A (en) 1994-02-24 1994-02-24 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH07235608A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194915B1 (en) 1995-12-04 2001-02-27 Hitachi, Ltd. Semiconductor integrated circuit device and process for manufacturing the same
US6340825B1 (en) 1997-08-21 2002-01-22 Hitachi, Ltd. Method of designing semiconductor integrated circuit device and semiconductor integrated circuit device
US6417722B1 (en) 1999-03-15 2002-07-09 Infineon Technologies Ag Sense amplifier configuration having a field-effect transistor having a short channel length and an adjustable threshold voltage
KR100431291B1 (en) * 2001-06-28 2004-05-12 주식회사 하이닉스반도체 semiconductor device of transistor
JP2007288204A (en) * 1995-12-04 2007-11-01 Hitachi Ltd Semiconductor integrated circuit device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194915B1 (en) 1995-12-04 2001-02-27 Hitachi, Ltd. Semiconductor integrated circuit device and process for manufacturing the same
US6359472B2 (en) 1995-12-04 2002-03-19 Hitachi, Ltd. Semiconductor integrated circuit and its fabrication method
US6636075B2 (en) 1995-12-04 2003-10-21 Hitachi, Ltd. Semiconductor integrated circuit and its fabrication method
US6937068B2 (en) 1995-12-04 2005-08-30 Hitachi, Ltd. Semiconductor integrated circuit
JP2007288204A (en) * 1995-12-04 2007-11-01 Hitachi Ltd Semiconductor integrated circuit device
US6340825B1 (en) 1997-08-21 2002-01-22 Hitachi, Ltd. Method of designing semiconductor integrated circuit device and semiconductor integrated circuit device
US6611943B2 (en) 1997-08-21 2003-08-26 Hitachi, Ltd. Method of designing semiconductor integrated circuit device and semiconductor integrated circuit device
US6912697B2 (en) 1997-08-21 2005-06-28 Renesas Technology Corp. Semiconductor integrated circuit device
US7541647B2 (en) 1997-08-21 2009-06-02 Renesas Technology Corp. Method of designing semiconductor integrated circuit device and semiconductor integrated circuit device
US7642601B2 (en) 1997-08-21 2010-01-05 Renesas Technology Corp. Method of designing semiconductor integrated circuit device and semiconductor integrated circuit device
US6417722B1 (en) 1999-03-15 2002-07-09 Infineon Technologies Ag Sense amplifier configuration having a field-effect transistor having a short channel length and an adjustable threshold voltage
KR100431291B1 (en) * 2001-06-28 2004-05-12 주식회사 하이닉스반도체 semiconductor device of transistor

Similar Documents

Publication Publication Date Title
US6034397A (en) Silicon-on-insulator body- and dual gate-coupled diode for electrostatic discharge (ESD) applications
JPS60500433A (en) Substrate bias control circuit and method
US8310275B2 (en) High voltage tolerant input/output interface circuit
KR100243496B1 (en) Semiconductor device
JPH07169962A (en) Semiconductor device
JPH07240678A (en) Semiconductor integrated circuit
US6980409B2 (en) Protective circuit for semiconductor device
JPS63262574A (en) Test-mode starting circuit
JPH03171309A (en) Reference potential generating circuit
JPH07235608A (en) Semiconductor integrated circuit device
JP2002124866A (en) Semiconductor integrated circuit
US5168341A (en) Bipolar-cmos integrated circuit having a structure suitable for high integration
JP3467686B2 (en) Semiconductor device and electronic equipment using the same
JPH06326593A (en) Semiconductor integrated circuit device
JPS5842659B2 (en) transistor warmer
JP2002231886A (en) Esd protection circuit and semiconductor integrated circuit device
JPH0532908B2 (en)
JPS59110225A (en) Submicron semiconductor lsi
KR100225850B1 (en) Pad i/o circuit of semiconductor memory device
JPH06232728A (en) Input output circuit
JP3399817B2 (en) Manufacturing method of semiconductor integrated circuit
JPS6012787B2 (en) integrated circuit device
KR100218738B1 (en) Data output buffer
JPH06334124A (en) Semiconductor integrated circuit
JPH0653809A (en) Output circuit