JPS5848603A - Production of magnet of intermetallic compound - Google Patents

Production of magnet of intermetallic compound

Info

Publication number
JPS5848603A
JPS5848603A JP56147263A JP14726381A JPS5848603A JP S5848603 A JPS5848603 A JP S5848603A JP 56147263 A JP56147263 A JP 56147263A JP 14726381 A JP14726381 A JP 14726381A JP S5848603 A JPS5848603 A JP S5848603A
Authority
JP
Japan
Prior art keywords
atmosphere
sintering
vacuum
rare earth
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56147263A
Other languages
Japanese (ja)
Inventor
Moriyoshi Hata
畑 守中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP56147263A priority Critical patent/JPS5848603A/en
Publication of JPS5848603A publication Critical patent/JPS5848603A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a permanent magnet having excellent density and magnetic characteristics in the stage of producing a permanent magnet by sintering the powder of an intermetallic compd. of rare earth elements and Co by changing over a sintering atmosphere plural times to a vacuum or inert gaseous atmosphere. CONSTITUTION:An intermetallic compd. consisting of rare earth elements such as Sm and Co as raw material for magnets is pulverized down to about 3mu. After the powder is compression molded to moldings in a magnetic field, the moldings are heated in a vacuum atmosphere until the sintering temp. of the moldings is attained. During the time until solutionization is finished, the atmosphere is subjected to plural times of cycles like substitution with gaseous Ar-evacuation-substitution with gaseous Ar. According to this method, the magnet of a rare earths-Co intermetallic compd. having density higher than 95% theoretical density and having excellent magnetic characteristics is obtained.

Description

【発明の詳細な説明】 本発明は、希土類とコバルトを主成分とする焼結型金属
間化合物磁石の磁気特性の改良に関するものである。希
土類元素とコバルト等の金属間化合物中、特にRoof
、 R50Ost  系(Rは希土類元素)であられさ
れる金属間化合物は、結晶磁気異方性が高く高性能磁石
となることは、公知のことである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improving the magnetic properties of a sintered intermetallic compound magnet containing rare earth elements and cobalt as main components. Among intermetallic compounds such as rare earth elements and cobalt, especially Roof
, R50Ost (R is a rare earth element) intermetallic compounds have high crystal magnetic anisotropy and are known to be high-performance magnets.

その製造は、微粉末をプラスチック等の樹脂で固める樹
脂バインド法と、微粉末を圧縮成形後適宜温度で焼成す
る焼結法に大別されるが、衆近では、希土類磁石の特徴
である高性能化を最大限に発揮できることから焼結法が
主流となっている。
Their production is roughly divided into the resin binding method, in which fine powder is hardened with resin such as plastic, and the sintering method, in which the fine powder is compressed and then fired at an appropriate temperature. Sintering is the mainstream method because it maximizes performance.

焼結磁石が、樹脂バインド磁石に比べ磁気特性が優れて
いるのは、樹脂バインド磁石の密度が理論密度の高々8
0−であるのに対し、焼結法では理論密度の95%以上
まで緻密化が可能であることに、大きく起因している。
The reason why sintered magnets have better magnetic properties than resin-bound magnets is that the density of resin-bound magnets is at most 8 the theoretical density.
This is largely due to the fact that the sintering method allows densification to 95% or more of the theoretical density, whereas the density is 0-.

微粉末磁石において磁石の磁気特性をBy=4π工sP
 (ニー:飽和磁束密度、P:粉末の充填率)で示すこ
とができるが、式によれバ、磁気特性を向上させるには
、−粉末充填率を高めることがいかに重要な要因である
、ことが判る。
In a fine powder magnet, the magnetic properties of the magnet are By = 4π engineering sP
It can be expressed as (knee: saturation magnetic flux density, P: powder filling rate), but according to the formula, increasing the powder filling rate is an important factor in improving magnetic properties. I understand.

換言すれば、希土類磁石の高性能化は、焼結工程が不可
欠であるといえる。
In other words, the sintering process is essential for improving the performance of rare earth magnets.

希土類コバルト磁石の焼結において、焼結温度。Sintering temperature in sintering rare earth cobalt magnets.

時間は磁気性能を左右する重要な要因となるが、同様に
、焼結時の雰囲気も重要なことは公知のことである。従
来、希土類コバルト系磁石の焼結雰囲気は、真空又は不
活性ガスいづれかの一方で行なわれるのが通例であった
が、真空雰囲気で焼結を行なった場合、焼結過程におけ
る希土類元素の蒸発が著しく、焼形体内の特性のバラツ
キを招き、安定製造が難しいという欠点含有してい穴。
Although time is an important factor that influences magnetic performance, it is well known that the atmosphere during sintering is also important. Conventionally, the sintering atmosphere for rare earth cobalt magnets was usually either vacuum or inert gas, but when sintering was performed in a vacuum atmosphere, the evaporation of rare earth elements during the sintering process The drawback is that it causes significant variations in the properties within the sintered body, making it difficult to produce stably.

一方、アルゴンガス等の不活性ガス中で焼結した場合、
希土類元素の蒸発防止に効果があるが、焼結後の密度は
a 30 gr、/17が限度で(理論密度の96チ)
あり、磁気特性向上の障害となっていた。
On the other hand, when sintered in an inert gas such as argon gas,
It is effective in preventing evaporation of rare earth elements, but the density after sintering is limited to a 30 gr, /17 (theoretical density of 96 cm).
This was an obstacle to improving magnetic properties.

本発明は、焼結雰囲気が焼結体の緻密化と密接な関係が
あると推察し、種々実験検討を重ねた結果、焼結雰囲気
を所望の焼結温度に到達するまでを真空とし、以降焼結
を終了するまでの間、複数回雰囲気置換(真空と不活性
ガス交互に)することにより、焼結体の密度と磁気特性
を改良させることを見い出したことに基づくものである
The present invention presumes that the sintering atmosphere is closely related to the densification of the sintered body, and as a result of various experimental studies, the sintering atmosphere is kept in a vacuum until the desired sintering temperature is reached, and thereafter. This is based on the discovery that the density and magnetic properties of the sintered body can be improved by replacing the atmosphere multiple times (alternating with vacuum and inert gas) until the end of sintering.

以下、本発明を実施例により説明する。The present invention will be explained below using examples.

〔実施例1〕 まず公知の方法により、比較となる試料を作製した。は
じめに8m54vt96.Oo64wt%からなる合金
を平均粒径5ミクロンに粉砕した後、1万エルステツド
の磁界中にてS ton/J のr力で圧縮成形した0
次いでこの圧粉体をアルゴンガス中において、1120
℃、11!i(1℃、114[1℃及び1150℃の各
温度でそれぞれ1時間焼結後、850℃で1時間熱時効
処理を行ない、焼結体の密度磁気特性を測定した。
[Example 1] First, a comparative sample was prepared by a known method. Introduction 8m54vt96. An alloy consisting of 64 wt% Oo was pulverized to an average particle size of 5 microns, and then compression molded in a magnetic field of 10,000 oersted with an r force of S ton/J.
Next, this green compact was heated at 1120°C in an argon gas atmosphere.
℃, 11! After sintering at temperatures of 1°C, 114°C, and 1150°C for 1 hour, thermal aging treatment was performed at 850°C for 1 hour, and the density magnetic properties of the sintered bodies were measured.

次に、本発明の試料は、組成〜圧縮底形まで前記した従
来方法と全く同一工程を経た後、比較試料と同じ温度で
それぞれ焼結を行なった。焼結時の雰囲気は、所望の焼
結温度に到達する迄を真空雰囲気とし、以降1時間加熱
が終了するまでの間、真空とアルゴンガスとで交互に複
数回、雰囲気置換した。
Next, the samples of the present invention were subjected to exactly the same steps as the conventional method described above, from composition to compressed bottom shape, and then sintered at the same temperature as the comparative samples. The atmosphere during sintering was a vacuum atmosphere until the desired sintering temperature was reached, and thereafter the atmosphere was alternately replaced with vacuum and argon gas several times until the heating was completed for 1 hour.

焼結後、850℃×1時間の条件で熱時効処理を行ない
、焼結体の密度と磁気特性を測定した。
After sintering, thermal aging treatment was performed at 850°C for 1 hour, and the density and magnetic properties of the sintered body were measured.

!!−1に、従来方法と本発明による方法で作製した試
料の密度と磁気特性を示す。
! ! -1 shows the density and magnetic properties of samples produced by the conventional method and the method according to the present invention.

表−1 上記実施例から、本発明の製造方法による焼結磁石の磁
気特性は、従来の方法による場合と比較して明らかに高
いことが認められる。
Table 1 From the above examples, it is recognized that the magnetic properties of the sintered magnet produced by the manufacturing method of the present invention are clearly higher than those produced by the conventional method.

〔実施例2〕 まずはじめに8m2a5wt%、Fe 1 !LOwt
%、Zu 8vyt%、Zr 1.5vt%、残部co
からなる合金を、平均粒径4ミクロンとなる様に振動ミ
ルを用い微粉砕し、得られた微粉末を10KOe中の磁
界中で圧縮成形した。圧縮成形後、本発明の%徴である
熱処理雰囲気を変え、それぞれ1160℃〜1200℃
の温度で約1時間焼結し、その後1150℃〜1180
℃にて溶体化処理を施し、冷却後850℃に加熱し熱時
効を行なった。従来方法の熱処理時の雰囲気は、溶体化
が終了するまでの間真空、ま次はアルゴンガス雰囲気と
した0本発明は所定の焼結温度に到達するまで真空とし
、以降溶体化終了するまでの間、アルゴンガス置換→真
空引き→アルゴンガス置換というように、このサイクル
を複数回繰り返えした。
[Example 2] First, 8m2a5wt%, Fe 1! LOWt
%, Zu 8vyt%, Zr 1.5vt%, balance co
The alloy was pulverized using a vibrating mill to an average particle size of 4 microns, and the resulting fine powder was compression molded in a magnetic field of 10 KOe. After compression molding, the heat treatment atmosphere, which is a characteristic of the present invention, was changed to 1160°C to 1200°C.
1 hour at a temperature of 1150℃ to 1180℃.
Solution treatment was carried out at .degree. C., and after cooling, the material was heated to 850.degree. C. for thermal aging. In the conventional method, the atmosphere during heat treatment was a vacuum until the solutionization was completed, and then an argon gas atmosphere. In the present invention, the atmosphere was kept in a vacuum until the predetermined sintering temperature was reached, and then the atmosphere was kept in a vacuum until the solutionization was completed. During this time, this cycle was repeated multiple times: argon gas replacement → vacuum evacuation → argon gas replacement.

表−2に、得られた最大の磁気特性と焼結体(10ss
X10酪X1G1111を形状)の密度と、焼結体を研
削加工により外径1.25−φ、内径(L4静φ、厚み
(L 5 m を形状にそれぞれ100個作製、着磁し
た後、ホール素子により表面磁束密度を測定した結果を
示す。
Table 2 shows the maximum magnetic properties obtained and the sintered body (10ss
100 pieces each were prepared with an outer diameter of 1.25-φ, an inner diameter (L4 static φ, and a thickness of L 5 m) by grinding the sintered body. The results of measuring the surface magnetic flux density using the element are shown.

表−2 表−3によれば、従来の方法で得られる最大の磁気特性
は、真空中で処理した場合(BH)ynaxI F!h
 2 M、G−Oe、  又アルゴンガス中処理では(
BH)max I an M、G、Oe  であるのに
比べ、本発明の方法によると、(BH)max 2 [
11M、G、Oeにも達する。また、本発明の方法で作
製した原料から前記微小部品を加工した場合においても
、従来法に比べ高い表面磁束密度が得られると同時に、
バラツキも少なく、本発明の効果が顕著である。
Table 2 According to Table 3, the maximum magnetic properties obtained by the conventional method are when processed in vacuum (BH) ynaxIF! h
2 M, G-Oe, and in argon gas treatment (
According to the method of the present invention, (BH)max 2 [
It also reaches 11M, G, Oe. Further, even when the micro parts are processed from the raw material produced by the method of the present invention, a higher surface magnetic flux density can be obtained compared to the conventional method, and at the same time,
There is little variation, and the effects of the present invention are remarkable.

以上説明した様に、焼結聾希土類コバルト系金属間化合
物磁石の製造において、熱処理雰囲気を所望の焼結温度
に到達するまでを真空とし、以降熱処理が完了するまで
の間、アルゴンガス置換→真空引き→アルゴンガス置換
と複数回雰囲気置換することを特徴とする本発明の方法
によれば、RcoB系vR1oo1?系いづれも、従来
方法に比べ高い磁気特性を得ることが可能である。
As explained above, in the production of sintered deaf rare earth cobalt-based intermetallic compound magnets, the heat treatment atmosphere is kept in a vacuum until the desired sintering temperature is reached, and then the atmosphere is replaced with argon gas and then vacuumed until the heat treatment is completed. According to the method of the present invention, which is characterized in that the atmosphere is replaced by pulling → argon gas replacement and the atmosphere is replaced multiple times, the RcoB system vR1oo1? In either system, it is possible to obtain higher magnetic properties than conventional methods.

上  以 出願人 株式会社第二精工舎Above and below Applicant: Daini Seikosha Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 希土類コバルト系の金属間化合物磁石を焼結によって製
造する方法において、焼結雰囲気を所望の焼結温度に到
達するまで真空とし、以降、焼結が完了するまでの間、
複数回雰囲気置換(真空と不活性雰囲気を交互に)する
ことを特徴とする希土類コバルト系金属間化合物磁石の
製造方法。
In a method for manufacturing rare earth cobalt-based intermetallic compound magnets by sintering, the sintering atmosphere is kept in a vacuum until the desired sintering temperature is reached, and thereafter, until sintering is completed,
A method for manufacturing a rare earth cobalt-based intermetallic compound magnet, characterized by replacing the atmosphere multiple times (alternating between a vacuum and an inert atmosphere).
JP56147263A 1981-09-18 1981-09-18 Production of magnet of intermetallic compound Pending JPS5848603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56147263A JPS5848603A (en) 1981-09-18 1981-09-18 Production of magnet of intermetallic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56147263A JPS5848603A (en) 1981-09-18 1981-09-18 Production of magnet of intermetallic compound

Publications (1)

Publication Number Publication Date
JPS5848603A true JPS5848603A (en) 1983-03-22

Family

ID=15426273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56147263A Pending JPS5848603A (en) 1981-09-18 1981-09-18 Production of magnet of intermetallic compound

Country Status (1)

Country Link
JP (1) JPS5848603A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867801A (en) * 1981-10-16 1983-04-22 Sumitomo Special Metals Co Ltd Preparation of rare earth/cobalt permanent magnet
KR101356771B1 (en) * 2011-12-13 2014-01-28 재단법인 포항산업과학연구원 Method for manufacturing iron-based powders with high green strength

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867801A (en) * 1981-10-16 1983-04-22 Sumitomo Special Metals Co Ltd Preparation of rare earth/cobalt permanent magnet
JPS6159388B2 (en) * 1981-10-16 1986-12-16 Sumitomo Spec Metals
KR101356771B1 (en) * 2011-12-13 2014-01-28 재단법인 포항산업과학연구원 Method for manufacturing iron-based powders with high green strength

Similar Documents

Publication Publication Date Title
JPH04329847A (en) Manufacture of fe-ni alloy soft magnetic material
JPH04506093A (en) Magnetic alloy compositions and permanent magnets
JPS5848603A (en) Production of magnet of intermetallic compound
JPH02156038A (en) Making of permanent magnet
JPS639733B2 (en)
JP2725004B2 (en) Manufacturing method of permanent magnet
JPS63111155A (en) Production of permanent magnet material
JPS59126733A (en) Manufacture of rare earth element-cobalt magnet
JP2893705B2 (en) Manufacturing method of permanent magnet
JPS61261448A (en) Production of permanent magnet having high energy product
JPS6140738B2 (en)
JPS5946081B2 (en) Permanent magnet manufacturing method
JPS61239608A (en) Anisotropic magnet and manufacture thereof
KR19980058554A (en) Permanent magnet manufacturing method based on RE-TM-B alloy
JPH04134806A (en) Manufacture of permanent magnet
JPH0132296B2 (en)
JPH0567511A (en) Manufacture of rare-earth sintered magnet
JPH03247703A (en) Manufacture of permanent magnet
JPS5827321B2 (en) Permanent magnet manufacturing method
JPH0418706A (en) Manufacture of permanent magnet
JPH0478699B2 (en)
JPH0418707A (en) Manufacture of permanent magnet
JPH023208A (en) Permanent magnet
JPH01245503A (en) Manufacture of rare-earth magnet
JPS5852013B2 (en) Manufacturing method of rare earth cobalt magnet