JPS6159388B2 - - Google Patents

Info

Publication number
JPS6159388B2
JPS6159388B2 JP56166040A JP16604081A JPS6159388B2 JP S6159388 B2 JPS6159388 B2 JP S6159388B2 JP 56166040 A JP56166040 A JP 56166040A JP 16604081 A JP16604081 A JP 16604081A JP S6159388 B2 JPS6159388 B2 JP S6159388B2
Authority
JP
Japan
Prior art keywords
sintering
torr
atmosphere
rare earth
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56166040A
Other languages
Japanese (ja)
Other versions
JPS5867801A (en
Inventor
Naoyuki Ishigaki
Yutaka Matsura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP56166040A priority Critical patent/JPS5867801A/en
Publication of JPS5867801A publication Critical patent/JPS5867801A/en
Publication of JPS6159388B2 publication Critical patent/JPS6159388B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • C22C1/0441Alloys based on intermetallic compounds of the type rare earth - Co, Ni

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、希土類コバルト系永久磁石の製造
方法の改良に係り、真空雰囲気中における昇温と
減圧アルゴンガス雰囲気中における焼結の2段処
理を行なう製造方法に関する。 希土類コバルト系磁石は、今日多用されている
アルニコ系磁石、フエライト系磁石に比較して、
高い保磁力と大きなエネルギー積を有する永久磁
石として、近年特にその需要が高まり、電子工業
を始めとし多岐方面で利用されている。 希土類コバルト系磁石合金のもつ磁石特性を最
大限に発揮させるためには、製造方法が最も重要
であり、各工程において厳格に管理して製造する
必要がある。すなわち、希土類金属は酸素との親
和力が著しく強く、例えば通常製鋼の脱酸剤とし
て有効なMg,Al,Siなどより強いため、希土類
コバルト系磁石合金は化学的に極めて活性に富む
という他の永久磁石材料にはない性質を有する。 従つて、希土類コバルト系磁石の製造に際し
て、不活性雰囲気中で処理することが重要であ
り、特に、高温状態となる焼結時における非酸化
性雰囲気が最も重要になる。 そこで、希土類コバルト系磁石合金の製造方法
に関して種々の検討がなされてきた。例えば、特
開昭52―4421号公報には、焼結の際の水素含有雰
囲気の利用が有効であることが提案されている。
すなわち、同公報にはサマリウム―コバルト系磁
石について、760Torr常圧のアルゴンガスと水素
雰囲気中で焼結した場合の磁石特性について比較
し、水素中焼結の場合の方が、焼結密度が高く、
残留磁束密度(Br)、保磁力(Hc)、エネルギー
積((BH)max)などの特性が向上し、ただ保磁
力(Hci)のみが減少するとして、水素ガス雰囲
気における焼結の有効性を述べている。 しかし、水素ガスはあらゆるガスのうち、最も
密度が小さく、拡散速度が非常に大きく、例えば
焼結炉の微細な孔からも外部へ漏洩しやすい。し
かも水素が燃焼する時の熱量は極めて大きく、空
気と4〜75体積%の広範囲に混合する場合、わず
かな着火源により大爆発をおこし、従つて、水素
雰囲気中で永久磁石を製造するには、取扱上極め
て厳格な管理が必要となる。 この発明は、上述の問題に鑑み、取扱いが容易
で安価、かつ焼結磁石合金の特性を向上させるこ
〓〓〓〓〓
とができる焼結雰囲気について種々検討したもの
である。 すなわち、この発明は、希土類金属を含有する
コバルト、該コバルト―銅合金、該コバルト―鉄
―銅合金、該コバルト―鉄―ニツケル―銅合金等
からなる希土類コバルト系磁石合金粉末を所定形
状に成形圧縮して成型体となし、この成型体を1
×10-2Torr以下の真空雰囲気中において室温か
ら800℃まで4〜20℃/minの割合で昇温させ、
ついで50〜350Torrの減圧アルゴンガス雰囲気中
で950〜1250℃の温度範囲の焼結を行なうことを
要旨とする希土類コバルト系永久磁石の製造方法
である。 次に、この発明による製造方法を詳細に説明す
る。 まず、希土類金属を含有するコバルト、上記コ
バルト―銅合金、上記コバルト―鉄―銅合金、上
記コバルト―鉄―ニツケル―銅合金等からなる希
土類コバルト系磁石合金粉末を、平均粒径2〜10
μmの微粉末に微粉砕し、磁界中プレス機などに
より所定形状の圧縮成型体を作製する。 続いて、上記の圧縮成型体中に吸着あるいは吸
蔵されている酸素、水蒸気、水素ガスなどをすみ
やかに除去し、その後の減圧アルゴン雰囲気中で
の焼結の効果を最大限に発揮させるため、以下の
如き前段処理を行なう。 すなわち、上記成型体を室温から800℃まで昇
温するが、脱ガス処理と同時に酸化防止のため
に、1×10-2Torr以下の真空雰囲気中において
4〜20℃/minの速度でゆつくりと昇温を行な
う。昇温速度を限定する理由は、4℃/min未満
の昇温速度では800℃までの昇温に3時間以上を
要して工業生産には不適であり、しかも真空雰囲
気中といえどもこの間に成型体は酸化するためで
あり、また20℃/minを越える速度では、昇温が
速すぎて上記した成型体中の吸着、吸蔵ガスを十
分に除去することができず、次工程の減圧アルゴ
ン雰囲気中焼結による特性向上の効果が得られな
いためである。 この昇温過程において、成型体中の吸着、吸蔵
ガスのうち約90%のガスは、200〜600℃の温度範
囲で放出されるため、この温度範囲での昇温速度
を4〜10℃/minとし、1×10-4〜10-5Torr程度
の高真空雰囲気に保持して酸化を防止しながら脱
ガス処理を行なうことが好ましい。 次に、焼結を行なうが、上記の脱ガス処理後の
800℃を越えて950〜1250℃の温度範囲までの昇温
過程、及び上記温度範囲の一定温度保持の焼結過
程は、焼結後の密度を理論密度近くまで高めて磁
気特性を向上させるために、50〜350Torrに減圧
したアルゴンガス雰囲気中で焼結を行なう。 又、焼結終了後の冷却過程は、特にその雰囲気
圧力を規定しないが、アルゴンガスの消費量を少
くしてコスト低減を計る上からも、引続いて50〜
350Torrの減圧したアルゴンガス雰囲気中におけ
る冷却が好ましい。 ここで、アルゴンガス雰囲気圧力の限定理由
は、50Torr未満の低圧力となると、希土類コバ
ルト系磁石合金の成分、とくに希土類成分の蒸気
圧は800℃以上では20〜30Torrと高いため、希土
類金属が優先的に雰囲気中に蒸発し、最終焼結体
は所定組成から異なつた組成となり、磁気特性の
著しい劣化を生じるため、50Torr以上とする。
また、350Torrを越える圧力の場合には、アルゴ
ンガス圧力と得られる磁石特性との関係を示す第
1図より明らかなように、十分な密度の向上が得
られず、最終的にはすぐれた磁気特性が得られな
いため、350Torr以下の圧力とする。 また、焼結温度範囲を限定した理由は、希土類
コバルト系磁石合金において、その構成成分やそ
の組成割合などにより、最適の焼結温度範囲は異
なるが、950℃未満の焼結温度では十分な焼結密
度は得られず、また1250℃を越える焼結温度では
該合金が溶融し、良好な特性を有する焼結磁石体
とならないため、950℃〜1250℃の焼結温度とす
る。 以下にこの発明による実施例を示しその効果を
明らかにする。 実施例 1 純度99.9%以上のSm33.8wt%、純度99.9%以
上のCo66.2wt%からなるベース合金をアークボ
タン溶解により作製した。同様にしてSm60wt
%、Co40wt%からなる添加用合金を作製した。 次にこのベース合金および添加用合金をそれぞ
れ粗粉砕後に、ベース合金50gr、添加用合金6gr
を配合し、有機溶剤120c.c.、ステンレスボール
500grと共にボールミルに入れ混合微粉砕を行な
い2〜10μmの微細粉とした。続いて、微細粉を
〓〓〓〓〓
10KOeの磁界中でプレス成形し、圧縮成型体を
作製した。 次いで成型体を1×10-3Torrの真空雰囲気中
において、700℃まで10℃/minの昇温速度で昇
温し、引続いて、200Torrの減圧アルゴンガス雰
囲気中において、1140℃、1時間の焼結を行な
い、さらに同雰囲気中で炉冷処理した。その後、
900℃、5時間の時効処理を施し、この発明方法
による磁石を得た。 また、比較例として上記の成型体を、760Torr
の常圧アルゴンガス雰囲気中において、上記のこ
の発明方法と全く同じヒートパターンで昇温、、
焼結、炉冷、時効処理を行ない磁石を得た。 得られた永久磁石の磁気特性を第1表に示す。
第1表から明らかな如く、この発明方法による希
土類コバルト系磁石は、常圧のアルゴンガス雰囲
気中で焼結する比較例に対してすぐれた特性を有
することがわかる。
The present invention relates to an improvement in the manufacturing method of rare earth cobalt permanent magnets, and relates to a manufacturing method that performs a two-stage process of heating in a vacuum atmosphere and sintering in a reduced pressure argon gas atmosphere. Rare earth cobalt magnets have a higher
As permanent magnets with high coercive force and large energy product, their demand has particularly increased in recent years, and they are used in a wide variety of fields including the electronics industry. In order to maximize the magnetic properties of rare earth cobalt magnet alloys, the manufacturing method is most important, and each process must be strictly controlled. In other words, rare earth metals have an extremely strong affinity for oxygen, and are stronger than, for example, Mg, Al, and Si, which are effective deoxidizers in ordinary steelmaking. It has properties not found in magnetic materials. Therefore, when producing rare earth cobalt magnets, it is important to process them in an inert atmosphere, and in particular, a non-oxidizing atmosphere is most important during sintering, which is at a high temperature. Therefore, various studies have been made regarding the manufacturing method of rare earth cobalt-based magnet alloys. For example, JP-A-52-4421 proposes that it is effective to use a hydrogen-containing atmosphere during sintering.
In other words, the same publication compares the magnetic properties of samarium-cobalt magnets when sintered in an argon gas and hydrogen atmosphere at 760 Torr normal pressure, and found that the sintered density was higher when sintered in hydrogen. ,
Assuming that properties such as residual magnetic flux density (Br), coercive force (Hc), and energy product ((BH)max) improve, but only coercive force (Hci) decreases, the effectiveness of sintering in a hydrogen gas atmosphere is Says. However, hydrogen gas has the lowest density of all gases and has a very high diffusion rate, so it easily leaks to the outside from, for example, minute holes in a sintering furnace. Furthermore, the amount of heat generated when hydrogen is combusted is extremely large, and when it is mixed with air in a wide range of 4 to 75% by volume, a large explosion can occur from even the slightest ignition source, making it difficult to manufacture permanent magnets in a hydrogen atmosphere. requires extremely strict handling control. In view of the above-mentioned problems, the present invention aims to improve the characteristics of a sintered magnet alloy that is easy to handle and inexpensive.
Various studies have been conducted on the sintering atmosphere in which this can be achieved. That is, the present invention involves forming a rare earth cobalt magnet alloy powder made of cobalt containing a rare earth metal, the cobalt-copper alloy, the cobalt-iron-copper alloy, the cobalt-iron-nickel-copper alloy, etc. into a predetermined shape. Compress to make a molded body, and this molded body 1
Raise the temperature from room temperature to 800°C at a rate of 4 to 20°C/min in a vacuum atmosphere of ×10 -2 Torr or less,
This is a method for producing a rare earth cobalt-based permanent magnet, the gist of which is then sintering in a temperature range of 950 to 1250° C. in a reduced pressure argon gas atmosphere of 50 to 350 Torr. Next, the manufacturing method according to the present invention will be explained in detail. First, a rare earth cobalt magnet alloy powder consisting of cobalt containing a rare earth metal, the above cobalt-copper alloy, the above cobalt-iron-copper alloy, the above-mentioned cobalt-iron-nickel-copper alloy, etc., is mixed with an average particle size of 2 to 10
The powder is pulverized into a micron-sized powder, and a compression molded body of a predetermined shape is produced using a press machine in a magnetic field. Next, in order to promptly remove oxygen, water vapor, hydrogen gas, etc. adsorbed or occluded in the compression molded body and to maximize the effect of the subsequent sintering in a reduced pressure argon atmosphere, the following steps were carried out. Perform pre-processing such as That is, the temperature of the above molded body is raised from room temperature to 800°C, but at the same time as degassing treatment, it is slowly heated at a rate of 4 to 20°C/min in a vacuum atmosphere of 1 × 10 -2 Torr or less to prevent oxidation. and raise the temperature. The reason for limiting the heating rate is that if the heating rate is less than 4°C/min, it will take more than 3 hours to raise the temperature to 800°C, making it unsuitable for industrial production. This is because the molded body is oxidized, and if the temperature exceeds 20°C/min, the temperature rises too quickly and the adsorbed and occluded gases in the molded body cannot be sufficiently removed. This is because the effect of improving properties due to atmosphere sintering cannot be obtained. During this heating process, approximately 90% of the adsorbed and occluded gas in the molded body is released in the temperature range of 200 to 600°C, so the heating rate in this temperature range is set to 4 to 10°C/ It is preferable to carry out the degassing treatment while preventing oxidation by keeping the temperature in a high vacuum atmosphere of about 1×10 −4 to 10 −5 Torr. Next, sintering is performed, but after the above degassing treatment,
The process of increasing the temperature beyond 800℃ to the temperature range of 950 to 1250℃ and the sintering process of maintaining a constant temperature in the above temperature range are in order to increase the density after sintering to near the theoretical density and improve the magnetic properties. Next, sintering is performed in an argon gas atmosphere at a reduced pressure of 50 to 350 Torr. In addition, the atmospheric pressure during the cooling process after the completion of sintering is not particularly specified, but in order to reduce the consumption of argon gas and reduce costs, it is recommended that
Cooling in an argon gas atmosphere at a reduced pressure of 350 Torr is preferred. Here, the reason for limiting the argon gas atmosphere pressure is that at a low pressure of less than 50 Torr, the components of the rare earth cobalt magnet alloy, especially the vapor pressure of the rare earth component, is as high as 20 to 30 Torr at 800°C or higher, so rare earth metals are prioritized. The final sintered body will have a composition different from the predetermined one, resulting in significant deterioration of magnetic properties, so the temperature should be 50 Torr or more.
In addition, when the pressure exceeds 350 Torr, as is clear from Figure 1, which shows the relationship between argon gas pressure and the obtained magnetic properties, sufficient improvement in density cannot be obtained, and in the end, excellent magnetic properties cannot be obtained. Since the characteristics cannot be obtained, the pressure should be 350 Torr or less. The reason for limiting the sintering temperature range is that the optimal sintering temperature range for rare earth cobalt magnet alloys varies depending on their constituent components and their composition ratios, but a sintering temperature of less than 950°C is sufficient for sintering. The sintering temperature is set at 950°C to 1250°C, since a high density cannot be obtained and the alloy melts at a sintering temperature exceeding 1250°C, and a sintered magnet body with good properties cannot be obtained. Examples according to the present invention will be shown below to clarify its effects. Example 1 A base alloy consisting of 33.8wt% Sm with a purity of 99.9% or more and 66.2wt% Co with a purity of 99.9% or more was produced by arc button melting. Similarly, Sm60wt
%, and an additive alloy consisting of 40wt% Co was prepared. Next, after coarsely crushing this base alloy and additive alloy, 50 gr of base alloy and 6 gr of additive alloy were prepared.
120 c.c. organic solvent, stainless steel ball
The mixture was placed in a ball mill with 500 gr and mixed and pulverized to obtain a fine powder of 2 to 10 μm. Next, add fine powder〓〓〓〓〓
A compression molded body was produced by press molding in a magnetic field of 10 KOe. Next, the molded body was heated to 700°C in a vacuum atmosphere of 1×10 -3 Torr at a heating rate of 10°C/min, and then heated at 1140°C for 1 hour in a reduced pressure argon gas atmosphere of 200 Torr. sintering and further furnace cooling treatment in the same atmosphere. after that,
Aging treatment was performed at 900°C for 5 hours to obtain a magnet according to the method of the present invention. In addition, as a comparative example, the above molded body was
In a normal pressure argon gas atmosphere, the temperature is raised with exactly the same heat pattern as the method of this invention described above.
A magnet was obtained by sintering, furnace cooling, and aging treatment. The magnetic properties of the obtained permanent magnet are shown in Table 1.
As is clear from Table 1, it can be seen that the rare earth cobalt based magnet produced by the method of the present invention has superior properties to the comparative example in which the magnet is sintered in an argon gas atmosphere at normal pressure.

【表】 実施例 2 純度99.9%のSm17.1wt%およびPr16.0wt%、
純度99.9%のCo66.9wt%からなるベース合金、
Sm60wt%、Co40wt%からなる添加用合金を、実
施例1と同様に作製後、粗粉砕した。そしてベー
ス用合金50gr、添加用合金6grを配合し、実施例
1と同様にして圧縮成型体を作製した。 この成型体を1×10-3Torrの真空雰囲気中に
おいて、700℃まで10℃/minの速度で昇温し、
ひき続き200Torrの減圧アルゴンガス雰囲気中に
おいて、1090℃、1時間の焼結を行なつたのち炉
冷し、さらに900℃、5時間の時効処理を施し、
この発明方法による永久磁石を得た。 また、比較例として、焼結雰囲気を760Torrの
常圧アルゴンガス雰囲気とし、ヒートパターンは
上記のこの発明方法と同一の条件で磁石を作製し
た。 得られた永久磁石の磁気特性を第2表に示す。
[Table] Example 2 Sm17.1wt% and Pr16.0wt% with purity 99.9%,
Base alloy consisting of Co66.9wt%, with purity 99.9%
An alloy for addition consisting of 60 wt% Sm and 40 wt% Co was produced in the same manner as in Example 1, and then coarsely ground. Then, 50 gr of base alloy and 6 gr of additive alloy were blended, and a compression molded body was produced in the same manner as in Example 1. This molded body was heated at a rate of 10°C/min to 700°C in a vacuum atmosphere of 1 × 10 -3 Torr,
Subsequently, sintering was performed at 1090℃ for 1 hour in a reduced pressure argon gas atmosphere of 200Torr, followed by furnace cooling, and further aging treatment at 900℃ for 5 hours.
A permanent magnet was obtained by the method of this invention. Further, as a comparative example, a magnet was produced using a sintering atmosphere of 760 Torr normal pressure argon gas atmosphere and a heat pattern under the same conditions as in the method of this invention described above. The magnetic properties of the obtained permanent magnet are shown in Table 2.

【表】 実施例 3 純度99.9%以上のSm27.0wt%、純度99.8%以
上のCo43.9wt%、Fe13.2wt%、Ni8.0wt%、
Cu7.9wt%からなる合金を、アルゴンガス雰囲気
中で高周波溶解し、鉄乳鉢中で粗粉砕した。粗粉
砕後の粉末を有機溶剤中でボールミル粉砕により
2〜10μmの微粉末にした。この微粉末を
12KOeの磁界中でプレス成形し、圧縮成型体を
作製した。 次に成型体を、1×10-3Torrの真空雰囲気中
において、800℃まで10℃/minの速度で昇温さ
せ、続いて、常圧(760Torr)、560Torr、
360Torr、260Torr、200Torr、60Torr、0.1Torr
の7種類の減圧アルゴンガス雰囲気中において、
1200℃、2時間の焼結を行ない、その後急速冷却
した。次いで800℃、4時間の時効処理を施し、
得られた磁石の特性を測定し、アルゴンガス雰囲
気圧力と磁石特性の関係を第1図に表した。 第3表には、この発明方法であるアルゴンガス
雰囲気圧力200Torrの場合と、比較例として
760Torrの場合の磁石の磁気特性を示している。
[Table] Example 3 Sm27.0wt% with purity of 99.9% or more, Co43.9wt% with purity of 99.8% or more, Fe13.2wt%, Ni8.0wt%,
An alloy consisting of 7.9wt% Cu was radiofrequency melted in an argon gas atmosphere and coarsely ground in an iron mortar. The coarsely ground powder was ground into a fine powder of 2 to 10 μm by ball milling in an organic solvent. This fine powder
A compression molded body was produced by press molding in a magnetic field of 12 KOe. Next, the molded body was heated to 800°C at a rate of 10°C/min in a vacuum atmosphere of 1 × 10 -3 Torr, and then heated to 800°C at a rate of 10°C/min at normal pressure (760Torr) and 560Torr.
360Torr, 260Torr, 200Torr, 60Torr, 0.1Torr
In seven types of reduced pressure argon gas atmospheres,
Sintering was performed at 1200°C for 2 hours, followed by rapid cooling. Then, it was aged at 800℃ for 4 hours.
The characteristics of the obtained magnet were measured, and the relationship between the argon gas atmosphere pressure and the magnet characteristics is shown in FIG. Table 3 shows the case of the argon gas atmosphere pressure of 200 Torr, which is the method of this invention, and the case of the comparative example.
It shows the magnetic properties of the magnet at 760Torr.

【表】 上記の結果から明らかな如く、まず成型体を真
空雰囲気中において800℃まで昇温し、引続い
て、減圧アルゴンガス雰囲気中において焼結を行
なうこの発明方法により、密度の改善に有効で、
それに伴なう磁気特性の向上が得られ、すぐれた
希土類コバルト系磁石を製造できる。 〓〓〓〓〓
[Table] As is clear from the above results, the method of this invention, in which the molded body is first heated to 800°C in a vacuum atmosphere and then sintered in a reduced pressure argon gas atmosphere, is effective in improving density. in,
Accordingly, the magnetic properties are improved, and an excellent rare earth cobalt magnet can be manufactured. 〓〓〓〓〓

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼結雰囲気のアルゴンガス圧力と得ら
れる磁石の磁気特性との関係を示すグラフであ
る。 〓〓〓〓〓
FIG. 1 is a graph showing the relationship between the argon gas pressure in the sintering atmosphere and the magnetic properties of the obtained magnet. 〓〓〓〓〓

Claims (1)

【特許請求の範囲】[Claims] 1 希土類コバルト系磁石合金粉末を圧縮成型体
となし、この成型体を1×10-2Torr以下の真空
雰囲気中において、室温から800℃まで4〜20
℃/minの割合で昇温し、ついで50〜350Torrの
減圧アルゴンガス雰囲気中で950〜1250℃の温度
範囲の焼結を行なうことを特徴とする希土類コバ
ルト系永久磁石の製造方法。
1 Compression molding of rare earth cobalt magnet alloy powder is performed, and the molding is heated from room temperature to 800°C for 4 to 20 minutes in a vacuum atmosphere of 1×10 -2 Torr or less.
1. A method for producing a rare earth cobalt permanent magnet, which comprises raising the temperature at a rate of 0.degree. C./min, and then performing sintering at a temperature range of 950 to 1250.degree. C. in a reduced pressure argon gas atmosphere of 50 to 350 Torr.
JP56166040A 1981-10-16 1981-10-16 Preparation of rare earth/cobalt permanent magnet Granted JPS5867801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56166040A JPS5867801A (en) 1981-10-16 1981-10-16 Preparation of rare earth/cobalt permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56166040A JPS5867801A (en) 1981-10-16 1981-10-16 Preparation of rare earth/cobalt permanent magnet

Publications (2)

Publication Number Publication Date
JPS5867801A JPS5867801A (en) 1983-04-22
JPS6159388B2 true JPS6159388B2 (en) 1986-12-16

Family

ID=15823831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56166040A Granted JPS5867801A (en) 1981-10-16 1981-10-16 Preparation of rare earth/cobalt permanent magnet

Country Status (1)

Country Link
JP (1) JPS5867801A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276714A (en) * 1986-05-26 1987-12-01 松下電工株式会社 Wiring fixture mounting adaptor
JPH01122217U (en) * 1988-02-15 1989-08-18
JPH0686387U (en) * 1993-05-26 1994-12-13 株式会社サガミ電子工業 Component mounting tool and component mounting structure using this mounting tool

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0314204A (en) * 1989-06-07 1991-01-22 Ind Technol Res Inst Manufacture of rare earth magnet
JP2009295638A (en) * 2008-06-02 2009-12-17 Tdk Corp Method for manufacturing r-t-b magnet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230451A (en) * 1975-09-03 1977-03-08 Hitachi Ltd Wave length scanner for spectroscope
JPS5471034A (en) * 1977-11-16 1979-06-07 Seiko Instr & Electronics Ltd Method of producing rare earth magnet
JPS55164048A (en) * 1979-06-08 1980-12-20 Matsushita Electric Ind Co Ltd Production of intermetallic compound ferromagnetic body
JPS5776102A (en) * 1980-10-28 1982-05-13 Seiko Instr & Electronics Ltd Manufacture of rare earth metal magnet
JPS5848603A (en) * 1981-09-18 1983-03-22 Seiko Instr & Electronics Ltd Production of magnet of intermetallic compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230451A (en) * 1975-09-03 1977-03-08 Hitachi Ltd Wave length scanner for spectroscope
JPS5471034A (en) * 1977-11-16 1979-06-07 Seiko Instr & Electronics Ltd Method of producing rare earth magnet
JPS55164048A (en) * 1979-06-08 1980-12-20 Matsushita Electric Ind Co Ltd Production of intermetallic compound ferromagnetic body
JPS5776102A (en) * 1980-10-28 1982-05-13 Seiko Instr & Electronics Ltd Manufacture of rare earth metal magnet
JPS5848603A (en) * 1981-09-18 1983-03-22 Seiko Instr & Electronics Ltd Production of magnet of intermetallic compound

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276714A (en) * 1986-05-26 1987-12-01 松下電工株式会社 Wiring fixture mounting adaptor
JPH01122217U (en) * 1988-02-15 1989-08-18
JPH0686387U (en) * 1993-05-26 1994-12-13 株式会社サガミ電子工業 Component mounting tool and component mounting structure using this mounting tool

Also Published As

Publication number Publication date
JPS5867801A (en) 1983-04-22

Similar Documents

Publication Publication Date Title
KR101866023B1 (en) Fabrication method of rare earth permanent magnet with excellent magnetic property
JPH01219143A (en) Sintered permanent magnet material and its production
JPS6159388B2 (en)
JP3303044B2 (en) Permanent magnet and its manufacturing method
JPS6334606B2 (en)
JP2715378B2 (en) Method for producing Nd-Fe-B based sintered magnet
JPS6180805A (en) Permanent magnet material
JP2003003203A (en) Method for manufacturing high-density sintered compact, and the sintered compact
JP7315889B2 (en) Alloy for RTB Permanent Magnet and Method for Producing RTB Permanent Magnet
JPS6119084B2 (en)
JPS6077961A (en) Permanent magnet material and its manufacture
JPS59126733A (en) Manufacture of rare earth element-cobalt magnet
JPH06163226A (en) Method of manufacturing rare earth element magnet
JPH0122970B2 (en)
JPS5922302A (en) Permanent magnet
JPH03167803A (en) Manufacture of rare-earth permanent magnet
KR860001237B1 (en) Permanent magnet
JP3016098B2 (en) Manufacturing method of permanent magnet
JPS6236366B2 (en)
JPH0227425B2 (en)
CN111724985A (en) Method for producing R-T-B sintered magnet
JPH06224015A (en) Manufacture of rare earth-fe-n intermetallic compound magnetic material particle and magnetic material powder of rare earth-fe-n intermetallic compound produced by same
JPH05234733A (en) Sintered magnet
JPH02252222A (en) Manufacture of permanent magnet
JPS629658B2 (en)