JPS59158512A - High dielectric thin film condenser - Google Patents

High dielectric thin film condenser

Info

Publication number
JPS59158512A
JPS59158512A JP3185683A JP3185683A JPS59158512A JP S59158512 A JPS59158512 A JP S59158512A JP 3185683 A JP3185683 A JP 3185683A JP 3185683 A JP3185683 A JP 3185683A JP S59158512 A JPS59158512 A JP S59158512A
Authority
JP
Japan
Prior art keywords
high dielectric
thin film
dielectric thin
thickness
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3185683A
Other languages
Japanese (ja)
Other versions
JPH025006B2 (en
Inventor
明文 勝村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP3185683A priority Critical patent/JPS59158512A/en
Publication of JPS59158512A publication Critical patent/JPS59158512A/en
Publication of JPH025006B2 publication Critical patent/JPH025006B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、小型で、かつ静電容量の大きな高誘電体薄膜
コンデンサーに関するものである。電子機器の小型化に
伴ない単位容積当シに収納される電子部品点数が増加し
てきている。トランジスターやダイオードのような境界
に係る素子は集積回路作成技術の進歩により極めて小型
化されているがそれに対し、コンデンサーは、電極面積
に静電容量が正比例する特性の為、静電容量を低下させ
ずに小型化することは容易ではない。特に1μF以上の
静電容量を有するコンデンサーは小型化が遅れている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high dielectric thin film capacitor that is small in size and has a large capacitance. As electronic devices become smaller, the number of electronic components housed per unit volume is increasing. Boundary-related elements such as transistors and diodes have become extremely miniaturized due to advances in integrated circuit fabrication technology, but capacitors, on the other hand, have a characteristic that capacitance is directly proportional to electrode area, so it is difficult to reduce capacitance. It is not easy to downsize without In particular, miniaturization of capacitors having a capacitance of 1 μF or more is slow.

静電容量を低下させずにコンデンサーを小型化するには
、三通りの方法がある。一つは誘電体の誘電率を犬きく
することである。誘電率の大きな材料としては、TiO
2などの酸化物、BaTiO3などの強誘電体があげら
れる。このような高誘電体を用いたコンデンサーは、従
来からセラミックコンデンサーとして存在するが、これ
らは、高誘電体を、有機バインダー等で泥状化し、薄く
延ばして焼結する方法が用いられておシ、内部に空隙を
多く含む為に、材質の特性を十分に発揮していない。ま
だ、以下に述べるように、コンデンサーの小型化の要素
である厚さを、薄くすることにおいても不十分である。
There are three ways to downsize a capacitor without reducing capacitance. One is to increase the permittivity of the dielectric material. TiO is a material with a large dielectric constant.
Examples include oxides such as 2 and ferroelectrics such as BaTiO3. Capacitors using such a high dielectric material have traditionally existed as ceramic capacitors, but these are manufactured using a method in which the high dielectric material is made into a slurry with an organic binder, etc., and then stretched thin and sintered. , because it contains many voids inside, it does not fully demonstrate the characteristics of the material. As described below, it is still insufficient to reduce the thickness, which is a factor in miniaturizing capacitors.

コンデンサーを小型化する他の方法として、電極を構成
する基材の厚さを薄くする方法もある。この方法で、電
極の占める体積を減少させる効果が期待される。
Another way to downsize capacitors is to reduce the thickness of the base material that makes up the electrodes. This method is expected to have the effect of reducing the volume occupied by the electrode.

壕だ他の方法として、誘電体の厚さを薄くする方法があ
る。この方法は、単に誘電体の占める体積を減少させる
効果だけでなく、同じ電極面積で惑れば静電容量を大き
くする効果もあり、すなわち、静電容量を同じにするに
は、電極面積を小さくできる効果がある。1−かじ、後
二者のような構成体の厚さを薄くする方法は、そのよう
な薄い構成体を製造することも困難になるが、コンデン
サーに加工する工程にも特殊な方法を必要とし、扱いに
くくなる。つまり静電容量増大の為に、やむを得ず採ら
れる方法であり、もっと扱いやすい厚さの累月を用いで
静電容に°を低下さぜず、小型化できれば望ましい。
Another method is to reduce the thickness of the dielectric. This method not only has the effect of reducing the volume occupied by the dielectric, but also has the effect of increasing the capacitance if the electrode area is the same.In other words, to make the capacitance the same, the electrode area must be increased. It has the effect of making it smaller. 1. The latter two methods of reducing the thickness of the structure make it difficult to manufacture such a thin structure, but also require a special method in the process of processing it into a capacitor. , becomes unwieldy. In other words, this method is unavoidably adopted in order to increase the capacitance, and it would be desirable if the capacitance could be made smaller without reducing the capacitance by using a more manageable thickness.

本発明者は、このような状況に鑑み、小型で静電容量の
大きなコンテンサーを開発すべく鋭意研究の結果、本発
明に至った。すなわち、電極が金属箔であり、誘電体が
高誘電体薄膜であるコンテンサーであって該コンテンサ
ーの電極となる金属1 箔表面に、I XIOTorr以下の減圧下において0
01〜1ミクロンの厚さで高誘電体薄膜を積層すること
によって得られた、高誘電体薄膜積層金属箔から構成さ
れたコンデンサーが、本発明の目的ケ満足することを見
い出したものである。
In view of this situation, the present inventor conducted extensive research to develop a compact capacitor with a large capacitance, and as a result, arrived at the present invention. That is, in a capacitor in which the electrode is a metal foil and the dielectric is a high dielectric thin film, a metal 1 serving as an electrode of the capacitor is coated on the surface of the metal foil under a reduced pressure of IXIO Torr or less.
It has been found that a capacitor constructed from a high dielectric thin film laminated metal foil obtained by laminating high dielectric thin films with a thickness of 0.01 to 1 micron satisfies the objects of the present invention.

本発明における電極となる金属箔には電気の良導体であ
れば、特に何を用いても差しつかえないが、人干しやす
く、価格的にも安価なアルミニウム箔が最も適しでいる
。金属箔の厚さは、すでに述べたように薄い方が小型化
には好ましいが、高誘電体薄膜奮槓、′庫する工程や、
コンテンサーに加工する工程等にち・いて、アルミ箔の
場合、20ミクロン以−1・になると、破断したり、シ
ワが入ったりしで、非常に作業が困難になった。つまシ
、本発明の意図する所は金属箔としては、扱い易い厚さ
のものを使用する点にある。金属箔の表面は、対χ1極
との密着性を高める為に、平滑であることが好捷しい。
Any metal foil may be used as the electrode in the present invention as long as it is a good electrical conductor, but aluminum foil is most suitable because it is easy to dry and is inexpensive. As mentioned above, the thinner the metal foil, the better it is for miniaturization, but the process of developing and storing a high dielectric thin film,
In the process of processing into condensers, aluminum foil with a thickness of 20 microns or more tends to break or wrinkle, making the work extremely difficult. The purpose of the present invention is to use a metal foil with a thickness that is easy to handle. The surface of the metal foil is preferably smooth in order to improve its adhesion to the χ1 pole.

不発明における高誘電体としては、TiやTaの酸化物
や、B aT iO3等の強誘電体があげられる。これ
らの高誘電体k 1. X 10 Torr以下の減圧
下において、O,’01〜1ミクロンの厚さで金属箔に
積層する方法としては、真空蒸着法、スパッタリング法
、イオンブレーティング法、減圧CVD法、プラズマC
VD法等がある。]、 XIOTorr以下の減圧下で
稙1械する理由は、積層された高誘電体薄膜中に空隙分
生じさぞない為であり、壕だ、金属箔表面上に、積層時
の熱によって、金属箔自体の酸化膜が形成されるのを防
ぐ為でもある。上にあげた積層方法は、いずれも、この
ような減圧条件下での薄膜形成に好適の方法である。高
誘電体として、BaTiO3の、Baの一部を、Srな
どの余塵1で置きかえたものd、室温付近での誘電率が
10.000を超えるものがあり、コンデンサーの小型
化に極めて効果があるが、このような高誘電体の薄膜を
積層する場合は、焼結によって微結晶化させた高誘電体
をターゲットに用いた高周波スパッタリング法が望まし
い。
Examples of the high dielectric material according to the invention include oxides of Ti and Ta, and ferroelectric materials such as BaT iO3. These high dielectric materials k1. Methods for laminating metal foil with a thickness of 01 to 1 micron under reduced pressure of X 10 Torr or less include vacuum evaporation, sputtering, ion blating, low pressure CVD, and plasma C.
There is the VD method etc. ], The reason why the metal foil melts under reduced pressure below XIO Torr is that no voids are generated in the laminated high dielectric thin films. This is also to prevent the formation of an oxide film on itself. All of the above-mentioned lamination methods are suitable for forming a thin film under such reduced pressure conditions. High dielectric materials include BaTiO3 in which part of the Ba is replaced with residual dust such as Sr, and materials with a dielectric constant of over 10.000 at room temperature, which are extremely effective in reducing the size of capacitors. However, when stacking such high dielectric thin films, it is desirable to use a high frequency sputtering method using a high dielectric material microcrystallized by sintering as a target.

特に、マグネトロン方式の高周波スパッタリング法が薄
膜形成速度が速い点で、生産上、最も過している。誘電
体層の厚さは、目的とするコンデンサーに要求される静
電容量と、耐電圧によって、適当な厚さを選べばよい。
In particular, the magnetron-based high-frequency sputtering method is the most disadvantageous in terms of production because it forms a thin film at a high speed. The thickness of the dielectric layer may be selected appropriately depending on the capacitance and withstand voltage required for the intended capacitor.

小型化の為には薄くする方が好筐しいが、耐電圧が低下
する以外にもピンホールの発生頻度が増大する為に00
1ミクロン以下の厚みは実用上意味″がない。また、高
誘電体は、もろい性質がある為に、積層体をロール状に
差いて用いる為には1ミクロン以上の凍みは好捷[7く
ない。ここつように用意された高誘電体薄膜積層金属箔
は1世」として、以下のようにコンテンサーに加工され
ろ。第1図のように、金属箔1(1)に論;a玉体博膜
(2)を積層した8を屠体(3)に対電極として、金沃
箔(4)金重ね、リード線(5,5′)を付けて、全体
を樹脂(6)で制止する。また、第2図のように、積層
体(7)の高誘電体薄膜(8)の表面に、導電性ベーイ
ント(9) k塗布し、リード線(10)を、導電性接
7i剤(11)によって取り付け、全体を樹脂(12)
で封止する。1だ、図3のように、積層体(13) e
、交互に少しずらせて多数枚重ね合せ、ずらせた部分に
電極取出部(14,14)とリード線(15,15)を
取付けて樹脂(16)で封止する。第3図のように重ね
合わせた構成で、長いテープ状の積層体を2本用いて1
を同型とすることもできる。
For miniaturization, it is better to make the case thinner, but in addition to lowering the withstand voltage, it also increases the frequency of pinholes.
A thickness of 1 micron or less has no practical meaning.Also, since high dielectric materials have brittle properties, freezing of 1 micron or more is not suitable for use in rolls of laminates [7]. No. The highly dielectric thin film laminated metal foil prepared in this way is the first generation, and is processed into a condenser as shown below. As shown in Figure 1, metal foil 1 (1) is laminated with metal foil 1 (1), a metal foil (2) is layered on the carcass (3) as a counter electrode, gold foil (4) is layered with gold, and a lead wire is used. (5, 5') and stop the whole thing with resin (6). Further, as shown in Fig. 2, a conductive paint (9) is applied to the surface of the high dielectric thin film (8) of the laminate (7), and a conductive adhesive (11) is applied to the lead wire (10). ), and the whole is made of resin (12)
Seal with. 1, as shown in Figure 3, the laminate (13) e
, a large number of sheets are stacked one on top of the other with slight shifts alternately, and the electrode extraction portions (14, 14) and lead wires (15, 15) are attached to the shifted portions and sealed with resin (16). As shown in Figure 3, two long tape-like laminates are used to make one
can also be made isomorphic.

以下に実施例をあける。Examples are given below.

実施例1 厚さ25μで、表面が平滑なアルミ箔に、T i02を
、電子ビーム加熱真空蒸着装置によって、片面に、厚a
0.05ミクロンとなるように蒸着した。
Example 1 Ti02 was deposited on one side of an aluminum foil with a thickness of 25μ and a smooth surface using an electron beam heating vacuum evaporation apparatus to a thickness of a.
It was deposited to a thickness of 0.05 micron.

蒸着膜組成中の酸累が減少していたので、積層体を、3
00℃5時間空気中で加熱し、組成を調整した。この積
層体を、第3図のように50枚重ね合わせコンデンサー
を作成した。コンデンサーの大きさは厚さ]、、 3 
wn、巾30論、奥行50配であり、電極面積は65贋
であった。このコンデンサーの#電容量は4.0μFで
あった。
Since the acid accumulation in the deposited film composition had decreased, the laminate was
The composition was adjusted by heating at 00°C for 5 hours in air. A capacitor was fabricated by laminating 50 sheets of this laminate as shown in FIG. The size of the capacitor is the thickness],, 3
wn, width 30 mm, depth 50 mm, and electrode area was 65 mm. The capacitance of this capacitor was 4.0 μF.

実施例2 厚さ50μで、表面が平滑なアルミ箔に、室温における
誘電率が18.000のBaTiO3系磁器で作成した
ターケントを用いて、マグネト【コン方式高周波スパッ
タリング装置で、厚さ01ミクロンの誘電体層を積層し
た。この積層体を第2図のように、導電性ペイントを用
いて、コンデンサーとした。
Example 2 An aluminum foil with a thickness of 50 μm and a smooth surface was coated with a tarquent made of BaTiO3-based porcelain having a dielectric constant of 18.000 at room temperature. Dielectric layers were laminated. As shown in FIG. 2, this laminate was made into a capacitor using conductive paint.

コンデンサーの太きさは、厚さ0.2m、巾30個、奥
行100馴であり、電極面積は0.3 c肩であった。
The capacitor had a thickness of 0.2 m, a width of 30 pieces, a depth of 100 mm, and an electrode area of 0.3 cm.

このコンデンサーの静電容量は80IiFであった。The capacitance of this capacitor was 80IiF.

なお、このような形状のコンデンサーは、回路基板上に
立てて使用されその場合の、基板占有面積は06−とな
る。
It should be noted that a capacitor having such a shape is used standing up on a circuit board, and in that case, the area occupied by the board is 06-.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2凶は本発明による高誘電体薄膜積層金属箔
を1枚使用したコンデンサーの構成断面図、第3図は多
数枚使用したコンテンサーの構成断1如図である。 特許出願人 住友ベークライト株式会社第2図 一寸 第3図 2 16
FIGS. 1 and 2 are cross-sectional views of a capacitor using one high dielectric thin film laminated metal foil according to the present invention, and FIG. 3 is a cross-sectional view of a capacitor using a large number of high dielectric thin film laminated metal foils. Patent Applicant: Sumitomo Bakelite Co., Ltd. Figure 2 One inch Figure 3 2 16

Claims (1)

【特許請求の範囲】[Claims] 電極となる金属箔表面に、1 xlOTorr以下の減
圧において0.01〜1ミクロンの厚さで高誘電体薄膜
を積層したことを特徴とする高誘電体薄膜コンデンサー
A high dielectric thin film capacitor characterized in that a high dielectric thin film is laminated with a thickness of 0.01 to 1 micron at a reduced pressure of 1 x lOTor or less on the surface of a metal foil serving as an electrode.
JP3185683A 1983-03-01 1983-03-01 High dielectric thin film condenser Granted JPS59158512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3185683A JPS59158512A (en) 1983-03-01 1983-03-01 High dielectric thin film condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3185683A JPS59158512A (en) 1983-03-01 1983-03-01 High dielectric thin film condenser

Publications (2)

Publication Number Publication Date
JPS59158512A true JPS59158512A (en) 1984-09-08
JPH025006B2 JPH025006B2 (en) 1990-01-31

Family

ID=12342686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3185683A Granted JPS59158512A (en) 1983-03-01 1983-03-01 High dielectric thin film condenser

Country Status (1)

Country Link
JP (1) JPS59158512A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266459A (en) * 2006-03-29 2007-10-11 Tdk Corp Method of manufacturing capacitor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231367A (en) * 1975-09-03 1977-03-09 Matsushita Electric Ind Co Ltd Method of manufacturing thin film capacitor
JPS5262648A (en) * 1975-11-20 1977-05-24 Matsushita Electric Ind Co Ltd Method of manufacturing titanium capacitor
JPS55127011A (en) * 1979-03-26 1980-10-01 Tdk Electronics Co Ltd Capacitor and method of manufacturing same
JPS5683923A (en) * 1979-12-13 1981-07-08 Showa Aluminium Co Ltd Electrode foil for electrolytic condenser and method of manufacting same
JPS5745968A (en) * 1980-08-29 1982-03-16 Ibm Capacitor with double dielectric unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231367A (en) * 1975-09-03 1977-03-09 Matsushita Electric Ind Co Ltd Method of manufacturing thin film capacitor
JPS5262648A (en) * 1975-11-20 1977-05-24 Matsushita Electric Ind Co Ltd Method of manufacturing titanium capacitor
JPS55127011A (en) * 1979-03-26 1980-10-01 Tdk Electronics Co Ltd Capacitor and method of manufacturing same
JPS5683923A (en) * 1979-12-13 1981-07-08 Showa Aluminium Co Ltd Electrode foil for electrolytic condenser and method of manufacting same
JPS5745968A (en) * 1980-08-29 1982-03-16 Ibm Capacitor with double dielectric unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266459A (en) * 2006-03-29 2007-10-11 Tdk Corp Method of manufacturing capacitor

Also Published As

Publication number Publication date
JPH025006B2 (en) 1990-01-31

Similar Documents

Publication Publication Date Title
US9679697B2 (en) Method for manufacturing multilayer ceramic condenser
JP3470830B2 (en) Manufacturing method of multilayer capacitor
JP5730732B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
US8508915B2 (en) Multilayer ceramic condenser and method of manufacturing the same
JPH05299286A (en) Laminated ceramic element and manufacture thereof
JPS59158512A (en) High dielectric thin film condenser
JP2004522320A (en) Electroceramic structural element, multilayer capacitor and method for manufacturing multilayer capacitor
JP4876649B2 (en) DC metallized film capacitor
JPS6094716A (en) Thin film condenser
JPS6145851B2 (en)
WO2024062980A1 (en) Multilayered ceramic electronic component and method for manufacturing same
JP7151048B2 (en) Capacitor, method for producing solid electrolyte particles for capacitor, and method for producing capacitor
JPS5866321A (en) Method of producing laminated ceramic condenser
JPS59135714A (en) High dielectric thin film laminated film
JPH08264381A (en) Laminated capacitor and its manufacture
JPH01175217A (en) Dielectric thin-film laminated body for capacitor
JPH0432527B2 (en)
JP2936925B2 (en) Method for producing multilayer semiconductor ceramic composition
JP2023034395A (en) Ceramic electronic component and manufacturing method for the same
JP2000260655A (en) Laminated ceramic capacitor and its manufacturing method
JPS63224313A (en) Metallized plastic film capacitor
JP2005026402A (en) Capacitor and its fabricating method
JP2020161792A (en) Dielectric thin film element, electronic component and electronic circuit board
JP2003173927A (en) Flexible thin-film capacitor and its manufacturing method
JPH08115849A (en) Laminated capacitor