JPS6145851B2 - - Google Patents

Info

Publication number
JPS6145851B2
JPS6145851B2 JP3429779A JP3429779A JPS6145851B2 JP S6145851 B2 JPS6145851 B2 JP S6145851B2 JP 3429779 A JP3429779 A JP 3429779A JP 3429779 A JP3429779 A JP 3429779A JP S6145851 B2 JPS6145851 B2 JP S6145851B2
Authority
JP
Japan
Prior art keywords
electrode
ion
substrate
layer
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3429779A
Other languages
Japanese (ja)
Other versions
JPS55127011A (en
Inventor
Tetsuo Takahashi
Jun Tamashima
Shunichi Kumagai
Minoru Kametani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP3429779A priority Critical patent/JPS55127011A/en
Publication of JPS55127011A publication Critical patent/JPS55127011A/en
Publication of JPS6145851B2 publication Critical patent/JPS6145851B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はコンデンサ製造方法に関する。[Detailed description of the invention] The present invention relates to a capacitor manufacturing method.

最近、電子部品は集積回路等の小形化に伴つて
益々小形で性能の良いものが要求されている。コ
ンデンサについても例外ではない。一般にコンデ
ンサは誘電体と電極とを積層させたものである。
小型コンデンサとして最も性能の良いものは積層
チツプコンデンサの名で知られている。積層チツ
プコンデンサは薄層状の誘電体と銀等の金属薄膜
電極とを交互に多数積層して焼成し一体化し、外
部端子をチツプの両端に焼付けて正負の上記電極
に電気接続したものである。しかし、かかる小型
コンデンサの製造には多数の工程が必要であり、
焼成工程を必要とした。
2. Description of the Related Art Recently, with the miniaturization of integrated circuits and the like, electronic components are required to be smaller and have better performance. Capacitors are no exception. Generally, a capacitor is a stack of dielectrics and electrodes.
The best-performing small capacitor is known as a multilayer chip capacitor. A multilayer chip capacitor is a device in which a large number of thin dielectrics and metal thin film electrodes such as silver are alternately laminated, fired and integrated, and external terminals are baked on both ends of the chip and electrically connected to the positive and negative electrodes. However, manufacturing such small capacitors requires numerous steps;
Required a firing process.

本出願人は先に実願昭53―95683号、同53―
97941号、同53―97942号、特願昭53―156249号、
同53―159364号、同54―5589号等において、従来
とは異つた方法による積層チツプコンデンサを提
供した。即ち、これらの出願に記載された製造法
は、アルミナ、チタン酸バリウム、酸化チタン等
の粉末を混練したペーストを印刷法またはシート
法(ベーストをフイルム状に押出成形する方法)
により数十〜数百ミクロン程度の厚さのシート状
誘電体にし、その上にAg―Pd,Pd等の金属粉末
を混練したペーストを所望の電極パターンとして
数十〜数百ミクロンの厚さに印刷し、以下同様に
して交互に誘電体層と電極パターンとを印刷し、
最後に所定の焼成を行うものである。この方法に
よると工程が著しく簡単になり、印刷法の利点で
多量生産が可能となり、また製品の薄形化が達成
されるけれども、依然として相当の厚みの各層が
存在するから容量の大きさに限界があるし、さら
に焼成工程を必要とする。
The applicant previously filed Utility Application No. 53-95683,
No. 97941, No. 53-97942, Patent Application No. 156249-1983,
No. 53-159364, No. 54-5589, etc., provided multilayer chip capacitors using a method different from conventional methods. That is, the manufacturing methods described in these applications include a printing method or a sheet method (a method in which a paste is extruded into a film shape) by kneading powders of alumina, barium titanate, titanium oxide, etc.
A sheet-like dielectric material with a thickness of several tens to several hundred microns is made using the above method, and a paste of metal powder such as Ag-Pd or Pd is kneaded on top of the dielectric material to form a desired electrode pattern to a thickness of several tens to several hundred microns. Then, in the same manner, alternately print a dielectric layer and an electrode pattern,
Finally, a predetermined firing process is performed. Although this method significantly simplifies the process, allows mass production due to the advantages of the printing method, and achieves thinner products, there is still a considerable thickness of each layer, which limits the capacity. However, it requires an additional firing process.

本発明はイオンプレートテイング法により容量
の大きい、或いは寸法の小さいコンデンサーを焼
成の必要なしに達成する方法を提供し、以つて従
来の欠陥を克服するものである。簡単に述べる
と、本発明はイオンプレーテイング法によつてセ
ラミツク基板の上に銀、銅、パラジウム、金、ア
ルミニウムその他の導電性金属を蒸着し、その上
にBaTiO3、TiO2、ガラス、プラスチツク、その
他の誘電体を同様にイオンプレーテイング法で蒸
着し、以下同様の工程を反復してコンデンサを形
成するものである。イオンプレーテイングに要す
る時間は1μで2〜3分程度に過ぎない。この方
法により製造されたコンデンサは焼成の必要がな
く、そのままの形でコンデンサとして使用しう
る。本発明のコンデンサはイオンプレーテイング
法に特有の強力を層間結合を有するから、機械的
に強固である。例えば剥離強度はスパツター法で
10〜20gであるに対し200g程度であり、耐半田
性も充分である。イオンプレーテイング法による
蒸着膜は0.5ミクロン厚ですでに均一なピンホー
ルのない膜となり、また1ミクロンの厚さでは大
抵の使用に問題を生じない強度となる。従つて印
刷法等による従来の積層チツプコンデンサに比し
て格段に大きい容量を持たせることも可能であ
る。もつとも、本発明は多層積層を必ずしも要件
としない。また時間のかかる焼成工程を必要とし
ないことや、誘電体部分と導体部分を全然別個の
方法で製造する必要のないこと等、合理化、省力
化、材料費の低減、特性の向上等の効果を達成す
ることができる。また本発明によると、リード線
部分が削減でき、成形、半田付け、部品組立で等
が省略または簡略化される。
The present invention provides a method for achieving large capacitance or small size capacitors by ion plating without the need for firing, thus overcoming the deficiencies of the prior art. Briefly, the present invention involves depositing conductive metals such as silver, copper, palladium, gold, aluminum, etc. onto a ceramic substrate by ion plating, and depositing BaTiO 3 , TiO 2 , glass, or plastic on top of the evaporated conductive metals. , and other dielectric materials are similarly deposited by the ion plating method, and the same steps are repeated to form a capacitor. The time required for ion plating is only about 2 to 3 minutes for 1μ. The capacitor manufactured by this method does not require firing and can be used as a capacitor as is. The capacitor of the present invention is mechanically strong due to the strong interlayer bonding characteristic of ion plating. For example, peel strength can be measured using the sputter method.
It weighs about 200 g compared to 10 to 20 g, and has sufficient solder resistance. A film deposited by the ion plating method becomes a uniform pinhole-free film at a thickness of 0.5 microns, and a thickness of 1 micron provides sufficient strength for most uses. Therefore, it is possible to provide a much larger capacitance than conventional multilayer chip capacitors produced by printing methods or the like. However, the present invention does not necessarily require multilayer lamination. In addition, there is no need for a time-consuming firing process, and there is no need to manufacture the dielectric part and the conductor part using completely separate methods, which has the effect of streamlining, labor saving, reducing material costs, and improving properties. can be achieved. Further, according to the present invention, the lead wire portion can be reduced, and molding, soldering, component assembly, etc. can be omitted or simplified.

イオンプレーテイング法は最近活発に開発が行
われているので詳細な説明は省くが、その原理
は、Ar、Ne、He等の不活性ガスを含みうる比較
的高真空(10-3〜10-5トール)中でも金属を融解
した蒸発源からの金属蒸気を直流または高周波、
或いはこれらを併用した電界によりイオン化し、
これを直流電界で加速して基質面へ加速して蒸着
する。金属イオンは蒸着面を衝撃してそこに強固
に付着するから、金属膜は0.5〜1μ程度の膜厚
でも充分に大きい機械的強度を有する。イオンプ
レーテイング法で蒸着しうる材料は金属に限ら
ず、プラスチツク(ポリエステル、ポリイミド
等)、誘電体、抵抗体、フエライト等の複合金属
酸化物等も可能なことが分つた。このように広範
囲な材料が選択できることは大きな利益をもたら
す。例えば従来のコンデンサは焼成工程が必要で
あつたために、電極材料の種類が局限されたが、
本発明では安価なアルミニウム(合金を含む)や
銅等が利用できし、銀、白金、白金―パラジウ
ム、錫―鉛合金、錫、酸化バナジウム、マグネタ
イト等も使用できる。
The ion plating method has been actively developed recently, so a detailed explanation will be omitted, but its principle is based on a relatively high vacuum (10 -3 to 10 - 5 Torr) Among other things, metal vapor from a molten metal evaporation source is heated by direct current or high frequency,
Or ionization by an electric field using a combination of these,
This is accelerated by a direct current electric field to be accelerated and deposited onto the substrate surface. Since the metal ions impact the deposition surface and firmly adhere thereto, the metal film has sufficiently high mechanical strength even with a film thickness of about 0.5 to 1 μm. It has been found that the materials that can be deposited by the ion plating method are not limited to metals, but also include plastics (polyester, polyimide, etc.), dielectrics, resistors, composite metal oxides such as ferrite, etc. The ability to choose from such a wide range of materials provides significant benefits. For example, conventional capacitors required a firing process, which limited the types of electrode materials available.
In the present invention, inexpensive aluminum (including alloys), copper, etc. can be used, and silver, platinum, platinum-palladium, tin-lead alloy, tin, vanadium oxide, magnetite, etc. can also be used.

次に本発明を実施例に関連して詳細に説明す
る。図面は本発明の一実施例による積層チツプコ
ンデンサの製造工程の各段階を示し、Aは平面
図、BはAの水平中央断面図である。なおB図は
見易くするために厚さを誇張して示してあるが各
層とも0.5〜数ミクロンの厚さに過ぎない。
The invention will now be explained in detail with reference to examples. The drawings show each step of the manufacturing process of a multilayer chip capacitor according to an embodiment of the present invention, where A is a plan view and B is a horizontal cross-sectional view of A. Although the thickness of Figure B is exaggerated for ease of viewing, each layer has a thickness of only 0.5 to several microns.

第1図はアルミナ等のやや厚みのあるセラミツ
ク基板1を示す。この基板1には第2図のように
マスクM1を通して基板1の右辺に接してアルミ
ニウム電極(第1電極)2がイオンプレートされ
る。次に第3図のように第1電極2の右辺を残し
て基板1の全面にTiBaO3(誘電体層)3がマス
クM2を通してイオンプレートされる。第4図に
移り、マスクM3を通してアルミニウム電極(第
2電極)4が基板1の左辺に接してイオンプレー
トされ、次いで第5図のように第2電極4を一部
残しまた第1電極の右辺を残した状態で、
PaTiO3がイオンプレートされる。最後に第6図
のようにマスクM1を使用して第1電極6を第1
電極2と重畳するようにしてイオンプレートす
る。これにより第1電極と第2電極とは誘電体層
を介在して積層され、また第1電極同志は電気的
に接続される。第1電極の右端は基板1の右辺上
に露出されており、第2電極の左端は基板1の左
辺に露出する。こうして、外部端子7,8がイオ
ンプレーテイング法のみによつて形成できる。若
し必要ならばさらに誘電体を第5図の工程に従つ
て蒸着して表面の保護を行うことができる。基板
ホルダーにセラミツク基板を取付け、これに対向
した位置にAl及びBaTiO3のソースをそれぞれ配
置し、基板とソースの間に高周波コイルを配置
し、ソースと基板の間に−500Vを加えた。ソー
スは電子ビームで衝撃した。条件はAr圧力10-4
トール、13.56MHzRF電力200Wで基板上にAl、
BaTiO2を交互にイオンプレートした。各層が約
1μとなるようにして数層イオンプレートした。
なお最上層はBaTiO3とした。対照のためスパツ
タ法(ArイオンでターゲツトAl及びBaTiO3を衝
撃し、放出された分子又は原子を基板上に付着)
で各層約1μとなるようにして数層成膜した。こ
れらの積層体上にオーム社刊「薄膜ハンドブツ
ク」の212〔〕(a)項に記載の引張り法に従つ
て、エポキシ樹脂を接着剤として用いて棒の端面
を貼りつけ、十分に熱硬化した後、棒を引張つ
た。引張力Fとし、積層体の面積をSとした時時
f=F/Sは、イオンプレートのものは約200
g、スパツタのものは約15gであつた。このよう
に本発明の方法によると、強力な層間結合のコン
デンサが得られる。
FIG. 1 shows a somewhat thick ceramic substrate 1 made of alumina or the like. As shown in FIG. 2, an aluminum electrode (first electrode) 2 is ion plated on the substrate 1 in contact with the right side of the substrate 1 through a mask M1. Next, as shown in FIG. 3, TiBaO 3 (dielectric layer) 3 is ion-plated over the entire surface of the substrate 1 through a mask M2, leaving the right side of the first electrode 2 intact. Moving on to FIG. 4, an aluminum electrode (second electrode) 4 is ion plated in contact with the left side of the substrate 1 through a mask M3, and then, as shown in FIG. 5, a part of the second electrode 4 is left and the right side of the first electrode is With the .
PaTiO3 is ion plated. Finally, as shown in FIG.
The ion plate is placed so as to overlap with electrode 2. As a result, the first electrode and the second electrode are stacked with the dielectric layer interposed therebetween, and the first electrodes are electrically connected to each other. The right end of the first electrode is exposed on the right side of the substrate 1, and the left end of the second electrode is exposed on the left side of the substrate 1. In this way, the external terminals 7 and 8 can be formed only by the ion plating method. If necessary, additional dielectric material can be deposited according to the process of FIG. 5 to protect the surface. A ceramic substrate was attached to a substrate holder, Al and BaTiO 3 sources were placed in positions opposite to this, a high frequency coil was placed between the substrate and the source, and -500V was applied between the source and the substrate. The source was bombarded with an electron beam. Conditions are Ar pressure 10 -4
Thor, Al on board with 13.56MHz RF power 200W,
BaTiO2 was ion plated alternately. Several layers of ion plate were prepared so that each layer had a thickness of about 1 μm.
Note that the top layer was BaTiO 3 . For control, sputtering method (bombarding targets Al and BaTiO 3 with Ar ions and depositing the released molecules or atoms on the substrate)
Several layers were formed so that each layer had a thickness of about 1 μm. The end surfaces of the rods were pasted onto these laminates using epoxy resin as an adhesive according to the tensile method described in section 212 [] (a) of "Thin Film Handbook" published by Ohmsha, and were sufficiently heat-cured. After that, I pulled the rod. When the tensile force is F and the area of the laminate is S, f=F/S is approximately 200 for the ion plate.
g, and the spatsuta one weighed about 15 g. As described above, according to the method of the present invention, a capacitor with strong interlayer coupling can be obtained.

以上のように、本発明のコンデンサはすべてイ
オンプレーテイング法のみによつて製造されるか
ら工程が非常に単純化される。また上記の実施例
は単一素子に関して説明したが、実際には広い基
板1を用い、これに多数の素子を前記の工程に従
つて製造し、最後に単一素子の形に基板を裁断す
る方が一般的である。このように本発明は大量生
産に適し、また各層の厚さの制御も容易であるか
ら、工程管理も容易である。製造されたコンデン
サは特性が一定であり、層間の接着力が高く、全
厚が薄く小形化が可能である。また外部端子も同
じ工程で形成されるから、別に外部端子の焼付け
が必要でなくなる。もつとも、必要な場合には別
に焼付ける方法を採用することも可能である。本
実施例では3枚の電極を形成する例について説明
したが、必要に応じて第1〜6図の工程を反復し
て所定の積層数を得ることも本発明の範囲にあ
る。
As described above, since the capacitor of the present invention is manufactured only by the ion plating method, the process is greatly simplified. Furthermore, although the above embodiment has been described with reference to a single device, in reality, a wide substrate 1 is used, a large number of devices are manufactured thereon according to the above steps, and finally the substrate is cut into the shape of a single device. is more common. As described above, the present invention is suitable for mass production, and since the thickness of each layer can be easily controlled, process control is also easy. The manufactured capacitors have constant characteristics, high interlayer adhesion, and a thin overall thickness, allowing for miniaturization. Furthermore, since the external terminals are also formed in the same process, there is no need to separately bake the external terminals. However, if necessary, it is also possible to adopt a separate baking method. In this embodiment, an example in which three electrodes are formed has been described, but it is also within the scope of the present invention to repeat the steps shown in FIGS. 1 to 6 to obtain a predetermined number of laminated layers, if necessary.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のコンデンサの製造工程の第1
段階を示し、Aは平面図、Bは断面図、第2図同
じく第2段階を示し、Aは平面図、Bは断面図、
第3図は同第3段階を示し、Aは平面図、Bは断
面図、第4図は同第4段階を示し、Aは平面図、
Bは断面図、第5図は同第5段階を示し、Aは平
面図、Bは断面図、及び第6図は同第6段階を示
し、Aは平面図、Bは断面図である。図中主要な
部材は次の通りである。 1……基板、2,6……第1電極、3,5……
誘電体、4……第2電極、7,8……外部端子。
Figure 1 shows the first step in the manufacturing process of the capacitor of the present invention.
Fig. 2 also shows the second stage, A is a plan view, B is a sectional view,
Figure 3 shows the third stage, A is a plan view, B is a sectional view, and Figure 4 shows the fourth stage, A is a plan view,
B is a cross-sectional view, FIG. 5 is a fifth stage, A is a plan view, B is a cross-sectional view, and FIG. 6 is a sixth stage, A is a plan view, and B is a cross-sectional view. The main members in the figure are as follows. 1... Substrate, 2, 6... First electrode, 3, 5...
Dielectric, 4... second electrode, 7, 8... external terminal.

Claims (1)

【特許請求の範囲】 1 セラミツク基体上に、該基板の他端に至らな
い電極層を該基板の一端までイオンプレートし、
その上に前記一端部の電極層部分を残して前記電
極層の少なくとも他端部を覆う誘電体層をイオン
プレートし、該誘電体層の上にその一端部を残し
て該基板の他端まで延びる電極層をイオンプレー
トし、その上に該電極層の他端部を残して少なく
ともその一端部を覆うが基板の前記一端には至ら
ない誘電体層をイオンプレートし、以下必要に応
じて同じ工程を反復することを特徴とするコンデ
ンサの製造方法。 2 各層が1μ以下の厚さを有する特許請求の範
囲第1項記載のコンデンサ。 3 誘電体は電極の末端を露出してイオンプレー
トされており、これら露出部が外部端子を構成し
ている特許請求の範囲第1項または第2項記載の
コンデンサ。 4 セラミツク基板上にアルミニウム等の金属を
イオンプレートして第1電極を形成し、次で
BaTiO3等の誘電体を蒸着して誘電体層を形成
し、さらに第1電極に対して絶縁関係でアルミニ
ウム等の金属をイオンプレートして第2電極を形
成し、以下必要に応じて誘電体と第1電極、第2
電極を反復してイオンプレートすることを特徴と
するコンデンサの製造方法。 5 各層のイオンプレートは1μ以下の厚さが得
られるまで行われる特許請求の範囲第4項記載の
コンデンサの製造方法。 6 誘電体層は第1電極及び第2電極を各々特定
の個所で一部分露出するようにしてイオンプレー
トされて、第1電極及び第2電極が前記特定個所
で外部電極を構成するようにした特許請求の範囲
第4または5項記載のコンデンサの製造法。
[Claims] 1. On a ceramic substrate, an electrode layer that does not reach the other end of the substrate is ion plated to one end of the substrate,
A dielectric layer covering at least the other end of the electrode layer is ion plated thereon, leaving the electrode layer portion at one end, and extending to the other end of the substrate while leaving the one end on the dielectric layer. ion plate the extending electrode layer, and ion plate a dielectric layer covering at least one end of the electrode layer, leaving the other end of the electrode layer, but not extending to the one end of the substrate; A capacitor manufacturing method characterized by repeating the process. 2. The capacitor according to claim 1, wherein each layer has a thickness of 1 μm or less. 3. The capacitor according to claim 1 or 2, wherein the dielectric material is ion plated with the ends of the electrodes exposed, and these exposed portions constitute external terminals. 4 Form a first electrode by ion-plating a metal such as aluminum on a ceramic substrate, and then
A dielectric layer is formed by depositing a dielectric material such as BaTiO 3 , and then a second electrode is formed by ion-plating a metal such as aluminum in an insulating relationship with the first electrode. and the first electrode, the second
A method for manufacturing a capacitor, characterized in that electrodes are repeatedly ion plated. 5. The method of manufacturing a capacitor according to claim 4, wherein the ion plate of each layer is formed until a thickness of 1 μm or less is obtained. 6. A patent in which the dielectric layer is ion-plated so that the first electrode and the second electrode are partially exposed at specific locations, so that the first electrode and the second electrode constitute external electrodes at the specific locations. A method for manufacturing a capacitor according to claim 4 or 5.
JP3429779A 1979-03-26 1979-03-26 Capacitor and method of manufacturing same Granted JPS55127011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3429779A JPS55127011A (en) 1979-03-26 1979-03-26 Capacitor and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3429779A JPS55127011A (en) 1979-03-26 1979-03-26 Capacitor and method of manufacturing same

Publications (2)

Publication Number Publication Date
JPS55127011A JPS55127011A (en) 1980-10-01
JPS6145851B2 true JPS6145851B2 (en) 1986-10-09

Family

ID=12410216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3429779A Granted JPS55127011A (en) 1979-03-26 1979-03-26 Capacitor and method of manufacturing same

Country Status (1)

Country Link
JP (1) JPS55127011A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047802Y2 (en) * 1987-07-13 1992-02-28

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592385A (en) * 1982-06-28 1984-01-07 Murata Mfg Co Ltd Electronic parts
JPS5935415A (en) * 1982-08-24 1984-02-27 日立コンデンサ株式会社 Method of producing porcelain condenser
JPS59158512A (en) * 1983-03-01 1984-09-08 住友ベークライト株式会社 High dielectric thin film condenser
US8722505B2 (en) * 2010-11-02 2014-05-13 National Semiconductor Corporation Semiconductor capacitor with large area plates and a small footprint that is formed with shadow masks and only two lithography steps

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047802Y2 (en) * 1987-07-13 1992-02-28

Also Published As

Publication number Publication date
JPS55127011A (en) 1980-10-01

Similar Documents

Publication Publication Date Title
US6195249B1 (en) Electronic component having gaps between conductive thin films
JP2022126836A (en) Thin-film polymer multilayer capacitor
JP4428852B2 (en) Multilayer electronic component and manufacturing method thereof
GB2106714A (en) Ceramic capacitor and method of making the same
JP4573956B2 (en) Multilayer electronic component and manufacturing method thereof
US6690572B2 (en) Single layer electronic capacitors with very thin dielectrics and methods to produce same
JPS6145851B2 (en)
JPH09266131A (en) Multilayer electronic part
JP4412837B2 (en) Multilayer electronic component and manufacturing method thereof
JP2002231570A (en) Multilayer electronic component and its manufacturing method
JPS5866321A (en) Method of producing laminated ceramic condenser
JP2000306763A (en) Laminated ceramic capacitor and manufacture thereof
KR0143158B1 (en) Manufacturing method of chip type LC composite electronic component
JPS6029214B2 (en) Manufacturing method of multilayer capacitor
JP2002198250A (en) Laminated electronic component
JPH0817673A (en) Mica capacitor
JPH09266133A (en) Multilayer electronic part
JPS637017B2 (en)
JP2005136173A (en) Capacitor
JPH02106912A (en) Laminated film capacitor
JPH0342488B2 (en)
JP2000260655A (en) Laminated ceramic capacitor and its manufacturing method
JPH1083937A (en) Layered electronic component
JPH0878274A (en) Production of ceramic electronic parts
JPH05121262A (en) Manufacture of multilayer thin film capacitor